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Abstract—In this paper feedforward controller is designed to 

eliminate nonlinear hysteresis behaviors of a piezoelectric stack 

actuator (PSA) driven system. The control design is based on inverse 

Prandtl-Ishlinskii (P-I) hysteresis model identified using particle 

swarm optimization (PSO) technique. Based on the identified P-I 

model, both the inverse P-I hysteresis model and feedforward 

controller can be determined. Experimental results obtained using the 

inverse P-I feedforward control are compared with their counterparts 

using hysteresis estimates obtained from the identified Bouc-Wen 

model. Effectiveness of the proposed feedforward control scheme is 

demonstrated. To improve control performance feedback 

compensation using traditional PID scheme is adopted to integrate 

with the feedforward controller.  

 

Keywords—The Bouc-Wen hysteresis model, Particle swarm 

optimization, Prandtl-Ishlinskii model. 

I. INTRODUCTION 

ONTROL of a micro-/nanopositioning mechanism 

actuated by piezoelectric stack actuator (PSA) is 

investigated here. Compared with other types of actuators, PSA 

is capable of positioning with nanometer resolution and rapid 

response. Nevertheless, PSA also exhibits undesired nonlinear 

hysteresis behaviors. Hysteresis feature of the PSA manifests 

itself as a loop structure between the input voltage and output 

displacement where the ascending characteristics are different 

from the descending ones. Hysteresis also causes severe 

open-loop positioning error that can be as high as 10-15% of the 

span of the motion. Thus, the hysteresis effect has to be 

suppressed in high-precision application scenarios [1]-[5]. To 

alleviate hysteresis, model-based control can be adopted. 

However, modeling the hysteresis is a nontrivial task because 

such nonlinearity is not only amplitude but also frequency 

dependent. Generally, the hysteresis is modeled using Preisach 

model [6], Prandtl-Ishlinskii (P-I) model [7], Bouc-Wen model 

[8]-[10], etc. When precise mathematical model is obtained, an 

inverse hysteresis model if it exists can be constructed and 

utilized as the feedforward control input to cancel hysteresis 

effect. This study identifies parameters ofthe P-I hysteresis 

model using particle swarm optimization (PSO) technique so 

that both the inverse P-I model and feedforward control can be 

constructed. 
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Due to the highly nonlinear, high dimensional, 

non-differential and multiple constraint nature, the identification 

of the P-I model constitutes a challenging problem. To 

overcome this, particle swarm optimization (PSO) technique is 

adopted. PSO is a relatively new heuristic search method based 

on the idea of collaborative behavior and swarming in biological 

populations. Unlike conventional local search optimization 

methods such as the least squares method, intelligent algorithms 

which may not be so efficient in dealing with this case, PSO is a 

multi-agent parallel search technique [11]-[13]. Conceptually, 

each particle in PSO is equipped with a small memory 

comprising its previous best position. The latter includes the 

personal best experience and the best value so far in the group 

among the best positions. The “group best” is referred to as the 

globally best particle in the entire swarm. Hence, the potential 

solutions of PSO, or called trial particles, basically fly through 

the whole problem space attempting to settle down at an optimal 

position. The optimal position usually is defined by some sorts 

of optimization criterion which in identification problem is 

referred to a fitness function or the square sum of errors between 

outputs obtained from real system and the identified model. 

II. PROBLEM STATEMENT 

A. Prandtl-Ishlinskii model 

The Prandtl-Ishlinskii (P-I) model has been widely applied to 

describe the hysteresis nonlinearity due to its reduced 

complexity in comparison with Preisach model and analytical 

form of the inversion [14]. The backlash operator is the primary 

operator of the P-I model which is defined as the following 

discrete form [5], [14] 

 

 [ ] { }{ }1(,)(min,)(max)(,)( 0 −+−== kyrkxrkxkyxHky r    
(1) 

 

where x is the control input, y is the actuator response, r  is the 

control input threshold value or the magnitude of the backlash. 

The initial consistency condition of (1) can be written as 
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When complex hysteretic nonlinearity is facing, the 

hysteretic loop can be modeled by a linearly weighted 

superposition of many backlash operator with different 

threshold and weight values. Thus, 
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The control input threshold values r are usually, but not 

necessarily, chosen as equal intervals. In this study they are 

determined using the following equation 
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Moreover, it is assumed that the hysteretic actuator starts in 

its de-energized state. Thus, niy i ⋯1,00 ==      . 

B. Particle Swarm Optimization 

In PSO, particles are conceptual entities that fly through the 

multi-dimensional search space. At any particular instant, each 

particle possesses a position and velocity where the position 

vector of a particle represents a trial solution of the optimum 

problem. When implementing the searching algorithm, a 

population of particles is initialized with random positions 

denoted as 
ix  
and random velocity 

iv . All particles are 

evaluated according to the predefined fitness function. 

Comparing the fitness value, each particle records its personal 

best experienced position as pbesti, and the global best 

experienced position as gbest. Thus, the global version of PSO 

is implemented as the following steps [2]: 

1. Initialize a population of particles with random positions 

and velocities in d dimensions where d represents the 

number of un-determined parameters. 

2. Compute the value of fitness function in d variables for 

each particle. 

3. For each particle, compare the fitness value with that of the 

pbest. If the current fitness value is better than that of the 

pbest, change the pbest value to the current value and 

change the pbest location to the current location in d 

dimensional space. 

4. For each particle, compare the fitness value with the best 

value observed so far in the overall population. If the 

current value is better than gbest, reset the gbestto the 

current array index and value of current particle. 

5. Update the velocity and position of the particle using the 

following equations 
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where
1r  and 2r  are two random variables in the range of [0,1], 

1c and 
2c are acceleration coefficients, w is the inertia weight, 

)(kp i
 and )(kg i

denote the positions of pbestand gbest, 

respectively. 

6. Start over at step (2) unless a termination criterion is met. 

The termination criteria are usually a sufficiently good 

fitness value or the maximum number of iterations. 

III. HYSTERESIS MODELING AND IDENTIFICATION 

A. Experimental Setup 

The experimental setup consists of a PSA (Piezomechanik, 

PSt500/10/25), a flexible mechanism, a load cell (Honeywell, 

model 13) and a PC-based control unit with D/A and A/D 

interfaces. Fig. 1 presents a photograph of the experimental 

system. Since a load cell, rahter than displacement sensor, is 

applied to measure the displacement response, a calibration 

between the force and displacement is performed using laser 

interferometer.  

To demonstrate hysteretic behaviors of the PSA-driven 

system, sinusoidal signal with different frequencies were 

adopted to excite the system and the results are presented in Fig. 

2. It can be observed from Fig. 2 that loop structure between 

control voltage and displacement output is evident. It can also be 

found that the width of the hysteretic loop increases as the 

excitation frequency increases. The results were obtained from 

openloop experiments. 

 

 

Fig. 1 A photograph illustrating the experimental set-up 

 

 

Fig. 2 Hysteretic behavior of the PSA-driven system 

B. Hysteresis Identification using Bouc-Wen model 

The Bouc-Wen model was originally proposed by Bouc in 

1967 and later generalized by Wen in 1976. The model is 

suitable for the description of typical hysteresis [2]. Based on 

the structure of our PSA-driven system, the Bouc-Wen 

mathematical model can be expressed as 
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(8) 

 

where kbm ,,  separately represents the inertia, damping and 

stiffness of the PSA-actuated system while γβα ,, are the 

parameters used to determine the hysteretic loops’ magnitude 

and shape. In addition, h is the hysteresis variable possessing 

dimension of displacement while 
1d is the piezoelectric 

constant representing a ratio between displacement output and 

control-voltage input. Based on the PSO and Bouc-Wen model, 

the hysteresis identification process becomes the following 

optimization problem 
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The optimization includes the equality constraints shown in 

(7) and (8) and the following inequality constraints 

 

;0;;0 11 ddkkkbb <<<<<<  
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In the above, )(xf is the objective or fitness function 

representing the root-mean-squares error between the 

experimental results,
ex , and their simulation counterparts, x . 

N is the total sampling number of the data, whereas under-bared 

and over-bared values separately indicate the lower and upper 

bounds of different model parameters. In accordance with the 

optimization problem described above, we provided searching 

ranges for different system parameters and then obtained 

optimized model parameters. The parameters identified are:

75.0=m ; 96.27=b ; 71054.8 ×=k ; 472.0=α ; 072.0=β ;

0=γ ; 8
1 1015.2 −×=d .Based on the identified model, a 

comparison between the experimental and simulated hysteresis 

can be performed and the results are presented in Fig. 3. One can 

readily find outfrom Fig. 3 that the identified model captures the 

system’s hysteretic behavior well. The results presented 

correspond to 1-Hz sinusoidal excitation case. 

 

Fig. 3 Comparison of experimental and simulated hysteresis using the 
identified Bouc-Wen model 

C. Hysteresis Identification using P-I model 

Twenty input threshold values are configured in theinput span 

of [0,100] in the optimization problem associated with the P-I 

model. The input threshold vector can be represented as

[ ] n

T

n rrrrrr <<<== .....0;... 2121r . The thresholds are 

organized in equal-distance manner. Moreover, the fitness 

function used in the Bouc-Wen case is also adopted here for the 

optimization process of the P-I parameters. To this end, twenty 

weights are identified and they are:  
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−

−−−

−−−

−=T
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By using the identified P-I hysteresis model, one can compare 

the experimental and simulated hysteresis. The results are 

presented in Fig. 4 in which the input signal is also 1-Hz 

sinusoidal whilethe experiments were done with open-loop 

control. According to Fig. 4 one can find out that identified P-I 

hysteresis model approximates the system’s hysteresis better 

than the identified Bouc-Wen model. 

 

 

Fig. 4 Comparison of experimental and simulated hysteresis using the 
identified P-I model 

IV. FEEDFORWARD IMPLEMENTATION IN MOTION TRACKING 

A. Feedforward-Control Implementation Based On the 

Identified Bouc-Wen Model 

To eliminate the hysteresis nonlinearity, it is necessary to 

design a feedforward controller to cancel the nonlinear 

hysteretic behavior. However, the cancelation usually is not 

perfect. To compensate for this, a feedback control can be 

integrated with the feedforward control. In that regard, the 

resultant block diagram can be represented as Fig. 5. 
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Fig. 5 The block diagram of the proposed control scheme 
 

Two types of feedforward controller are designed in this 

study. First, a control design based on hysteresis estimate, rather 

than inverse hysteresis model, is adopted for the Bouc-Wen case. 

According to [2], the feedforward control in this case can be 

designed as the following expression 

 

1

^
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(10) 

 

where )(ˆ th represents the estimate of hysteretic state varaible,

)(th . The hysteresis estimate can be computed in accordance 

with (8) and the identified parameters. When (10) is substituted 

into (7) the following can be obtained 
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where hh−=∆
^

representing the difference between the 

estimated and true values of hysteresis variable. Based on (10) 

and (11) one can figure out that the hysteresis nonlinearity can 

be cancelled out if hh→ˆ . Note that )(ˆ th
 
is computed using 

the identified Bouc-Wen model. To verify the effectiveness of 

the proposed control scheme, motion tracking tasks were 

investigated. The verifications include stand-alone feedforward 

cancellation and feedforward-feedback scheme. To that end, Fig. 

6 presents the tracking results using solely feedforward control 

while Fig. 7 presents the results obtained from 

feedforward-feedback scheme. 

 

 

Fig. 6 1-Hz tracking by stand-alone Bouc-Wen feedforward control 

It can be observed from Fig. 6 that although the feedfroward 

control can eliminate nonlinear hysteresis to some extent, the 

cancellation is not perfect. To complement for this, PID 

feedback compensation was adopted and the results are 

presented in Fig. 7. The control performance presented in Fig. 7 

improves evidently. It turns out that the root-mean-squares error 

in 1-Hz tracking is 0.0577 and 0.0191µm for stand-alone 

feedforward and feedforward-feedback, respectively. The 

motion tracking investigations also include the 3-Hz and 5-Hz 

sinusoidal excitations. Tracking errors associated with these 

cases are listed in Table I. According to Table I one finds that 

similar trends exist in the 3-Hz and 5-Hz tracking cases. In other 

words, performances on direct feedforward cancellation seem 

not so perfect while feedforward-feedback control scheme 

improves the overall tracking performances substantially. 

 

 

Fig. 7 1-Hz tracking by Bouc-Wen feedforward-feedback control 
 

TABLEI 

 TRACKING PERFORMANCES OBTAINED BASED ON THE IDENTIFIED BOUC-WEN 

MODEL 

Excitation maxe (µm) % RMSE(µm) 

1-Hz(feedforward) 0.198 8.8 0.0577 

1-Hz(feedforward+feedback) 0.090 4.4 0.0191 

3-Hz (feedforward) 0.337 15 0.0949 

3-Hz(feedforward+feedback) 0.114 5.1 0.0258 

5-Hz (feedforward) 0.459 20.4 0.1472 

5-Hz (feedforward+feedback) 0.182 8.1 0.0427 

B. Feedforward-Control Implementation Based On the 

Identified P-I Model 

Unlike the approach adopted in the Bouc-Wen case where the 

hysteresis estimate, ĥ , is used to design the feedforward control 

input, the inverse P-I hysteresis model will be used in the P-I 

model case. Here the inverse P-I model was obtained from the 

identified P-I model. Since the P-I model has analytical inverse, 

the design of feedforward control becomes more 

straightforward than the Bouc-Wen case. Based upon the P-I 

model elaborated in (1)-(3), the inverse P-I model can be 

determined using the following equations 
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Thus, the inverse P-I model can be determined if the weight 

vectors associated the P-I model were obtained. To this end, the 

weight vector associated with the inverse model were 

determined as the followings 
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Based on the inverse P-I model one can proceed to design the 

stand-alone feedforward control and feedforward-feedback 

control. Again, the effectiveness of the control schemes is 

verified by using sinusoidal trackings with frequency equal to 1, 

3, 5 Hz while the results associated with 1-Hz case are presented 

in Figs. 8 and 9. Among these, Fig. 8 shows the results obtained 

from the stand-alone feedforward control, whereas Fig. 9 

presents the counterparts of the feedforward-feedback control 

scheme.  

Compare the results shown in Fig. 8 with that of Fig. 6, one 

can quickly find out that the hysteresis cancellation in Fig. 8 is 

better than that in Fig. 6. This indicates that the inverse P-I 

hysteresis approach can eliminate the hysteresis nonlinearity 

more effectively than the hysteresis-estimate approach based on 

the identified Bouc-Wen model. Such an observation can also 

be verified by checking the root-mean-squares error associated 

with these two control schemes. It turns out that the RMSE of 

the Bouc-Wen approach is 0.0577 µm while its counter part of 

the inverse P-I case is 0.0253 µm. Obviously, the inverse P-I 

approach outperforms the approach based on the identified 

Bouc-Wen model. 

 

Fig. 8 1-Hz tracking by stand-alone inverse P-I feedforward control 

 

 

Fig. 9 1-Hz tracking by inverse P-I feedforward-feedback control 

 

In order to further improve tracking performances, traditional 

PID control scheme is integrated with the inverse P-I 

feedforward control and the results are shown in Fig. 9. 

Compare the results of Fig. 9 with that of Fig. 8, one can observe 

that only slight improvement has been accomplished this case. 

This is because the direct cancellation using stand-alone inverse 

P-I control is already quite good. Similar trends can also be 

observed in 3- and 5-Hz tracking cases. To verify this, tracking 

performances corresponding to solely feedforward and 

feedforward-feedback control are listed in Table II. Based on the 

results of Tables I and II, one can conclude that inverse P-I 

model can effectively eliminate the nonlinear hysteresis 

behavior of the PSA-driven system while the approach adopted 

in the Bouc-Wen case seems not as efficient as the inverse P-I 

case. 
 

TABLEII 
TRACING PERFORMANCES OBTAINED BASED ON THE IDENTIFIED P-I MODEL 

Excitation maxe (µm) % RMSE (µm) 

1-Hz(feedforward) 0.124 5.5 0.0253 

1-Hz(feedforward+feedback) 0.074 3.3 0.0162 

3-Hz (feedforward) 0.164 7.3 0.0378 

3-Hz(feedforward+feedback) 0.133 5.9 0.0243 

5-Hz (feedforward) 0.204 9.1 0.0533 

5-Hz (feedforward+feedback) 0.155 6.9 0.0292 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

2

3

Time (sec)

D
is
p
la
c
e
m
e
n
t 
(µ
m
)

 

 

Reference Input

Without Compensator

Prandtl-Ishlinskii Compensator

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.4

-0.2

0

0.2

0.4

Time (sec)

E
rr
o
r 
(µ
m
)

 

 

Without Compensator

Prandtl-Ishlinskii Compensator

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

2

3

Time (sec)

D
is
p
la
c
e
m
e
n
t 
(µ
m
)

 

 

Reference Input

Without Compensator

Prandtl-Ishlinskii + PID

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.4

-0.2

0

0.2

0.4

Time (sec)

E
rr
o
r 
(µ
m
)

 

 

Without Compensator

Prandtl-Ishlinskii + PID



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:3, 2014

629

  

V. CONCLUSION 

This paper investigates tracking problems of a PSA-driven 

system. Two hysteresis models including Bouc-Wen and 

Prandtl-Ishlinskii model are adopted to design feedforward 

control so that nonlinear hysteresis effect of the system can be 

directly eliminated. Due to the complexity of the hysteresis 

models, particle swarm optimization (PSO) algorithm is applied 

to search for optimal hysteresis model parameters so that 

nonlinear hysteresis features can be precisely represented. A 

feedforward control based on the hysteresis estimate obtained 

from the identified Bouc-Wen model is designed to handle 

sinusoidal tracking tasks. The tracking results are compared 

with those obtained from another feedforward design based on 

inverse P-I model. It turns out that the hysteresis cancellation 

using inverse P-I model performs better than the design using 

the hysteresis estimate of the identified Bouc-Wen model. 

Traditional PID control scheme is integrated with both 

feedforward control designs to further improve the tracking 

performances.  
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