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 
Abstract—Two micromechanical models for 3D smart composite 

with embedded periodic or nearly periodic network of generally 
orthotropic reinforcements and actuators are developed and applied to 
cubic structures with unidirectional orientation of constituents. 
Analytical formulas for the effective piezothermoelastic coefficients 
are derived using the Asymptotic Homogenization Method (AHM). 
Finite Element Analysis (FEA) is subsequently developed and used 
to examine the aforementioned periodic 3D network reinforced smart 
structures. The deformation responses from the FE simulations are 
used to extract effective coefficients. The results from both 
techniques are compared. This work considers piezoelectric materials 
that respond linearly to changes in electric field, electric 
displacement, mechanical stress and strain and thermal effects. This 
combination of electric fields and thermo-mechanical response in 
smart composite structures is characterized by piezoelectric and 
thermal expansion coefficients. The problem is represented by unit-
cell and the models are developed using the AHM and the FEA to 
determine the effective piezoelectric and thermal expansion 
coefficients. Each unit cell contains a number of orthotropic 
inclusions in the form of structural reinforcements and actuators. 
Using matrix representation of the coupled response of the unit cell, 
the effective piezoelectric and thermal expansion coefficients are 
calculated and compared with results of the asymptotic 
homogenization method. A very good agreement is shown between 
these two approaches. 
 

Keywords—Asymptotic Homogenization Method, Effective 
Piezothermoelastic Coefficients, Finite Element Analysis, 3D Smart 
Network Composite Structures. 

I. INTRODUCTION 

HERE have been considerable theoretical techniques to 
obtain reasonable estimates on the microscopic (local) and 

macroscopic (global) scales within the context of mechanics 
of smart composites. Governing equations describing the 
behaviour of periodic or nearly periodic smart structures are 
given by a set of partial differential equations characterized by 
the presence of rapidly varying coefficients due to the 
presence of numerous embedded inclusions in close proximity 
to one another. One technique that permits the decoupling of 
the two scales is the AHM. The mathematical framework of 
the AHM can be found in [1]-[4]. Many micromechanics 
models have been established using the unit cell analyses. A 
wide variety of elasticity and thermo-elasticity periodic 
problems pertaining to composite materials and thin-walled 
composite structures reinforced shells and plates was 
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examined in [5]. Expressions for the effective elastic, 
piezoelectric and hygrothermal expansion coefficients for 
general 3D periodic smart composite structures were derived 
in [6]-[8].  

A considerable number of micromechanically oriented 
numerical approaches based on the finite element method have 
been developed and extensively used in the analysis of the 
mechanical properties of composites with spatial repetition of 
small microstructure since the work of [9]. In [10] a 2D finite 
element approach for a microscopic region of a unidirectional 
composite using a generalized plane strain formulation which 
includes longitudinal shear loading has been developed. 
Method of cells [11] and its generalization [12] have proven to 
be successful micromechanical analysis tools for the 
prediction of the overall behaviour of various types of 
composites with known properties and geometrical 
arrangement of individual constituents and give consistently 
accurate results for the elastic properties. A review of the work 
conducted using the two theories have been given by [13]. An 
alternative approach that retains the philosophy of Aboudi’s 
Method of Cells has been presented and the equations of 
equilibrium were applied to a representative volume element 
and in addition a unified method of homogenization of 
micromechanical effects was presented in [14]. The finite 
element method has been extensively used to examine unit cell 
problems and to determine the effective properties and 
damage mechanisms of composites. The applications 
considered include unidirectional laminates [15], cross-ply 
laminates [16], woven and braided textile composites and 
piezoelectric foams [17]–[19] and many others. Pertaining to 
the various finite element models, the unit cells employed can 
be subjected to mechanical, thermal, electrical or other loading 
types. The introduction of the loading conditions to the unit 
cell is expressed, in general, in terms of macroscopic or 
averaged field quantities, such as stress or strain. The use of 
the unit cells of different shapes for the analysis and modeling 
of unidirectional fiber reinforced composites was studied in 
[20], [21] by considering symmetries in the material and 
deriving appropriate periodic boundary conditions for the unit 
cell. The loads on the unit cell and its response in terms of 
macroscopic stresses or strains have been addressed in such a 
way that the effective properties of the material can be 
obtained from the micromechanical analysis of the unit cell in 
a standard manner. In [22] appropriate constraints on a 
representative volume element under various loadings have 
been determined from symmetry and periodicity conditions. A 
comprehensive unit cell model has been developed for 
studying composites with periodic hexagonal or square 

Micromechanics Modeling of 3D Network Smart 
Orthotropic Structures  

E. M. Hassan, A. L. Kalamkarov  

T



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:12, 2014

2023

 

 

arrangements of continuous fibers by means of the finite 
element method [23]. The work involved piezoelectric 
composites and the developed model was employed to account 
for local fluctuations of the fields. A full set of effective 
moduli were determined. The concept of ‘macroscopic 
degrees of freedom’ and the implementation of periodicity 
conditions for composites with periodic microstructure 
composed of linear or nonlinear constituents were discussed in 
[24]. The authors in [25] applied a numerical procedure for the 
computation of the overall macroscopic elasticity moduli of 
linear composite materials with periodic micro-structure. The 
underlying key approach is a finite element discretization of 
the boundary value problem for the fluctuation field on the 
micro-structure of the composite. A number of possible unit 
cell models can be developed according to the material 
microstructure. The authors of [26], [27] have developed a 3D 
unit cell model for both unidirectional and cross ply laminates. 
The proposed unified boundary conditions satisfy not only the 
boundary displacement periodicity but also the boundary 
traction periodicity of the unit cell. The study of [28] has 
integrated the asymptotic homogenization method into a finite 
element simulation to derive overall material properties for 
metal matrix composites reinforced with spherical ceramic 
particles. A technique to evaluate effective material properties 
related to unidirectional fiber reinforced composites having 
rhombic periodic microstructures and isotropic and 
transversely isotropic behaviour has been presented in [29]. 

II.  MICROMECHANICAL MODELS OF 3D NETWORK 

REINFORCED SMART COMPOSITE STRUCTURES  

A. Piezothermoelastic Smart Composite Structures  

Piezoelectric materials (e.g., Lead Zirconate Titanate [PZT] 
and Barium Titanate), have the property of converting 
electrical energy into mechanical energy and vice versa. This 
work considers piezoelectric material (PZT-5A) that 
embedded in a dielectric matrix material. The piezoelectric 
actuators respond linearly to changes in electric field, electric 
displacement, mechanical stress and strain and thermal effects. 
The coupling of electric fields and thermo-mechanical 
response in a smart composite is characterized by the 
coefficients of piezoelectric and thermal expansion.  

The problem is represented by a unit-cell shown in Fig. 1 
and the models are developed using the AHM and FEA to 
determine the effective piezoelectric and thermal expansion 
coefficients. Each unit cell contains a number of 3D network 
orthotropic inclusions in the form of structural reinforcements 
and actuators. Following this introduction, the rest of the paper 
is organized as follows: The basic problem formulation and 
the general asymptotic homogenization model for 3D smart 
network reinforced composite structures have been derived 
and followed by the development of the finite element model. 
A network of 3D smart structures is used to formulate and 
compare results of both, analytical and numerical approaches 
to illustrate the domain of applicability of the derived models. 

 

 

Fig. 1 (a) 3D Smart Composite Structure Ω, (b) Unit Cell Y 

B. Asymptotic Homogenization Method, Governing 
Equations and the Unit Cell Problems  

The electromechanical deformation of the structure shown 
in Fig. 1 is expressed using the balance of linear momentum 
and Gauss’s law. In the absence of body forces and currents, 
the smart composite given in Fig. 1 should satisfy a boundary 
value problem and its piezothermoelastic behaviour is 
described by the following constitutive equations: 

 
ε ε
ij ijkl kl ijk k ijσ = C e P E Θ T         (1) 

i ijk kl ij jD = P e +κ E          (2) 

 
with a linearized strain-displacement relation assuming small 
displacement gradients, 

 

 1
2

ε ε ε
ij i, jx j,ixe u u           (3) 

 
where Cijkl is a tensor of elastic coefficients, ekl is a strain 
tensor which is a function of the displacement field ui, Pijk is a 
tensor of piezoelectric coefficients describing the effect of Ek 
is the electric field vector on the mechanical stress field σij, Θij 
is a thermal expansion tensor, T represents change in 
temperature with respect to a reference state, Di is the electric 
displacement and κij is the dielectric permittivity. In this 
Section, only a brief overview of the steps involved in the 
development of the analytical model are given in so far as it 
represents the starting point of the current work. The basic 
asymptotic expansions in terms of ε for the displacement and 
electric fields as well as the derived asymptotic expansions for 
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the stress and the electric displacement have been considered. 
The development of asymptotic homogenization model for the 
3D network smart composite structures can be found in [30]. 
Effective piezoelectric and thermal expansion coefficients are 
determined by solving the unit cell problem given in (4) and 
(5) followed by applying (6) and (7). The problem formulation 
for the smart composite structure shown in Figs. 1 and 2 
begins with the introduction of the piezoelectric and thermal 
expansion local functions. 

 

 

Fig. 2 Smart 3D Composite and Unit Cell 
 
It is assumed that perfect bonding conditions at the interface 

between the reinforcement and actuator and the matrix.  
 

( ) ( ) = + ( )
, jy

k
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 ,
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ijk ijk ijmn m nyY
P P C N dv

Y
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 ,
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( ) ( ) ( )  ij ij ijmn m nyY
C N dv

Y
   y y y      (7) 

 

The local functions k
ijb  can be expanded 
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As for effective thermal expansion coefficients, the local 

functions ijb  can be expanded as follows: 
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where k
i  and i are constants to be determined from the 

boundary conditions. The elastic, piezoelectric and thermal 
expansion coefficients in (8) to (11) are referenced with 
respect to the local coordinates. Relationships between these 
coefficients and their counterparts associated with the 
principal material coordinate system of the inclusion are 
expressed by means of tensor transformation laws. In turn, 
these piezoelectric and thermal expansion local functions are 
used to calculate the homogenized expansion coefficients of 
the smart 3D network of orthotropic composite structure 
shown in Fig. 2 as follows: 
 

1 k
ijk ijY

P b dv
Y

          (12) 

1
ij ijb dv

Y
           (13) 

 
The resulting analytical expressions to be used in (8) to (11) 

are too lengthy to be reproduced in this study, details can be 
found in [31]. However, typical homogenized piezoelectric 
and thermal expansion coefficients will be computed and 
plotted in the following Sections. 

III. NUMERICAL MICROMECHANICAL MODELING USING 

FINITE ELEMENT ANALYSIS (FEA) 

A microscopic unit cell model is used that represents the 
heterogeneous microstructure with periodicity condition. The 
3D smart grid-reinforced structure considered is periodic 
which permits the isolation of discrete unit cells for the 
analysis. The developed finite element model takes into 
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account geometric and material parameters, microscopic 
aspect such as volume fraction and the linear electro-thermo-
mechanical response of a perfectly bonded cylindrical 
reinforcement and actuator which are aligned and poled along 
the principle directions and embedded in an isotropic non-
piezoelectric elastic matrix as given in Fig. 3. Finite element 
software package ANSYS® is used for the analysis and the 
3D coupled-field twenty-node Solid 226 linear piezoelectric 
brick element has been used to mesh the unit cell. The element 
has five degrees of freedom per node (3 translational, thermal 
and electric potential). This step has been automated using 
ANSYS Parametric Design Language APDL to generate all 
required constraint equations [31]. 

 

 

Fig. 3 A Two-phase Composite 

A. Periodic Boundary Conditions and Unit Cell Model 

In invoking the unit cell approach for characterizing the 
electromechanical behavior of piezoelectric and thermo 3D 
network of smart structures, it is essential to ensure that the 
deformation characteristics of the local or microscopic unit 
cells are representative of the deformation of the global or 
macroscopic smart structures. Hence, particular attention has 
been taken to ensure that the deformation under designed 
boundary conditions across the boundaries of the unit cell is 
compatible with the deformation of the neighboring unit cells. 
The developed finite element analysis consists of three basic 
steps. 
1) The analysis begins with the determination and 

prescription of periodic boundary conditions to a unit cell. 
Hence, the unit cell shown in Fig. 4 is subjected to 
controlled electrical field and thermal loadings by 
constraining opposite surfaces of the unit cell to have 
equivalent electro-thermo-mechanical deformations and 
to ensure that there is no separation or overlap between 
the neighboring unit cells. Analogies between the 
prescribed boundary conditions and displacement field for 
a periodically arranged structure are expressed in [9].  
The equations describing the displacement fields on 

different boundary surfaces + + +/ , / , / )ω ω       

of the unit cell with single reinforcement and actuator 
shown in Fig. 4 are summarized in (13). It should be 
noted that the periodicity function is identical at the two 
opposite boundaries. The periodicity boundary conditions 
(14) can be applied in the finite element model in form of 
constraint equations written in APDL [31].  

 

Fig. 4 3D Unit cell for smart composite and notation of the Unit Cell 
Boundary Surfaces 
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    (14) 

 
The impose periodicity of the boundary conditions (14) 
on the surfaces of the unit cell are enforced as 
multifreedom constraints and are valid not only for 
displacements but also for other types of degree of 
freedom (e.g. electric potential and temperature). Rigid 
body motion can be prevented by fixing the displacements 
and rotations of at least one arbitrary point of the unit cell. 
Fig. 5 is considered to identify the nodes for which the 
periodicity condition is applied. This will ensure that all 
edges of the unit cell and surfaces of the constituents 
remain parallel for the prescribed loading conditions.  
 

 

Fig. 5 Unit cell with its boundary node sets utilized 
 

2) The non-homogenous electric fields and electrical 
displacements obtained from the unit cell analysis are 
reduced to homogenized or averaged quantities through 
an averaging procedure. Once the local (microscopic) 
stress, strain, electric potential and electric displacements 
fields in the unit cell are determined under the applied 
loading conditions, the coupled average stresses and 
strains and the equivalent average electric fields and 
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electric displacements can be captured and expressed as 
given in (15)-(18). 

 
1

ij ijV
V

σ  = σ  dV         (15) 

1
ij ijV

V

ε  = ε  dV         (16) 

1
i i V

V

E  = E dV         (17) 

1
i i V

V

D  = D dV          (18) 

 
where V is the volume of the periodic unit cell 

3) The corresponding effective piezoelectric coefficients of 
the pertinent smart composite structure can be predicted 
using the calculated average non-zero value in the strain 
and electric field vector and the calculated average values 
in the stress and electrical displacement vector using the 
constitutive equation (19).  
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As for the effective coefficient of thermal expansion, an 
increase in temperature is applied to the unit cell to 
provide thermal loadings and due to the temperature 
difference stresses are developed. Appropriate average 
procedure is invoked to capture the homogeneous coupled 
response of the unit cell. The constitutive relations in (20) 
are then solved to determine the variation of the effective 
coefficients of thermal expansion. 
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IV. EXAMPLES: 3D SMART NETWORK REINFORCED 

COMPOSITE STRUCTURES  

In this Section typical effective piezoelectric and thermal 
expansion coefficients will be computed and plotted. The 
representative effective piezoelectric and thermal expansion 
coefficients are determined and compared with respect to the 
unit cell spatial arrangement and the volume fraction of the 
reinforcements and actuators. For illustration purposes, the 
actuators and reinforcements have material properties given in 
Tables I and II. The developed numerical model applied to a 

3D periodic network of orthotropic smart composite with 
cubic orientations of reinforcement and actuators as shown in 
Fig. 6. A perfect bonding at the fiber matrix interface has been 
assumed. Various models of increasingly finer discretization 
have been developed to attain a satisfactory convergence of 
the mesh at the boundaries of the unit cells and around the 
interface, particularly for models when reinforcements and 
actuators have larger volume fractions. A not solved (Mesh 
Facet) element was added to provide greater control over 
element sizes and to allow for volume meshing with or 
without mid-side nodes and most importantly to ensure equal 
meshing configurations on opposite boundary surfaces of the 
unit cell. 

 

 

Fig. 6 Discretized Meshing of the Unit Cell 
 

TABLE I 
PROPERTIES OF THERMOPIEZOELASTIC MATERIAL PZT-5A [32] 

Coefficient Value 
( ) ( )
11 22

p pC C  (MPa) 121000 

( )
33

pC  (MPa) 111000 

( )
12

pC  (MPa) 75400 

( ) ( )
13 23

p pC C  (MPa) 75200 

( )
44

pC  (MPa) 22600 

( ) ( )
55 66

p pC C  (MPa) 21100 

( ) ( )
13 23

p pP P  (C/mm2) -5.45E-6 

( )
33

pP  (C/mm2) 1.56E-5 

( ) ( )
42 51

p pP P  (C/mm2) 2.46E-5 

( ) ( )
11 22

p p   (1/0C) -1.704E-10 

( )
33

p  (1/0C) 
3.732E-10 

 
TABLE II 

MATERIAL PROPERTIES OF ISOTROPIC MATRIX [33]. 

Matrix Material Properties 

E ν12 

36000 MPa 0.35 

V.  RESULTS AND DISCUSSION 

The stress field and the electric displacement field 
components that are developed in the unit cell as a result of 
the applied strain, electric fields and change in temperature on 
the unit cell are determined. As an example of applying the 
matrix representation given in (19) for coupled field response 
in the unit cell, variation of effective piezoelectric coefficients 

333P  and 311P  are given by:  
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33

333
3

σ
P = -

E

            (21) 

11

311
3

σ
P = -

E

             (22) 

 
Equations (21) refers to the stress response in the same 

direction as that of the applied electric field (y3) and (22) 
represents the stress response of the structure in the (y1) 
direction when an external electric field is applied in the (y3) 
direction. An increase in temperature is applied to the unit cell 
to provide a temperature loading (ΔT) and due to the 
temperature difference stresses are developed. The constitutive 
relations in (20) are then used to determine the variation of the 
effective coefficients of thermal expansion in the three global 

directions. For instance 11  is expressed as follows: 
 

11 1111 11 1122 22 1133 33Θ = C Θ C Θ C Θ     (23) 

VI. COMPARISON OF THE ANALYTICAL (AHM) AND 

NUMERICAL (FEA) RESULTS  

The calculated effective coefficients are compared with 
results from the analytical model. Typical effective 
piezoelectric coefficients poled in the (y3) direction and 
effective thermal expansion coefficients are plotted vs. volume 
fractions of the reinforcements/actuators as shown in Figs. 7 
and 8 respectively. FEA results in (31) have shown that the 
contribution of the stiffness of the matrix will not appreciably 
affect the homogenized coefficients. Hence, a dielectric matrix 
material has been considered in the current study. Notice that 
there is a very good agreement between numerical results 
calculated using the FEA and analytical solutions obtained 
using the AHM with small discrepancies occur for higher fiber 
volume fractions of reinforcements and actuators with a 
satisfied error less than 5%. 

 

 

Fig. 6 Effective Piezoelectric Coefficients ( 333P , 
311P ) vs. Actuator 

Volume Fraction 

 

Fig. 7 Effective Thermal Expansion Coefficients (
11 ) vs. Actuator 

Volume Fraction 

VII. CONCLUSION 

Comprehensive micromechanical models of 3D periodic 
composite structures reinforced with smart network of 
orthotropic reinforcement and actuator have been developed. 
The general orthotropy of the constituent materials is very 
important from a practical point of view and renders the 
mathematical problem at hand much more complex. The 
AHM decouples the microscopic characteristics of the 
composite from its macroscopic behaviour so that each 
problem can be handled separately. The solution of the 
microscopic problem leads to the determination of the 
effective coefficients of piezoelectric and thermal expansion 
which are universal in nature and can be used to study a wide 
variety of boundary value problems. The FEA has been also 
developed and used to examine the aforementioned smart 
structure. The electro-thermo-mechanical deformations from 
the finite element simulations have been used to calculate the 
effective piezoelectric and thermal moduli of the structures. 
The results are compared and a very good agreement is shown 
between the two models and this indicates that the developed 
finite element model can be further extended to study more 
complex unit cell geometries.  
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