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 
Abstract—We investigate experimentally and theoretically the 

dynamics of a capacitive resonator under mixed frequency excitation 
of two AC harmonic signals. The resonator is composed of a proof 
mass suspended by two cantilever beams. Experimental 
measurements are conducted using a laser Doppler Vibrometer to 
reveal the interesting dynamics of the system when subjected to two-
source excitation. A nonlinear single-degree-of-freedom model is 
used for the theoretical investigation. The results reveal combination 
resonances of additive and subtractive type, which are shown to be 
promising to increase the bandwidth of the resonator near primary 
resonance frequency. Our results also demonstrate the ability to shift 
the combination resonances to much lower or much higher frequency 
ranges. We also demonstrate the dynamic pull-in instability under 
mixed frequency excitation. 
 

Keywords—Nonlinear electrostatically actuated resonator.  

I. INTRODUCTION 

HERE has been increasing interest in the complex and 
distinctive dynamic behavior of resonators, particularly 

when they are excited by mixed-frequency signals. This 
interest has been stimulated by their potential use in such 
fields as communications [1], logic functions [2], [3], and 
atomic microscopy [4]. For instance, [2] explored use in logic 
gates. In order to display new logic architectures, they 
employed mechanical oscillators at different frequencies. 
Using a single resonator, they built a new algorithm to 
eradicate wiring by means of condensed Boolean logic. They 
simultaneously executed their logic gates in efforts to provide 
a parallel logic circuit in a single mechanical resonator. 
Mahboob et al. [3] demonstrated parametric coupling between 
multiple vibrations modes in an electromechanical resonator 
via a strain inducing piezoelectric pump. This parametric 
coupling can be useful because it rapidly quenches the 
vibration of the modes, a reduction that leads to the exchange 
of the vibration of the modes and of energy. Moreover, their 
technique helps control the oscillation amplitude and generates 
high speed. The effect of mixed frequency excitation can be a 
viable solution in these areas due to mixing frequencies 
through quadratic electrostatic forces. This method has been 
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found in [1], [4] to realize down converters, mixers, and 
filters. 

Many researchers investigated different ways of mixing 
signals. In 1977, Hetch [5] analyzed the acousto-optic 
diffraction with multiple waves at different carrier frequencies 
using a coupled mode formulation. Later, a three-wave mixing 
technique was used to find nonlinear index for different 
transparent material [4]. Nayfeh and Mook [6] derived the 
analytical expression of multi frequency excitation of a system 
with a quadratic nonlinearity using straightforward expansion 
and the method of the multiple scales. Elnagarand and EI-
Bassiouny [7] used the method of multiple scales to find the 
response of three degree of freedom system under multi 
frequency excitation. They covered different cases of 
resonance such as harmonic and sub/super harmonic 
resonances. Later, [8] modeled a multimode mechanical 
Micro/Nano mechanical resonator with a pulsed parametric 
pump to convert a mechanical oscillation in a specific mode 
by transferring the oscillation to a different mode. They 
modeled the forcing as harmonic actuation and parametric 
intermodal forces. 

There has been considerable attention and interest in 
understanding the complex MEMS devices behaviors due to 
mixing wave signals. Levenson [9] used three wave mixing 
technique to find nonlinear index for different transparent 
material. Likewise, [10] showed that mixing three waves is a 
rapid and an effective way to nonlinear refractive indices of 
glasses. Santos et al. [11] solved the equation of motion to 
multi-frequency AFM in term of fundamental frequency to 
measure the attractive and repulsive forces during the 
oscillation. Erbe and Blick [12] provided a new approach 
towards realizing Nano machined mechanical mixers of high 
Eigen frequency. In their work, they choose different driving 
mechanisms such as surface acoustic waves to ensure 
operation of the device at room temperature and without any 
magnetic field. 

Notably, [13] fabricated a resonance mixer filter using 
CMOS-MEMS technology and integrated this mixer filter 
with amplifiers. He achieved higher gain by selecting low 
resonance IF with large area electrodes and narrow gaps. Also, 
[14] successfully demonstrated mixing at RF frequencies over 
a wide frequency range using integrated micro-resonators on a 
single-chip with CMOS circuits. 

Despite the comprehensive studies on the dynamic behavior 
of resonators under a single source excitation as well as 
exploiting nonlinearities for sensing and actuation in MEMS 
[15]–[19], no research on the dynamic behavior caused by 
mixed-frequency excitation has been presented so far. Mixed-
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frequency excitation in capacitive resonators applications or 
MEMS devices has not been fully utilized for practical 
applications. 

In this work, we explore the dynamics of an electrostatically 
biased capacitive accelerometer when excited by two sources 
of AC loads, where one of the frequencies is constant and the 
other one is swept over a certain range. When a resonator is 
excited by these two harmonic sources of frequencies, two 
new resonances appear when the sum or the difference of 
these frequencies is equal to the resonance frequency of the 
device. These are called combination resonances [6], which 
can be due to the quadratic nonlinearity effect from 
electrostatic force. Also, another stronger force adds to the 
previous phenomenon comes from the quadratic form of the 
voltage source itself, which results in a strong mixing of the 
AC signals. Here, we exploit additive and subtractive 
resonances to broaden the bandwidth of the resonator and to 
generate resonance frequencies at different values of 
frequency ranges. By fixing one of the excitation frequencies 
at a small value, the combination resonances become 
extremely close to the primary resonance, thereby, forming a 
continuous band of large response at an extended frequency 
range. We utilize a nonlinear Single-Degree-of-Freedom 
(SDOF) model to study this behavior theoretically. Finally to 
compare the measured data with those obtained from the 
simulations, we conduct several experiments.  

II. THE CAPACITIVE RESONATOR 

In this section we discuss the details of the experimental 
and theoretical investigations of the capacitive resonator under 
study.  

A. Device and Experimental Set-Up 

The investigated capacitive device is a proof mass 
suspended by two cantilever beams as shown in Fig. 1. The 
proof mass represents the upper electrode, which is 
rectangular in shape of 9 mm in length, 5.32 mm in width, and 
150 µm in thickness. Directly underneath the proof mass, a 
ceramic substrate represents the lower electrode. This ceramic 
substrate has the same length as the proof mass, but slightly 
smaller in width = 4.4 mm. The gap width between the two 
electrodes is 43.66 µm. The proof mass vibrates out of the 
plane with respect to the substrate when excited 
electrostatically between the two electrodes. 

 

 

Fig. 1 The tested capacitive sensor 

 

Fig. 2 The LDV pointing at the capacitive resonator inside the 
vacuum chamber 

 

 

Fig. 3 A SDOF model of the capacitive resonator actuated 
electrostatically by a DC voltage superimposed to two harmonic AC 

signals 
 
Fig. 2 presents the experimental set-up used for testing the 

device. The experimental set-up contains a vacuum chamber, a 
LabView data acquisition system, AC and DC power sources, 
and a Laser Doppler Vibrometer (LDV). We place the 
capacitor inside the vacuum underneath the LDV to measure 
the deflection of the upper electrode. Then, we reduce the 
pressure and apply a source of two harmonic AC signals 
provided by the LabView data acquisition system. 

B. Model Formulation 

We consider the resonator as a parallel plate capacitor with 
two rigid plates, where the upper one is movable. We model 
the resonator as a SDOF model, as schematically illustrated in 
Fig. 3. The governing equation of motion is expressed as 
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We denote the out-of-plane deflection of the proof mass as 

x. The rest of the parameters are: the mass of the proof mass is 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:6, 2015

582

 

m, the damping coefficient is c, the linear effective stiffness of 
the cantilever beams is k, the dielectric constant in the free 
space is ε0, the relative permittivity of the gap space medium 
(air) with respect to the free space is εr, the lower electrode 
area is A, the separation gap is d, and t is time. The 
electrostatic voltage components are: VDC is DC voltage load 
and VAC1 is the AC voltage load of frequency f1 and VAC2 is the 
AC voltage load with frequency f2.  

Next, we expand the voltage term, which yields 
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As noticed, combination resonances [6] arise from the 

expansion of the forcing term when we expand the 
electrostatic voltage term in (2). Clearly, the last two terms 
produce combination resonances of additive and subtractive 
type. In addition, the quadratic nonlinearity of the electrostatic 
force is likely to produce such summative and subtractive 
combination resonances.  

C. Parameters Extraction 

We follow the same characterization process used in [20] to 
identify the parameters needed to model the device. The 
parameters k, m, and c in (1) are unknowns based on the 
previous considerations. Before extracting these parameters, 
we extract the separation gap by applying a high step-DC-
input voltage where the proof mass reaches pull-in. We 
observed that the static pull-in voltage VDC pull-in = 161.6 V and 
the gap d =43.66 µm, as shown in Fig. 4.  

 

 

Fig. 4 The response of the capacitive resonator due to a step-DC-
input where it reaches the pull-in, the gap d =43.66 µm 

 
To extract the stiffness coefficient k, we bias the capacitive 

structure with VDC input. We ramp the DC voltage at very 
slow ramping rate to maintain quasi-static loading and 
measure the static deflection of the proof mass until it reaches 
the static pull-in. To estimate the stiffness coefficient k of the 
capacitor, we match the experimental deflection with the 

predicted deflection of the device according to the below 
equilibrium equation [15]:  

 

 3222 22 xdxxdAkVDC                       (3) 
 

Accordingly, we obtain that k = 330 N.m−1. Fig. 5 shows the 
fitted curve of the simulated deflection of the mass versus the 
measured displacement. 
 

 
Fig. 5 The simulated deflection versus the measured displacement 

 
To determine the effective mass m of the suspended proof 

mass [20], we excite the capacitive resonator with white noise 
as shown in Fig. 6. We found that the first symmetric natural 
frequency fn, which experimentally occurs at about 193.2 Hz 
in Fig. 6. Recalling that the effective mass, m = k/4π2fn

2 = 
0.000224 kg. To extract the damping coefficient c, we curve 
fit the frequency response to extract the damping ratio, which 
is found to be ξ = c/2√݇݉  = 0.00027305. 

 

 

Fig. 6 The experimental frequency curve of the capacitive resonator 
using white noise 

III. RESULTS AND DISCUSSION 

Next, we investigate the dynamic features arising in the 
system response when both the frequencies are subtracted (fn–
f2) and when both of the frequencies are summed (fn + f2). In 
this context using both forward and backward sweeps, we 
perform several frequency sweeps while applying a sinusoidal 
signal at a fixed frequency (f2) while sweeping the other 
frequency (f1). We sweep the frequency slowly, to guarantee 
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the steady-state condition at the end of each step. The purpose 
is to analyze the device response behavior in the 
neighborhoods of (fn–f2) and (fn + f2), while keeping the values 
of the electrodynamic voltages VAC1 and VAC2 constants. We 
report the experimental forward frequency sweep at VDC = 4 V, 
VAC1 = 2 V and VAC2 = 8 V in Fig. 7 (a). As a result, typical 
resonant behavior around 193.2 Hz is noticed. In addition, we 
can notice the small peaks at the combination frequencies 
coming from the subtraction/addition of (f2 = 1 Hz) from/with 
the fundamental resonance frequency. Fig. 7 (b) shows a zoom 
on the experimental and the theoretical sweeps of the 
subtractive combination frequency at 192.2 Hz. The 
theoretical sweeps are generated using long time integrations. 
These observations indicate that these frequencies follow the 
qualitative behavior of the fundamental natural frequency. For 
example, if there is a softening behavior, the combination 
frequencies have a softening behavior. Also, this applies on 
the hardening and dynamic pull-in behaviors [16]. 

 

 

(a) 
 

 

(b) 

Fig. 7 (a) The experimental and numerical simulation of frequency 
response curves due to VDC = 4 V, VAC1 = 2 V, f2= 1 Hz and the 

damping ratio ξ = 0.00165. (b) Enlarged view of the subtractive type 
resonance at the combination resonance frequency (fsub = fn - f2) 

 
To increase the amplitude of the combination frequencies at 

(fn - f2) and (fn + f2), we increase the amplitude of VAC2. In 
addition, we use a smaller frequency (f2 = 500 mHz). 
Similarly, we report the experimental frequency sweeps due to 
at VDC = 4 V, VAC1 = 2 V and different values of VAC2 in Fig. 8. 

The results indicate that the response levels (floors) between 
the combination frequencies and the primary resonance 
increase to magnitudes close to that of the primary resonance. 
At the same time, there is a very small change in the amplitude 
of the primary resonance due to VAC2. We can notice that the 
level between the primary resonance and the combination 
frequencies has increased to a high measureable level around 7 
µm. The mixed frequency excitation increases the bandwidth 
of the resonator. In other words, mixed-frequency excitation 
may effectively excite resonators with extended ranges of 
frequencies, and meanwhile avoid the limited frequency 
ranges of narrow sharp responses that undesirably affect the 
performance of resonators. If we apply more VAC2 voltage, we 
can increase this level higher to utilize this as a wide band 
pass filter. It is also clear that the amplitude of the 
combination frequency is associated the voltage with the fixed 
frequency of VAC2. If we increase VAC2, the amplitude 
increases. 

 

 

Fig. 8 The experimental frequency response curves due to different 
values of VAC2. The rest of the parameters are VDC = 4 V, VAC1 = 2 V 

and f2= 500 mHz 
 

To shift the primary resonance to smaller or larger 
frequency ranges, we apply a harmonic signal of fixed 
amplitude and fixed frequency at f2 = 50 Hz and similarly 
extract the frequency response curves of the capacitive 
resonator. In Fig. 9, frequency response curves show 
resonances activated at 142.2 Hz and 242.2 Hz due to VDC = 4 
V, VAC1 = 2 V, VAC2 = 2 V and f2 = 50 Hz. These results are 
interesting since they demonstrate the possibility of shifting 
the resonance of very stiff MEMS structures to lower values, 
which can be used in low frequency range applications, for 
example in energy harvesting.  

Next, we investigate the mixed frequency excitation to 
trigger the dynamic pull-in at the primary resonance. Dynamic 
pull-in phenomenon is system instability that can be triggered 
due to the AC harmonic loading [15]. Also, we call the 
instability range of frequency where pull-in occurs “pull-in 
band” [21], [22]. To illustrate this, we first set the fixed 
frequency source at zero (VAC2 = 0 V and f2 =0 Hz) to show 
the effect of the sweeping frequency alone without the effect 
of other sources. In Fig. 10, we show the pull-in bands caused 
by the forward and backward sweeping of the frequency of the 
electrostatic voltage. 
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(a) 
 

 

(b) 

Fig. 9 The experimental and simulated frequency response curves due 
to VDC = 4 V, VAC1 = 2 V, VAC2 = 2 V and f2=50 Hz. The extracted 

damping ratio is ξ=0.0002. (a) The subtractive combination 
frequency (fsub = fn – f2). (b) The additive combination frequency (fsub 

= fn + f2) 
 

Following, we study the effect of the mixed frequency 
excitation on the pull-in band by using a signal of frequency 
(f2 = 2 Hz). Similarly, we extract the frequency response 
curves with pull-in bands in Fig. 11 where we show results for 
the forward and the backward sweeps. In these figures, we 
report the experimental forward and backward frequency 
sweeps at VDC = 5 V, VAC1 = 4 V and VAC2=8 V. As a result, 
two more pull-in bands generated from mixing the second 
harmonic signal source with the swept source similar to the 
previous experimental data but here, it transfers the nonlinear 
behavior to these combination resonances. This observation 
indicates and proves that these combination frequencies follow 
qualitatively the behavior of the primary resonance. The 
ability to generate multiple pull-in bands of the device is a 
feature that can benefit MEMS switches applications. Also we 
note that the size of these combination pull-in bands is smaller 
than the size of pull-in band in the primary resonance.  

 
 

 

(a) 
 

 

(b) 

Fig. 10 The experimental frequency response curve due to VDC = 5 V, 
VAC1 = 4 V, VAC2 = 0 V and f2=0 Hz (a) The forward sweep. (b) The 

backward sweep 
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(c) 
 

 

(d) 

Fig. 11 The measured frequency response curve due to VDC = 5 V, 
VAC1 = 4 V, VAC2 = 8 V and f2 =2 Hz. (a) The forward frequency 

sweep. (b) Zoom on the subtractive combination frequency (fsub = fn - 
f2). (c) The backward frequency sweep. (d) Zoom on the subtractive 

combination frequency (fsub = fn - f2) 

IV. SUMMARY AND CONCLUSIONS 

We studied an electrostatically actuated capacitive resonator 
using mixed frequency of two harmonic AC signals to 
illustrate the dynamic features arising in the system. We 
experimentally tested the capacitive resonator in the 
neighborhoods of the resonance frequency emerging from two 
harmonic sources when the sum or difference of these 
frequencies is equal to the natural resonance frequency of this 
resonator. Also, we simulated the frequency responses curves 
using long time integration of a single degree of freedom 
system. Thus, we were able to produce multiple resonances 
with desired amplitude and desired frequencies by carefully 
choosing the input voltage and input frequency. This method 
could offer a novel solution in band pass filters by applying 
many small frequencies to create the desired bandwidths. As 
shown in this paper, we decreased the biased constant 
frequency to 500 mHz and hence, a shape of broader 
bandwidth started to develop. The other intriguing feature is 
that generating a combination resonance frequency at low 
frequency range can help increase the amount of energy 
harvested from the environment using MEMS harvesters that 
have very high resonance frequencies. Also, by applying large 
exciting frequency close to the predicated resonance, we can 
use this method to measure the resonance frequencies of 

MEMS and NEMS devices that have very high resonances and 
very stiff structures, due to the limitations in frequency ranges 
of some optical measurement devices. Finally, this method 
could be used in MEMS switches to transfer the pull-in band 
to small ranges of frequencies far from the primary resonance 
frequencies of MEMS mass switches and acceleration 
switches [16], [22]. 
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