
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

73

Abstract—Frequent patterns are patterns such as sets of features

or items that appear in data frequently. Finding such frequent
patterns has become an important data mining task because it reveals
associations, correlations, and many other interesting relationships
hidden in a dataset. Most of the proposed frequent pattern mining
algorithms have been implemented with imperative programming
languages such as C, C++, Java. The imperative paradigm is
significantly inefficient when itemset is large and the frequent pattern
is long. We suggest a high-level declarative style of programming
using a functional language. Our supposition is that the problem of
frequent pattern discovery can be efficiently and concisely
implemented via a functional paradigm since pattern matching is a
fundamental feature supported by most functional languages. Our
frequent pattern mining implementation using the Haskell language
confirms our hypothesis about conciseness of the program. The
performance studies on speed and memory usage support our
intuition on efficiency of functional language.

Keywords—Association, frequent pattern mining, functional
programming, pattern matching.

I. INTRODUCTION
REQUENT pattern mining is the discovery of relationships
or correlations between items in a dataset. A set of market

basket transactions [1], [2] is a common dataset used in
frequent pattern analysis. A dataset is typically in a table
format. Each row is a transaction, identified by a transaction
identifier or a TID. A transaction contains a set of items
bought by a customer. A set of transactions might be
organized in either an enumerated (dense), or a sparse binary
vector format [3], [7]. In either format a dataset can be
processed horizontally or vertically. Fig. 1 illustrates the data
organization formats of a simple market basket dataset.

In a horizontally enumerated data organization (fig. 1a),
each transaction contains only items positively associated with
a customer purchase. It is a simplistic representation of market
basket data because it ignores other information such as the
quantity of purchased items or the profit of item sold. A

Manuscript received November 29, 2006. This work was supported in part

by the research fund from Suranaree University of Technology and the grant
from the National Research Council of Thailand.

Nittaya Kerdprasop is with the School of Computer Engineering, Suranaree
University of Technology, 111 University Avenue, Muang District, Nakhon
Ratchasima 30000, Thailand (phone: +66-44-224432; fax: +66-44-224602; e-
mail: nittaya@ sut.ac.th, nittaya.k@gmail.com).

Kittisak Kerdprasop is with the School of Computer Engineering,
Suranaree University of Technology, 111 University Avenue, Muang District,
Nakhon Ratchasima 30000, Thailand (e-mail: kerdpras@sut.ac.th).

horizontally enumerated format is sometimes referred to as a
TidLists dataset organization. In a vertical organization of
items bought enumeration (Fig. 1b), each column stores an
ordered list of TIDs of the transactions that contain an item.
This format of a dataset occupies that same space as the
horizontally enumerated format.

Figs. 1c and 1d represent a binary vector format. A value in
each vector cell is 1 if the item is present in a transaction and
0 otherwise. A binary vector format is referred to as a TidSets
dataset organization.

TI
D

Items
1 {Cereal, Milk}
2 {Beer,Cereal,Diaper,Egg}
3 {Beer, Diaper, Milk}
4 {Beer,Cereal,Diaper,Milk}
5 {Diaper, Milk}

Item IDs
B C D E M
2 1 2 2 1
3 2 3 3
4 4 4 4

TI
D

 5 5
(a) Horizontally enumerated

format
(b) Vertically enumerated

format
TID Items IDs

 B C D E M
1 0 1 0 0 1
2 1 1 1 1 0
3 1 0 1 0 1
4 1 1 1 0 1
5 0 0 1 0 1

TID Items IDs
 B C D E M
1 0 1 0 0 1
2 1 1 1 1 0
3 1 0 1 0 1
4 1 1 1 0 1
5 0 0 1 0 1

(c) Horizontal binary vector (d) Vertical binary vector

Fig. 1 Organization of a market basket dataset

Recent attention has been given to the influence of data

organization on the performance of the process of frequent
pattern discovery. Shenoy et al.[7] described the advantages of
the vertical organization over the horizontal organization.
They also introduced the VIPER algorithm that uses a
combination of horizontal and vertical formats to reduce the
space. Zaki and Gouda [10] presented a vertical data
representation called Diffset that only keeps track of the
differences in the TidLists of a candidate pattern from its
generating frequent patterns. A vertical vector organization
has been proven an efficient layout for the problem of
frequent pattern discovery, but it suffers from the memory
usage. We thus propose to switch the paradigm towards the
algorithm implementation from conventional imperative to a
declarative style of lazy functional programming. Our
performance studies have confirmed the improvement on
speed and memory usage.

Mining Frequent Patterns with Functional
Programming

Nittaya Kerdprasop, and Kittisak Kerdprasop

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

74

II. SEARCH SPACE OF FREQUENT PATTERN MINING
In frequent pattern mining, we are interested in analyzing

connections among items. A collection of zero or more items
is called an itemset. For example, the first transaction in Fig. 1
contains the itemset {Cereal, Milk}. Since this set contains
two items, it is called a 2-itemset. An itemset can be an empty
set, a 1-itemset, a 2-itemset, and so on. Fig. 2 shows all
combinations of distinct itemsets from the set of items {B, C,
D, E, M}, where B = Beer, C = Cereal, D = Diaper, E = Egg,
and M = Milk.

Fig. 2 A lattice of distinct itemsets

The discovery of interesting relationships hidden in large
datasets is the objective of frequent pattern mining. The
uncovered relationships can be represented in the form of
association rules. An association rule is an inference of the
form X Y, where X and Y are non-empty disjoint itemsets.
To form association rules, we consider only valid itemsets. An
itemset is valid if it really occurs in a transaction. For instance,
from a dataset shown in Fig. 1 an itemset {Egg, Milk} is
invalid because none of the customers buy both eggs and
milk.

The identification of all valid itemsets is computational
expensive. It can be seen from Fig. 2 that a dataset of I items
has 2I distinct itemsets. To reduce the search space, the
measurements of support and confidence are used to constrain
the mining process. The constraint support forces the mining
process to discover only relationships that occur frequently,
while confidence constrains the reliability of the inference
made by a rule. The support count for an itemset Z, denoted as
σ(Z), is the number of transactions that contain a particular
itemset Z. As an example, consider a dataset in Fig. 1, there
are three transactions (TID 2, 3, 4) contain the item Beer, thus
σ(Beer) = 3. Given the definition of support count, the metrics
support and confidence of the association rule X Y can be
defined as follows [4], [8].

 Support, s(X Y) =
(X Y)

N
σ ∪

 ,

where N is the number of all transactions.

 Confidence, c(X Y) =
(X Y)

(X)
σ

σ
∪

.

Given a dataset as shown in Fig. 1, an example of
association rule is the statement that "customers who buy beer
also buy diaper, with 60% supporting transactions and 100%
confidence." An itemset is called a frequent itemset if its
support is greater than or equal user-specified support
threshold (called minSup). An association rule generated from
frequent itemset with the confidence greater than or equal a
confidence threshold (called minConf) is considered a valid
association rule. With the pre-specified minSup and minConf
metrics, the problem of association rule discovery can be
stated as follows: Given a set of transactions, find all the rules
having support ≥ minSup and confidence ≥ minConf. This
problem can be decomposed into two subtasks:

(1) Frequent itemset generation: find all itemsets that
satisfy the minSup threshold.

(2) Rule generation: generate from frequent itemsets all
high confidence rules.

It is the minSup constraint that helps reducing the

computational complexity of frequent itemset generation.
Suppose we specify minSup = 2/5 = 40% on a set of
transactions shown in Fig. 1; the item {Egg} is infrequent. As
a result, all supersets of {Egg} are also infrequent. All
infrequent itemsets can then be pruned to reduce the search
space (see Fig. 3).

Fig. 3 A pruning of all itemsets that contain an infrequent item E

Frequent itemsets are actually patterns that appear in a

dataset frequently. Finding frequent patterns has become an
important data mining task. We propose that frequent patterns
can be mined efficiently using a high-level programming
language such as Haskell that provides a full support for
pattern matching functionality.

III. PATTERN MATCHING WITH HASKELL
A problem in frequent pattern discovery is to determine

how often a candidate pattern occurs. In association mining, a
pattern is a set of items co-occurrence across a dataset. Given
a candidate pattern, the task of pattern matching is to search
for its frequency looking for the patterns that are frequent
enough. The outcome of this search is frequent itemsets that

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

75

suggest strong co-occurrence relationships between items in
the dataset.

The search for patterns of interest can be efficiently
programmed using the Haskell language. Haskell has evolved
as a strongly typed, lazy, pure functional language since 1987
[5], [6], [9]. The language is named after the mathematician
Haskell B. Curry whose work on lambda calculus provides the
basis for most functional languages. A program in functional
languages is made up of a series of function definitions. The
evaluation of a program is simply the evaluation of functions.
Haskell is a pure functional language because functions in
Haskell have no side effect, i.e. given the same arguments; the
function always produces the same result. As an example, we
can define a simple function to square an integer as follows:

square :: Int -> Int -- type declaration
 square x = x * x -- function definition

The first line of the definition declares the type of the thing
being defined; Haskell is a strongly typed language. This
states that square is a function taking one integer argument
(the first Int) and returning an integer value (the second Int).
The arrow symbol denotes mapping from an argument to a
result and the symbol “::” can be read “has type”. The
statement or phrase following the symbol “--” is a comment.
The second line gives the definition of function square, i.e.
given an integer x, the function returns the value of x*x. To
apply the function, we provide the function an actual
argument such as square 5 and the result 25 can be
expected.

Pattern matching is one of the most powerful features of
Haskell. Defining functions by specifying argument patterns is
a common practice in programming with Haskell. As an
illustration, consider the following example:

fib :: Int -> Int -- a function takes one Int
 -- and returns an Int

 fib 0 = 0 -- pattern 1: argument is 0
 fib 1 = 1 -- pattern 2: argument is 1
 fib n = fib (n-2) + fib (n-1)
 -- pattern 3: argument is Int other than 0 and 1

The function fib returns the nth number in the Fibonacci
sequence. The left hand sides of function definitions contain
patterns such as 0, 1, n. When applying a function these
patterns are matched against actual parameters. If the match
succeeds, the right hand side is evaluated to produce a result.
If it fails, the next definition is tried. If all matches fail, an
error is returned.

Pattern matching is a language feature commonly used with
a list data structure. For instance, [1, 2, 3] is a list containing
three integers. It can also be written as 1:2:3:[],where []
represents an empty list and “:” is a list constructor. The
following example defines length function to count the
number of elements in a list.

 length :: [Int] -> Int
-- This function takes a list of Int as its
-- argument and returns the number of
-- elements in the list

 length [] = 0
-- pattern 1: length of an empty list is 0

 length (x:xs) = 1 + length xs
-- pattern 2: length of a list whose first
-- element is called x and remainder is
-- called xs is 1 plus the length of xs

The pattern [] is defined to match the case of an empty list

argument. The pattern x:xs will successfully match a list with
at least one element, i.e. xs can be a list of zero or more
elements.

IV. IMPLEMENTATION
We implement Apriori algorithm [1], [2] using Haskell

language as shown in Fig. 4. Each item is represented by the
item identifier which is an integer. Thus, an itemset is denoted
as a set of Int declared in the first line of our Haskell code.
The function sumi is defined to count the number of
occurrence of each itemset. Functions listC and listC’
perform the task of enumerating candidate frequent itemsets.
Only itemsets that satisfy the minSup threshold are reported
from the functions listL and listL’ as frequent itemsets. It can
be seen that the discovery of frequent itemsets using Haskell
functional language takes only 20 lines of code.

itemSet :: [Set Int]

itemSet =[Set.singleton x | x<-[1..9]]

sumi::Set Int->[Set Int]->Int

sumi s [] =0

sumi s (y:ys) |(Set.isSubsetOf s y)= 1+(sumi s ys)

 |otherwise = (sumi s ys)

listC ::Int->[(Set Int,Int)]

listC 1=[let n=(sumi s dataB) in (s,n) |s<-itemSet]

listC n=[let n=(sumi s dataB) in (s,n) |s<-

 Set.toList(listC' n)]

listC' :: Int->Set(Set Int)

listC' 2=Set.fromList

 [(Set.union x y) |x<-(listL' 1),y<-(listL' 1),x/=y]

listC' n=Set.fromList

 [(Set.union x y) |x<-(listL' (n-1)), y<-(listL' (n-1)),
x/=y, (Set.size(Set.union x y))==n]

listL ::Int->[(Set Int,Int)]

listL n=[(x,y)|(x,y)<-listC n, y>=minSup]

listL'::Int->[Set Int]

listL' n =[x|(x,_)<-listL n]

Fig. 4 Frequent itemsets discovery implemented with Haskell

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

76

V. PERFORMANCE STUDIES

We comparatively study the performance of our imple-
mentations of frequent itemset discovery using Haskell versus
Java. All experimentations have been performed on a 796
MHz AMD Athlon notebook with 512 MB RAM and 40 GB
HD. We select four datasets downloaded from UC Irvine
Machine Learning Database Repository (http://www.ics.uci.
edu/~mlearn/MLRepository.html) to test the speed of Haskell
and Java programs.

0
2
4
6
8

10
12
14
16

50% 40% 30% 20% 10% 5% minSup

R
u

nt
im

e
(s

ec
on

ds
)

Haskell Java

(a) Vote dataset

0
2
4
6
8

10
12
14

50% 40% 30% 20% 10% 5%

minSup

R
un

tim
e

(s
ec

on
d

s)

(b) Chess dataset

0

50

100

150

200

250

50% 40% 30% 20% 10% 5%

minSup

R
u

n
ti

m
e

(s
ec

on
d

s)

(c) DNA dataset

0

20

40

60

80

100

120

50% 40% 30% 20% 10% 5%

minSup

R
u

n
ti

m
e

(s
ec

o
n

d
s)

(d) Mushroom dataset

Fig. 5 Experimental results from two programming paradigms

TABLE I
DATASET CHARACTERISTICS

Dataset File size # Transactions a# Items

Vote 13.2 KB 300 17
Chess 237 KB 2,130 37
DNA 252 KB 2,000 61
Mushroom 916 KB 5,416 23

The details of selected datasets are summarized in table 1.
The frequent itemset discovery pro-grams have been tested on
each dataset with varied minSup values. Performance
comparisons of Haskell and Java implementations on four
datasets are graphically shown in Fig. 5.

It can be noticed from the experimental results that runtime
increases as the minimum support (minSup) threshold gets
lower. This is due to the fact that at a low level of minSup the
number of frequent itemsets generated is significantly high.
The implementation of frequent itemset discovery using
Haskell outperforms that of Java on every dataset. A good
performance can be clearly seen when minSup gets lower than
30%.

On large datasets with many items such as DNA and
Mushroom, the program implemented with Java has a problem
of insufficient memory and cannot run to completion at a 5%
minSup threshold. This problem does not exist in the Haskell
implementation.

The experimental results shown in Fig. 5 obtain from the
datasets represented in a horizontally enumerated format. We
also study the impact of different data formats on program
running time and memory usage of a Haskell implementation.
To observe the running time we implement the following
code.

benchmark action = do

 prev <- getCPUTime
 action
 current <- getCPUTime
 let

 secs = fromIntegral (current-prev) / 1e12
 putStrln$ “Uses: ” ++ show secs
 ++ “ seconds ”

 The results of running time and memory usage using

different styles of data representation are shown in Figs. 6 and
7, respectively. It can be noticed from the experimental results
that on a speed comparison the vertical binary vector format is
the fastest, the horizontal binary vector comes second
following by the vertically enumerated organization. The
horizontally enumerated format is the slowest one.

On the memory usage comparison the ordering is vice
versa. Dataset represented with an enumeration format takes
less storage area, while a binary vector format consumes more
memory. The horizontal layout slightly outperforms the
vertical layout in terms of memory usage during the process of
finding frequent itemsets from the generated candidate sets.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

77

0

2

4

6

8

10

50% 40% 30% 20% 10% 5%

minSup

R
un

tim
e

(s
ec

on
ds

)

Horizontal Enumeration Vertical Enumeration

Horizontal Bit Vector Vertical Bit Vector

(a) Vote dataset

0

1

2

3

4

5

6

7

8

9

50% 40% 30% 20% 10% 5%

minSup

R
un

tim
e

(s
ec

on
ds

)

(b) Chess dataset

0

50

100

150

200

250

50% 40% 30% 20% 10% 5%

minSup

R
un

tim
e

(s
ec

on
ds

)

(c) DNA dataset

0

20

40

60

80

100

120

50% 40% 30% 20% 10% 5%

minSup

R
un

tim
e

(s
ec

on
ds

)

(d) Mushroom dataset

Fig. 6 The effect of data organization on speed

0
20
40
60
80

100
120
140
160

50% 40% 30% 20% 10% 5%

minSup

M
em

or
y

U
sa

ge
 (M

B
)

Horizontal Enumeration Vertical Enumeration

Horizontal Bit Vector Vertical B it Vector

(a) Vote dataset

0

20

40

60

80

100

120

50% 40% 30% 20% 10% 5%

minSup

M
em

or
y

U
sa

ge
 (M

B
)

(b) Chess dataset

0

100

200

300

400

500

600

700

800

900

50% 40% 30% 20% 10% 5%

minSup

M
em

or
y

U
sa

ge
 (M

B
)

(c) DNA dataset

0

200

400

600

800

1000

1200

50% 40% 30% 20% 10% 5%

minSup

M
em

or
y

U
sa

ge
 (M

B
)

(d) Mushroom dataset

Fig. 7 The effect of data organization on memory usage

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

78

VI. CONCLUSION AND DISCUSSION
Association mining is one major problem in the area of data

mining. The problem concerns finding frequent patterns
hidden in a dataset. Frequent patterns are patterns such as set
of items that appear in data frequently. Finding such frequent
patterns has become an important data mining task because it
reveals associations, correlations, and many other interesting
relationships among items in the dataset.

The idea to mine association rules was first proposed in
1993 by R. Agrawal, T. Imielinski, and A. Swami and the well
known Apriori algorithm was proposed by R. Agrawal and A.
Swami in 1994. Since then many variations of Apriori have
been proposed. Most algorithms are implemented with
imperative programming languages such as C, C++, Java. We,
on the other hand, suggest that the problem of frequent pattern
discovery can be efficiently and concisely implemented with
functional languages. Our supposition is that pattern matching
is a fundamental feature supported by functional languages.
The implementation of Apriori algorithm using Haskell
confirms our hypothesis about conciseness of the program.
The performance studies also support our intuition on
efficiency because Haskell implementation outperforms the
Java implementation in terms of speed and memory usage in
every dataset.

This preliminary study supports our belief regarding
functional programming paradigm towards frequent itemsets
mining. We focus our future research on the design of data
organization to optimize the speed and storage requirement.
We also consider the extension of Apriori in the course of
concurrency to improve its performance. With the power of
Haskell, this is a very promising extension

ACKNOWLEDGMENT
This work was supported in part by grants from National

Research Council of Thailand (NRCT) and the Thailand
Research Fund (TRF). Kittisak Kerdprasop is a director of
Data Engineering and Knowledge Discovery (DEKD)
research unit in which Nittaya Kerdprasop is also a member
and a researcher of this research unit. DEKD is fully
supported by Suranaree University of Technology.

REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules

between sets of items in large databases,” in Proc. ACM SIGMOD Int.
Conf. Management of Data, 1993, pp. 207–216.

[2] R. Agrawal and R. Srikant, “Fast algorithm for mining association
rules,” in Proc. Int. Conf. Very Large Data Bases, 1994, pp. 487–499.

[3] A. Ceglar and J. Roddick, “Association mining,” ACM Computing
Surveys, vol. 38, no.2, 2006.

[4] J. Han and M. Kamber, Data Mining: Concepts and Techniques (2nd
ed.), Morgan Kaufmann, 2006.

[5] P. Hudak, J. Fasel, and J. Peterson, “A gentle introduction to Haskell,”
Yale University, Technical Report Yale U/DCS/RR-901, 1996.

[6] P. Jones and J. Hughes (eds.), Standard Libraries for the Haskell 98
Programming Languages. Available: http://www.haskell.org/library/.

[7] P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah,
“Turbo-charging vertical mining of large databases,” in Proc. ACM
SIGMOD Int. Conf. Management of Data, 2000, pp. 22–33.

[8] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
Addison Wesley, 2005.

[9] S. Thompson, Haskell: The Craft of Functional Programming (2nd ed.),
Addison Wesley, 1999.

[10] M. Zaki and K. Gouda, “Fast vertical mining using diffsets,” in Proc.
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2003,
pp. 326–335.

Nittaya Kerdprasop is an associate professor at
the school of computer engineering, Suranaree
University of Technology, Thailand. She received
her B.S. from Mahidol University, Thailand, in
1985, M.S. in computer science from the Prince
of Songkla University, Thailand, in 1991 and
Ph.D. in computer science from Nova
Southeastern University, USA, in 1999. She is a

member of ACM and IEEE Computer Society. Her research of interest
includes Knowledge Discovery in Databases, AI, Logic Programming,
Deductive and Active Databases.

Kittisak Kerdprasop is an associate professor
at the school of computer engineering,
Suranaree University of Technology, Thailand.
He received his bachelor degree in Mathematics
from Srinakarinwirot University, Thailand, in
1986, master degree in computer science from
the Prince of Songkla University, Thailand, in
1991 and doctoral degree in computer science
from Nova Southeastern University, USA, in

1999. His current research includes Data mining, Artificial Intelligence,
Functional Programming, Computational Statistics.

