
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

249

Abstract—This paper proposes an approach for translating an

existing relational database (RDB) schema into ORDB. The
transition is done with methods that can extract various functions
from a RDB which is based on aggregations, associations between
the various tables, and the reflexive relationships. These methods can
extract even the inheritance knowing that no process of reverse
engineering can know that it is an Inheritance; therefore, our
approach exceeded all of the previous studies made for the transition
from RDB to ORDB. In summation, the creation of the New Data
Model (NDM) that stocks the RDB in a form of a structured table,
and from the NDM we create our navigational model in order to
simplify the implementation object from which we develop our
different types. Through these types we precede to the last step, the
creation of tables.

The step mentioned above does not require any human
interference. All this is done automatically, and a prototype has
already been created which proves the effectiveness of this approach.

Keywords—Relational databases, Object-relational databases,

Semantic enrichment.

I. INTRODUCTION
ANY problems have emerged with the RDB [9]. We
recall from them the reconstruction of complex objects

split across relational tables is costly because it causes many
joins. For this a solution has appeared, it is the ORDB [7].
Who has addressed most of these problems, we recall the use
of reference facilitates the use of very large multimedia data
by allowing them to be easily shared and costs less. Yet, the
question that arises is how to achieve a migration from a RDB
to an ORDB.

Several approaches have addressed the topic of migration
which shows the transformation of the aggregation and
associations from the conceptual model to the object relational
model [1]. Based on the notion of collections of the Unified
Modeling Language [8]. Other approaches are based on the
creation of an ORDB from the UML [4]. In those authors have
proposed the use of cardinalities to preserve and store the
aggregations and compositions [10].

An approach takes all of the relational database and stores it
in a structured table [2], [5], [6] that contains several
parameters, tables, attributes, classifications, class types
(abstract / concrete), the names of the relationships, class that

Alae El Alami is a Phd in the Faculty of Science and Technology /

Department of Mathematics and Computer Sciences, University Hassan I
Settat, Morocco (e-mail: elalamialae@gmail.com).

Mohamed Bahaj is Professor the Faculty of Science and Technology /
Department of Mathematics and Computer Sciences, University Hassan I
Settat, Morocco (e-mail: mohamedbahaj@gmail.com).

interacts with the relationship and cardinalities in order to
realize the schema translation.

Yet all approaches require the interference of the human
factor in order to achieve migration, either on all the work, or
on one or several parts. Therefore, in this paper we propose a
method that requires no human interference.

Our approach is based on capturing metadata from a RDB
that treats and stores it as a structured table that holds the
information necessary for the migration.

This paper deals with the steps of the migration that are
composed of 3 parts: the first is the implementation of the
structured table to the NDM in Section II; the second part is
the conversion from the NDM to the navigational model [3] in
Section III; and the third part deals with the transformation of
the Navigational Model (NavM) to the ORDB.

II. SEMANTIC ENRICHMENT OF RELATIONAL DATABASE: NEW
DATA MODEL

A. Definition and Identification of the New Data Model
The NDM is a type of table describing the different classes

extracted from a RDB with the data necessary for the
realization of an ORDB.

The NDM is defined as a collection of classes

NDM: = {C | C: = (cn, degree, cls, a, contributor)}

Cn =the name of the class.
Degree = first degree (the tables that contain PK) | 2nd

degree (the tables that contain FK without PK).
Cls=aggregation, association, inheritance, simple class (the

class that does not belong to the other classifications).
Contributor=class list.
A=attribute:={a | a := (an, t, tag, l, n, d)} (An :name of the

attribute, T:type of the attribute, Tag: primary key(PK) |
foreign key(FK),L: length of the attribute, N:if the attribute
takes the parameter null, D:the default value of the attribute)

*Observation: treating cardinalities cannot help us since the
transformation of the Conceptual Data Model (CDM) to the
Logical Data Model (LDM) in the RDB has been treated for
the migration of attributes.

1. Classification (cls)
For the classification, classes are composed of four parts:

• Aggregation is when the class interacts with a single class
(the class itself may be the (first degree | 2nd degree)), not
included in the classification and inheritance as the class
has a FK;

Migration of the Relational Data Base (RDB)
to the Object Relational Data Base (ORDB)

Alae El Alami, Mohamed Bahaj

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

250

•

•

cr
pr
st
co

th
ou
th
N
ta
fo
W
eq
av

w
th
cl

of

Association
two or m
relationship
were « 1-n
with the n
other table
of the entit
Inheritance
reverse app

For this we
reating a tabl
robabilities of
andards. Our
ontaining the m

In order to k
he first-degree
ur created tabl
he discovered

NDM with the
able that cont
ound in this st

We verify wh
quivalent to t
void a breach

So if there is
we will continu
he treatment
lassification.

Here is an ex
f heritage show

Fi

ns: a class of
more classes
ps including

n» «0-n » bec
name of the a

in the RDB, w
ties to know th
e: When a cla
proach can ide
have develop

le that will
f inheritance

r table will c
mother class;
know the inhe
e classes of th
le. If a corresp
classes that i
subclasses fr

tain possible
tep, we prece
hether the P
the PK value
of the rules fo
s a match we
ue our treatm

of inherita

xample that sh
wn in Table I.

ig. 1 The tables

f 2nd degree
s; Special c

their cardina
omes an asso
attribute of F
which include
he referencing
ass inherits fro
entify the inhe
ped a techniq
contain a ma
in accordanc

consist of two
and the secon

eritance we co
he NDM with
pondence is fo
interact with
rom the corre
inheritances.

ede to the last
PK value of
 of the moth

or naming tabl
will extract a

ment of classifi
ance is the

hows the mos
.

s representing th

which interac
case: for re
alities in the

ociation with t
K not found

es a special tre
g.
om another cl
eritance).
que that is ba
aximum of p
ce with the n
o columns: th

nd, the subclas
ompare the na
h the first col
ound, we com
our class wit

esponding line
If an inherit

t step of verif
f the subcla
her class in o
les.
an Inheritance
fication knowi

first step

st famous case

he relational da

cts with
eflexive
e CDM
two FK
in any

eatment

lass (no

ased on
possible
naming
he first
sses.
ames of
umn of

mpare all
thin the
e of the
tance is
fication.
sses is

order to

e, if not
ing that
of the

e of use

•

wi
it
tha
ref

the

sho

tabase (the pks

 THE

Inherited By
Person

Animal

Document

Account

...

The simple
are not w
inheritance

2. Contributo
It defines the

ith themselves
is an aggrega
at inherits fro
ference during

B. Generation
The translatio
e migration in
Consider that
ow in Table II

are underlined

TA
CASE OF INHERIT

e classes: the
within the
and associatio

or
e list of classe
s. The purpos
ation, an asso
om the class
g the transition

n of the NDM f
on of the RDB
nto the ORDB
t the RDB inc
I generated fro

in bold ex, the

ABLE I
TANCE THE MOST

Inherits
Student
Teacher
Cat
Dog
Horse
Book
Newspap
Savings
Current
…
…
…

classes of the
classification

on.

es that the cla
se of this part
ociation, a sin
starting, also
n to the ORDB

from a RDB
B to the NDM

ludes in Fig.
om a RDB.

fks are underli

T COMMON

er

e first degree,
n of aggre

ass starts inter
is to know w

ngle class or a
for the creat

B.

M is the first

1. Example of

ned ex)

which
gation,

racting
whether
a class
tion of

step of

f NDM

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

251

TABLE II
RESULT OF THE GENERATION OF A NDM

Cn Degre Classification Attribute Contributor
 An Type tag l N D

Person 1st inherBy Pno Varchar PK N Kids

Works_on
Trainee
Employ

 Pname Varchar N
 Bdate Date N
Adress Varchar 255 N

Dno Int FK N Dept
PnoSup Varchar FK Y Person

Trainee 2nd Inherts Pno Varchar FK N Person
Level Varchar N
Type Varchar N

Employ 2nd Inherts Pno Varchar FK N Person
Salary Int Y
Grade Varchar N

Works_on 2nd Association Prno Int FK N Proj
Pno Varchar FK N Person

Dept 1st Simple Dno Int PK N Person
Dname Varchar N

Proj 1st Simple Prno Int PK N Work_on
Prname Varchar N

Description Varchar 255 Y
Kids 1st Aggregation Kno Int PK N

Kname Varchar N
Sex Char N
Pno Varchar FK N Person

Observation: VARCHAR is synonymous with

VARCHAR2 but this usage may change in future versions
(provided for backward compatibility only for Oracle
datatypes [11]).

III. NAVM (NAVIGATIONAL MODEL)
After obtaining the NDM, we create the navigational model.

A. Definition and Objectives
- A model that plots the object implementation of a

database while drawing up the navigation path between
relations with the principle of referencing.

- Facilitates the transition towards the object by a set of
rules for transposition.

- Promotes the Visualization of complex structures and
possible navigation paths.

Why navigational?
The model introduces the logical links of the type REF

(REF implementation is undetermined in the conceptual
level).

The references (ref or REF) facilitate the navigation
between objects.

TABLE III
 NAVIGATION SYMBOL OF THE NAVM

Simple Multiple
 Single link
 Single link

can be null
 Single link

necessarily valued

 Multiple link
 Multiple link

can be null
 Multiple link

necessarily valued
The absence of the circle means necessarily valued

The classes will be divided into two parts, the external

classes and internal classes:
+ Internal classes are the classes classified as aggregation in

the NDM.
+ External classes are the other classifications in the NDM.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

252

Example

Fig. 2 The composition of the external and internal classes

Example of the NavM extracted from the UML:

Fig. 3 From the conceptual model to the navigational model

B. Transformation Rules

Fig. 4 Modeling inheritance in navigational

Inheritance: It follows the same principle of the class

diagram in the UML, either for the parent class or subclass.
Association: The navigation link is simple and necessarily

valued keeping attributes if there is an association with the
class attributes.

The navigation links starts from the association class to the
class that interacts with it (universal solution).

Fig. 5 How to model the association link

Aggregation: It becomes an internal class type object

referenced by an attribute of assembly with a multiple link that
can be valueless.

Simple class: For the simple class we must see the
classification of the class that interacts with it in the NDM.
+ If the simple class interacts with an association, we will

not need to trace the path of navigation because it is
already done.

+ If a simple class interacts with another simple class, we
have two navigation links:

- -The first link starts of the class that contains a foreign
key, which is a primary key in the other class, and is
simple and cannot be valueless.

- -The second link starts from the other class, which is
multiple and can be valueless.

C. The NDM Transformed into the NAVM
This stage of the migration is a part of reverse engineering

to show the transition by reference and the elimination of
joints, and plays a pivot role between the conceptual and
implementation object.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

253

Fig. 6 Transformation of the relational model to the navigational model

IV. TRANSLATION OF THE NDM TO AN ORDB

A. Approach for the Translation of the NDM into an ORDB

1. The Creation of Types
+ Creation of the types defined in the NDM as aggregation.
+ Creation of the types defined in the NDM as association.

To create these types we keep the same name listed in the
RDB and we add _type (concatenation).
+ Creation of composite types, those classes entering in

collaboration with the aggregation taking into account
their classification, and other types whose classification in
the NDM is simple.

+ The creation of the types defined in the NDM as an
inheritance starting with the parent class and ending with
the subclasses.

2. Creating Tables
The creation of tables is made by the typed classes and is

classified in the NDM as inheritance (parent, subclasses),
association, and simple class. The aggregations are included in
the first-degree class that interacts with itself. All tables are
created with the necessary constraints.

B. Method of Creating and Naming Rule
To create the types we keep the same name that appears in

the RDB and we add _type (concatenation).

• Syntax
CREATE [OR REPLACE] TYPE nameRDB_Type AS

OBJECT
(column1 type1, column2 type2,...)
To create types that contain other types that represent

aggregations, the type name that represents the aggregation
remains the same and we add _t .

• Syntax
CREATE [OR REPLACE] TYPE nameRDB1_Type AS

OBJECT

(column1 type1, column2 type2,...)
/
CREATE [OR REPLACE] TYPE nameRDB2_Type AS

OBJECT
(column1 type1, column2 type2, nameRDB1_t set(

nameRDB1_type),...)
For the creation of types with references, we add a ref_ next

to the name of the RDB with the keyword REF and the
referenced type.

Observation: For reflexive relationships near many
recordings [1-n] we concatenate the PK with the FK, and the
side of a single record [1-1] we concatenate the FK with the
PK.

• Syntax
CREATE [OR REPLACE] TYPE nameRDB1_Type AS

OBJECT
(column1 type1, column2 type2,...)
/
CREATE [OR REPLACE] TYPE nameRDB2_Type AS

OBJECT
(column1 type1, column2 type2,nameRDB1_t

nameRDB1_type,...)
/
CREATE [OR REPLACE] TYPE nameRDB3_Type AS

OBJECT
(column1 type1, column2 type2,ref_nameRDB2 REF

nameRDB2_type,...)
 For the creation of types that represent the inheritance, we

add Under for the sub class and the keyword not final if the
type has subtypes, and final if the type has no subtypes.

• Syntax
CREATE [OR REPLACE] TYPE nameRDB1_Type AS

OBJECT
(column1 type1, column2 type2,...)
 NOT FINAL
/

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

254

CREATE [OR REPLACE] TYPE nameRDB2_Type under
nameRDB_type

(column1 type1, column2 type2,nameRDB1_t
nameRDB1_type,...)

FINAL
Creating tables starts from typed classes. The table keeps

the same name that appears in the RDB, and then we add the
keyword OF and the type corresponding with the constraints
captured in the NDM (PK constraint, reference constraint, not
null constraint ...).

• Syntax:
CREATE TABLE [schema.]nameTable OF [schema.]

nameType
[(column [DEFAULT expression]
[constraintOnLine [constraintOnLine]...
| constraintREFOnLine]
| { constraintOffline | constraintREFOffline }
[,column...])]
;

V. CONCLUSION
The aforementioned work shows the steps of migrating

from a RDB to an ORDB with a simple and practical method
to capture the relationships between different classes,
associations, aggregations and as well as the inheritance.
Currently no approach has proposed such a solution to extract
the inheritance from a RDB. We can trace the navigational
model to better see how the navigation is made between
classes and respect the navigation links for best listings.

This method is done with a normalized database to exploit
the power of the object-relational as our solution of
inheritance is based on a normalized database. If the
normalized database is not used, we will have a simple class
with an aggregation in place of the mother and sub class.

This solution exceeds the existing works as it generates an
ORDB without the interference of the human factor. This
approach also allows the possibility to make changes in the
physical schema of the database obtained in cases where the
user wants to manually update the database. Since the work is
done in console mode, a prototype was created to prove the
effectiveness of this approach.

A forthcoming article will present a prototype that examines
the subsequent stage of the migration that affects the passage
of the data from a RDB to an ODB.

TABLE IV
FINAL RESULT OF THE MIGRATION

CREATE TYPE kids_type AS OBJECT
(kno int, kname varchar(20),sex char(1),pno varchar(20))
/

CREATE TYPE dept_type AS OBJECT
(dno int, dname varchar(20))
/

CREATE TYPE proj_type AS OBJECT
(prno int, prname varchar(20),description varchar(255))
/

CREATE TYPE person_type AS OBJECT
(pno varchar(10),pname varchar(20),
bdate date,address varchar(255),
dno int , pnosup varchar(20),
kids_t set(kids_type),
ref_dept ref (dept_type)scope dept,
ref_pno_pnosup set(ref(person_type)),
ref_pnosup_pno ref(person_type) scope person)
 NOT FINAL
/

CREATE TYPE trainee_type UNDER person_type
(pno varchar(10), level varchar(20),type varchar(20))
FINAL
/

CREATE TYPE employe_type UNDER person_type
(pno varchar(10),salary int,grade varchar(20))
 FINAL
/

CREATE TYPE work_on_type AS OBJECT
(prno int, pno varchar(20),
ref_proj set (ref(proj_type)),
ref_person set(ref(person_type)))
/

CREATE TABLE dept OF dept_type(
constraint pk_dept primary key(dno));

CREATE TABLE proj OF proj_type(
constraint pk_proj primary key(prno));

CREATE TABLE work_on OF work_on_type(
constraint refer_work_on_person ref_person references person,
constraint refer_work_on_proj ref_proj references proj);

CREATE TABLE person OF person_type(
constraint pk_person primary key(pno),
constraint refer_person ref_dept references dept);

CREATE TABLE trainee OF trainee_type UNDER person;
CREATE TABLE employe OF employe_type UNDER person;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

255

REFERENCES
[1] G. O. Young, “Synthetic Structure of Industrial Plastics (Book Style

with Paper Title and Editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed.
New York: McGraw-Hill, 1964, pp. 15–64.

[2] Abdelsalam Maatuk, Akhtar Ali, Nick Rossiter: Semantic Enrichment:
The First Phase of Relational Database Migration. In CIS2E '08, 6pp,
Bridgeport, USA, 2008.

[3] Nora Koch, Hubert Baumeister, Rolf Hennicker and Luis Mandel. :
Extending UML to Model Navigation and Presentation in Web
Applications. In Proc. of the Workshop Modeling Web Applications in
the UML, UML’00, 2000.

[4] Ming Wang. : Using UML for Object-Relational Database Systems
Development: A Framework. Issues in Information Systems, VOL 9,
No. 2, 2008.

[5] Maatuk, A., Ali, M. A. and Rossiter, N.: An Integrated Approach to
Relational Database Migration. In IC-ICT '08, pp. 16, Bannu, Pakistan,
2008.

[6] Abdelsalam Maatuk,M. Akhtar Ali,Nick Rossiter . : Converting
Relational Databases into Object-relational Databases. in JOT, vol. 9,
no. 2, pages 145-161, 2010.

[7] Stonebraker, Michael, Moore and Dorothy. Object-Relational DBMSs:
The Next Great Wave (Morgan Kaufmann Series in Data Management
Systems) ISBN: 1558603972.

[8] K. Barclay and J. Savage-Object-Oriented Design with UML and
Java,2004, ISBN 0 7506 6098 8.

[9] S. Sumathi, S. Esakkirajan —Fundamentals of Relational Database
Management Systems, 2007, ISBN 978-3-540-48397-7.

[10] J.W. Rahayu, E. Pardede and D. Taniar, On Using Collection for
Aggregation and Association Relationships in XML Object-Relational
Storage. ACM Symposium on Applied Computing, Nicosia, Cyprus,
2004.

[11] http://www.oracle.com/technetwork/database/enterprise-
edition/documentation/index.html.

