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Abstract—Frequent patterns are patterns such as sets of features 

or items that appear in data frequently. Finding such frequent 
patterns has become an important data mining task because it reveals 
associations, correlations, and many other interesting relationships 
hidden in a dataset. Most of the proposed frequent pattern mining 
algorithms have been implemented with imperative programming 
languages such as C, C++, Java. The imperative paradigm is 
significantly inefficient when itemset is large and the frequent pattern 
is long. We suggest a high-level declarative style of programming 
using a functional language. Our supposition is that the problem of 
frequent pattern discovery can be efficiently and concisely 
implemented via a functional paradigm since pattern matching is a 
fundamental feature supported by most functional languages. Our 
frequent pattern mining implementation using the Haskell language 
confirms our hypothesis about conciseness of the program. The 
performance studies on speed and memory usage support our 
intuition on efficiency of functional language. 
 

Keywords—Association, frequent pattern mining, functional 
programming, pattern matching.  

I. INTRODUCTION 
REQUENT pattern mining is the discovery of relationships 
or correlations between items in a dataset. A set of market 

basket transactions [1], [2] is a common dataset used in 
frequent pattern analysis. A dataset is typically in a table 
format. Each row is a transaction, identified by a transaction 
identifier or a TID. A transaction contains a set of items 
bought by a customer. A set of transactions might be 
organized in either an enumerated (dense), or a sparse binary 
vector format [3], [7]. In either format a dataset can be 
processed horizontally or vertically. Fig. 1 illustrates the data 
organization formats of a simple market basket dataset. 

In a horizontally enumerated data organization (fig. 1a), 
each transaction contains only items positively associated with 
a customer purchase. It is a simplistic representation of market 
basket data because it ignores other information such as the 
quantity of purchased items or the profit of item sold. A 
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horizontally enumerated format is sometimes referred to as a 
TidLists dataset organization. In a vertical organization of 
items bought enumeration (Fig. 1b), each column stores an 
ordered list of TIDs of the transactions that contain an item. 
This format of a dataset occupies that same space as the 
horizontally enumerated format. 

Figs. 1c and 1d represent a binary vector format. A value in 
each vector cell is 1 if the item is present in a transaction and 
0 otherwise. A binary vector format is referred to as a TidSets 
dataset organization.     

 
TI
D 

Items 
1 {Cereal, Milk} 
2 {Beer,Cereal,Diaper,Egg} 
3 {Beer, Diaper, Milk} 
4 {Beer,Cereal,Diaper,Milk}
5 {Diaper, Milk}  

Item IDs 
B C D E M 
2 1 2 2 1 
3 2 3  3 
4 4 4  4 

TI
D

 

  5  5  
(a) Horizontally enumerated 

format 
(b) Vertically enumerated 

format 
TID Items IDs 

 B C D E M 
1 0 1 0 0 1 
2 1 1 1 1 0 
3 1 0 1 0 1 
4 1 1 1 0 1 
5 0 0 1 0 1  

TID Items IDs 
 B C D E M 
1 0 1 0 0 1 
2 1 1 1 1 0 
3 1 0 1 0 1 
4 1 1 1 0 1 
5 0 0 1 0 1  

(c) Horizontal binary vector (d) Vertical binary vector 
 

Fig. 1 Organization of a market basket dataset 
 
Recent attention has been given to the influence of data 

organization on the performance of the process of frequent 
pattern discovery. Shenoy et al.[7] described the advantages of 
the vertical organization over the horizontal organization. 
They also introduced the VIPER algorithm that uses a 
combination of horizontal and vertical formats to reduce the 
space. Zaki and Gouda [10] presented a vertical data 
representation called Diffset that only keeps track of the 
differences in the TidLists of a candidate pattern from its 
generating frequent patterns. A vertical vector organization 
has been proven an efficient layout for the problem of 
frequent pattern discovery, but it suffers from the memory 
usage. We thus propose to switch the paradigm towards the 
algorithm implementation from conventional imperative to a 
declarative style of lazy functional programming. Our 
performance studies have confirmed the improvement on 
speed and memory usage.     
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II. SEARCH SPACE OF FREQUENT PATTERN MINING 
In frequent pattern mining, we are interested in analyzing 

connections among items. A collection of zero or more items 
is called an itemset. For example, the first transaction in Fig. 1 
contains the itemset {Cereal, Milk}. Since this set contains 
two items, it is called a 2-itemset. An itemset can be an empty 
set, a 1-itemset, a 2-itemset, and so on. Fig. 2 shows all 
combinations of distinct itemsets from the set of items {B, C, 
D, E, M}, where B = Beer, C = Cereal, D = Diaper, E = Egg, 
and M = Milk.   

 
 

Fig. 2 A lattice of distinct itemsets 
 

The discovery of interesting relationships hidden in large 
datasets is the objective of frequent pattern mining. The 
uncovered relationships can be represented in the form of 
association rules. An association rule is an inference of the 
form X  Y, where X and Y are non-empty disjoint itemsets. 
To form association rules, we consider only valid itemsets. An 
itemset is valid if it really occurs in a transaction. For instance, 
from a dataset shown in Fig. 1 an itemset {Egg, Milk} is 
invalid because none of the customers buy both eggs and 
milk. 

The identification of all valid itemsets is computational 
expensive. It can be seen from Fig. 2 that a dataset of I items 
has 2I distinct itemsets. To reduce the search space, the 
measurements of support and confidence are used to constrain 
the mining process. The constraint support forces the mining 
process to discover only relationships that occur frequently, 
while confidence constrains the reliability of the inference 
made by a rule. The support count for an itemset Z, denoted as 
σ(Z), is the number of transactions that contain a particular 
itemset Z. As an example, consider a dataset in Fig. 1, there 
are three transactions (TID 2, 3, 4) contain the item Beer, thus 
σ(Beer) = 3. Given the definition of support count, the metrics 
support and confidence of the association rule X  Y can be 
defined as follows [4], [8]. 

     Support, s(X  Y) =   
( X Y )

N
σ ∪

 ,   

where N is the number of all transactions. 

      Confidence, c(X  Y) = 
( X Y )

( X )
σ

σ
∪

. 

Given a dataset as shown in Fig. 1, an example of 
association rule is the statement that "customers who buy beer 
also buy diaper, with 60% supporting transactions and 100% 
confidence." An itemset is called a frequent itemset if its 
support is greater than or equal user-specified support 
threshold (called minSup). An association rule generated from 
frequent itemset with the confidence greater than or equal a 
confidence threshold (called minConf) is considered a valid 
association rule. With the pre-specified minSup and minConf 
metrics, the problem of association rule discovery can be 
stated as follows: Given a set of transactions, find all the rules 
having support ≥ minSup and confidence ≥ minConf. This 
problem can be decomposed into two subtasks: 

(1) Frequent itemset generation: find all itemsets that 
satisfy the minSup threshold. 

(2) Rule generation: generate from frequent itemsets all 
high confidence rules. 

 
It is the minSup constraint that helps reducing the 

computational complexity of frequent itemset generation. 
Suppose we specify minSup = 2/5 = 40% on a set of 
transactions shown in Fig. 1; the item {Egg} is infrequent. As 
a result, all supersets of {Egg} are also infrequent. All 
infrequent itemsets can then be pruned to reduce the search 
space (see Fig. 3). 

 

 
 

Fig. 3 A pruning of all itemsets that contain an infrequent item E 

 
Frequent itemsets are actually patterns that appear in a 

dataset frequently. Finding frequent patterns has become an 
important data mining task. We propose that frequent patterns 
can be mined efficiently using a high-level programming 
language such as Haskell that provides a full support for 
pattern matching functionality. 

III. PATTERN MATCHING WITH HASKELL 
A problem in frequent pattern discovery is to determine 

how often a candidate pattern occurs. In association mining, a 
pattern is a set of items co-occurrence across a dataset. Given 
a candidate pattern, the task of pattern matching is to search 
for its frequency looking for the patterns that are frequent 
enough. The outcome of this search is frequent itemsets that 
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suggest strong co-occurrence relationships between items in 
the dataset. 

The search for patterns of interest can be efficiently 
programmed using the Haskell language. Haskell has evolved 
as a strongly typed, lazy, pure functional language since 1987 
[5], [6], [9]. The language is named after the mathematician 
Haskell B. Curry whose work on lambda calculus provides the 
basis for most functional languages. A program in functional 
languages is made up of a series of function definitions. The 
evaluation of a program is simply the evaluation of functions. 
Haskell is a pure functional language because functions in 
Haskell have no side effect, i.e. given the same arguments; the 
function always produces the same result. As an example, we 
can define a simple function to square an integer as follows: 

square :: Int -> Int   -- type declaration 
  square x = x * x    -- function definition 

The first line of the definition declares the type of the thing 
being defined; Haskell is a strongly typed language. This 
states that square is a function taking one integer argument 
(the first Int) and returning an integer value (the second Int). 
The arrow symbol denotes mapping from an argument to a 
result and the symbol “::” can be read “has type”. The 
statement or phrase following the symbol “--” is a comment. 
The second line gives the definition of function square, i.e. 
given an integer x, the function returns the value of x*x. To 
apply the function, we provide the function an actual 
argument such as square 5 and the result 25 can be 
expected. 

Pattern matching is one of the most powerful features of 
Haskell. Defining functions by specifying argument patterns is 
a common practice in programming with Haskell. As an 
illustration, consider the following example: 

fib :: Int -> Int   -- a function takes one Int  
        -- and returns an Int 

  fib 0 = 0     -- pattern 1: argument is 0 
  fib 1 = 1     -- pattern 2: argument is 1 
  fib n = fib (n-2) + fib (n-1)     
  -- pattern 3: argument is Int other than 0 and 1 
 

The function fib returns the nth number in the Fibonacci 
sequence. The left hand sides of function definitions contain 
patterns such as 0, 1, n. When applying a function these 
patterns are matched against actual parameters. If the match 
succeeds, the right hand side is evaluated to produce a result. 
If it fails, the next definition is tried. If all matches fail, an 
error is returned. 

Pattern matching is a language feature commonly used with 
a list data structure. For instance, [1, 2, 3] is a list containing 
three integers. It can also be written as 1:2:3:[],where [] 
represents an empty list and “:” is a list constructor. The 
following example defines length function to count the 
number of elements in a list. 

 length :: [Int] -> Int     
-- This function takes a list of Int as its  
-- argument and returns the number of 
-- elements in the list 

 length [ ] = 0      
-- pattern 1: length of an empty list is 0 

 length (x:xs) = 1 + length xs    
-- pattern 2: length of a list whose first  
-- element is called x and remainder is  
-- called xs is 1 plus the length of xs 

 
The pattern [] is defined to match the case of an empty list 

argument. The pattern x:xs will successfully match a list with 
at least one element, i.e. xs can be a list of zero or more 
elements. 

IV. IMPLEMENTATION 
We implement Apriori algorithm [1], [2] using Haskell 

language as shown in Fig. 4. Each item is represented by the 
item identifier which is an integer. Thus, an itemset is denoted 
as a set of Int declared in the first line of our Haskell code. 
The function sumi is defined to count the number of 
occurrence of each itemset. Functions listC and listC’ 
perform the task of enumerating candidate frequent itemsets. 
Only itemsets that satisfy the minSup threshold are reported 
from the functions listL and listL’ as frequent itemsets. It can 
be seen that the discovery of frequent itemsets using Haskell 
functional language takes only 20 lines of code. 

itemSet :: [Set Int]                   

itemSet =[Set.singleton x | x<-[1..9]] 

sumi::Set Int->[Set Int]->Int 

sumi s [] =0 

sumi s (y:ys) |(Set.isSubsetOf s y)= 1+(sumi s ys) 

                    |otherwise = (sumi s ys) 

listC ::Int->[(Set Int,Int)] 

listC 1=[let n=(sumi s dataB) in (s,n)  |s<-itemSet] 

listC n=[let n=(sumi s dataB) in (s,n) |s<- 

                                              Set.toList(listC' n)] 

listC' :: Int->Set(Set Int) 

listC' 2=Set.fromList 

     [(Set.union x y) |x<-(listL' 1),y<-(listL' 1),x/=y] 

listC' n=Set.fromList 

   [(Set.union x y) |x<-(listL' (n-1)), y<-(listL' (n-1)), 
x/=y, (Set.size(Set.union x y))==n] 

listL ::Int->[(Set Int,Int)] 

listL n=[(x,y)|(x,y)<-listC n, y>=minSup] 

listL'::Int->[Set Int] 

listL' n =[x|(x,_)<-listL n] 
 

 
Fig. 4 Frequent itemsets discovery implemented with Haskell 
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V. PERFORMANCE STUDIES 

We comparatively study the performance of our imple-
mentations of frequent itemset discovery using Haskell versus 
Java. All experimentations have been performed on a 796 
MHz AMD Athlon notebook with 512 MB RAM and 40 GB 
HD. We select four datasets downloaded from UC Irvine 
Machine Learning Database Repository (http://www.ics.uci. 
edu/~mlearn/MLRepository.html) to test the speed of Haskell 
and Java programs.  
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(a) Vote dataset 
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(b) Chess dataset 
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(c) DNA dataset 
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(d) Mushroom dataset 

Fig. 5 Experimental results from two programming paradigms 
 

TABLE I 
DATASET CHARACTERISTICS 

Dataset File size # Transactions a# Items 

Vote 13.2 KB 300 17 
Chess 237 KB 2,130 37 
DNA 252 KB 2,000 61 
Mushroom 916 KB 5,416 23 

The details of selected datasets are summarized in table 1. 
The frequent itemset discovery pro-grams have been tested on 
each dataset with varied minSup values. Performance 
comparisons of Haskell and Java implementations on four 
datasets are graphically shown in Fig. 5. 

It can be noticed from the experimental results that runtime 
increases as the minimum support (minSup) threshold gets 
lower. This is due to the fact that at a low level of minSup the 
number of frequent itemsets generated is significantly high. 
The implementation of frequent itemset discovery using 
Haskell outperforms that of Java on every dataset. A good 
performance can be clearly seen when minSup gets lower than 
30%.  

On large datasets with many items such as DNA and 
Mushroom, the program implemented with Java has a problem 
of insufficient memory and cannot run to completion at a 5% 
minSup threshold. This problem does not exist in the Haskell 
implementation. 

The experimental results shown in Fig. 5 obtain from the 
datasets represented in a horizontally enumerated format. We 
also study the impact of different data formats on program 
running time and memory usage of a Haskell implementation. 
To observe the running time we implement the following 
code. 

 
benchmark action = do 

   prev <- getCPUTime 
   action 
   current <- getCPUTime 
   let  

   secs = fromIntegral (current-prev) / 1e12 
   putStrln$ “Uses:  ” ++ show secs  
                  ++ “  seconds ” 
 
 The results of running time and memory usage using 

different styles of data representation are shown in Figs. 6 and 
7, respectively. It can be noticed from the experimental results 
that on a speed comparison the vertical binary vector format is 
the fastest, the horizontal binary vector comes second 
following by the vertically enumerated organization. The 
horizontally enumerated format is the slowest one. 

On the memory usage comparison the ordering is vice 
versa. Dataset represented with an enumeration format takes 
less storage area, while a binary vector format consumes more 
memory. The horizontal layout slightly outperforms the 
vertical layout in terms of memory usage during the process of 
finding frequent itemsets from the generated candidate sets. 
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(a) Vote dataset 
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(b) Chess dataset 
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(c) DNA dataset 
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(d) Mushroom dataset 

 
Fig. 6 The effect of data organization on speed 
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(b) Chess dataset 
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(c) DNA dataset 
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(d) Mushroom dataset 

 
Fig. 7 The effect of data organization on memory usage 
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VI. CONCLUSION AND DISCUSSION 
Association mining is one major problem in the area of data 

mining. The problem concerns finding frequent patterns 
hidden in a dataset. Frequent patterns are patterns such as set 
of items that appear in data frequently. Finding such frequent 
patterns has become an important data mining task because it 
reveals associations, correlations, and many other interesting 
relationships among items in the dataset. 

The idea to mine association rules was first proposed in 
1993 by R. Agrawal, T. Imielinski, and A. Swami and the well 
known Apriori algorithm was proposed by R. Agrawal and A. 
Swami in 1994. Since then many variations of Apriori have 
been proposed. Most algorithms are implemented with 
imperative programming languages such as C, C++, Java. We, 
on the other hand, suggest that the problem of frequent pattern 
discovery can be efficiently and concisely implemented with 
functional languages. Our supposition is that pattern matching 
is a fundamental feature supported by functional languages. 
The implementation of Apriori algorithm using Haskell 
confirms our hypothesis about conciseness of the program. 
The performance studies also support our intuition on 
efficiency because Haskell implementation outperforms the 
Java implementation in terms of speed and memory usage in 
every dataset.  

This preliminary study supports our belief regarding 
functional programming paradigm towards frequent itemsets 
mining. We focus our future research on the design of data 
organization to optimize the speed and storage requirement. 
We also consider the extension of Apriori in the course of 
concurrency to improve its performance. With the power of 
Haskell, this is a very promising extension  
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