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 
Abstract—In this study, microcrystalline cellulose (MCC) was 

extracted from oil palm empty fruit bunch (EFB) cellulose which was 
earlier isolated from oil palm EFB fibre. In order to isolate the 
cellulose, the chlorination method was carried out. Then, the MCC 
was prepared by simultaneous ultrasonic and alkali treatment from 
the isolated α-cellulose. Based on mass balance calculation, the yields 
for MCC obtained from EFB was 44%. For fiber characterization, it 
is observed that the chemical composition of the hemicellulose and 
lignin for all samples decreased while composition for cellulose 
increased. The structural property of the MCC was studied by X-ray 
diffraction (XRD) method and the result shows that the MCC 
produced is a cellulose-I polymorph, with 73% crystallinity. 
 

Keywords—Oil palm empty fruit bunch, microcrystalline 
cellulose, ultrasonic, alkali treatment, X-ray diffraction. 

I. INTRODUCTION 

IL palm is the highest yielding edible oil crop in the 
world. It is cultivated in 42 countries in 11 million ha 

worldwide. 1 ha oil palm plantation produces about 55 ton of 
dry matter in the form of fibrous biomass annually [13]. 
Lignocellulosic fibers can be extracted from oil palm tree such 
as trunk, frond, fruit mesocarp and empty fruit bunch (EFB). 
Among the various fiber sources in an oil palm tree, EFB has 
potential to yield up to 73% fibers [3] and has potential to 
substitute the natural fibre resources. Empty fruit bunch (EFB) 
is obtained after the removal of oil seeds from fruit bunch for 
oil extraction. 

Since EFB is one of the most abundant biomass materials 
that are regularly discharged from palm oil refineries, efforts 
to convert this material into value-added products have gained 
great interest. One of these is to extract the high value 
lignocellulosic materials such as hemicelluloses, cellulose and 
lignin, contents of which are estimated at 22-25%, 40-43% 
and 19-21% [8], respectively, in the dry EFB.  

The most significant material in EFB is cellulose, which has 
a variety of potential applications in the chemical, food, and 
composite industries. Cellulose is a naturally occurring 
polymer in plants and it is comprised of glucose units joined 
together by β-1,4-glycosidic bonds. The linear cellulose chains 
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are bundled together as microfibrils, and these microfibrils are 
composed of amorphous and crystalline regions. In 
comparison of internal bonding, the amorphous regions 
exhibit weaker internal bonding while the crystalline regions 
exhibit strong internal bonding. 

Recently, extraction of microcrystalline cellulose (MCC) 
from natural fiber resources such as EFB has gain major 
interest due to its potential to be an effective reinforcement in 
polymeric composites materials. Microcrystalline cellulose 
(MCC) is a fine, white, odorless, crystalline powder, and a 
biodegradable material used especially in food, cosmetic and 
medical industries as a water-retainer, a suspension stabilizer, 
a flow characteristics controller in the systems used for final 
products, and as a reinforcing agent for final products such as 
medical tablets. MCC is typically characterized by a high 
degree of crystallinity, although there are variations between 
grades; values typically range from 55 to 80% as determined 
by X-ray diffraction (XRD) [12]. 

Different approaches have been applied to the preparation 
of MCC. All of them lead to different types of micromaterial, 
depending on the cellulose origin, its treatment condition, and 
the disintegration process. These factors will give differ in 
crystallinity, moisture content, surface area, porous structure, 
particle size and molecular weight [7]. Several processes have 
been used to extract microfibers from cellulosic materials. 
These methods include treatments, such as chemical 
hydrolysis, pulping beating [2], high pressure homogenizing 
[4] and cryocrushing [1]. Among all of these, acid hydrolysis 
methods are widely used in the production of MCC as well as 
in the industrial scale. However, the use of acid has a number 
of important drawbacks, such as potential degradation of the 
cellulose, corrosivity, and environmental incompatibility. 
Considering all the above issues, this research study focused 
on using a simple, low cost and environment-friendly method 
in order to extract the MCC. 

Recently, the ultrasonic technique has been used to isolate 
cellulose microfibers. Ultrasonication is the application of 
sound energy to physical and chemical systems. The chemical 
effects of ultrasonication are derived primarily from hot spots 
the form during acoustic cavitation, which is, the formation, 
growth and collapse of bubbles in a liquid [9]. The effect of 
ultrasonication in degrading polysaccharide linkages has been 
well described by [10], [14] investigated the preparation of 
individual cellulose nanofibers from wood using high-
intensity ultrasonication combined with chemical 
pretreatments. Reference [11] used high intensity 
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ultrasonication in a batch process to isolate fibrils from several 
cellulose sources. Using this process a mixture of microscale 
and nanoscale fibrils was obtained. The results show that 
small fibrils with diameters ranging from about 30 nm to 
several micrometers were peeled from the fibers. Some fibrils 
were isolated from the fibers, but some were still on the fiber 
surface. Therefore, in this study, the assistance from alkali 
treatment will be more successful in the production of MCC. 
In this approach, this treatment will not only help in extracting 
the MCC, but, it also can increase the interactions between 
fiber and polymer as well as increases the number of reactive 
hydroxyl groups on the fiber surface available for chemical 
bonding especially in future potential applications such as 
composites production. 

II. MATERIALS AND METHODS 

A. Materials 

Fibrous strands of oil palm empty fruit bunch (EFB) fibers 
were supplied by Malaysian Palm Oil Board (MPOB), Bangi 
Malaysia. The important chemicals used for extracting MCC 
in this work were acetic acid, sodium chlorite and sodium 
hydroxide, purchased from Sigma-Aldrich (Ohio, USA). 
Commercially available MCC, with a size of ~50 µm, was 
used as reference which was denoted as C-MCC. 

B. Methods 

1. Preparation of EFB Pulp 

Oil palm empty fruit bunch (EFB) fiber was ground by a 
grinder and then sieved to reduce the size (measuring less than 
400 µm in diameter). This dried ground EFB fiber was then, 
kept in a desiccator at 50% relative humidity until use. 

2. Pretreatment Procedures 

About 4.0 g of the ground EFB fiber strands (measuring 
less than 400 µm) were mixed in hot distilled water and 
treated at 70ºC for 4 hr. A calculated amount of sodium 
chlorite and acetic acid were added into the mixture in order to 
separate lignin from fiber. The fibers then were washed many 
times with distilled water until the yellow color and the odor 
were removed. 2.0 g of the holocellulose produced were 
treated with 17.5% NaOH at 20ºC for about 2 hr in order to 
separate the hemicellulose from the holocellulose, leaving the 
α-cellulose as well as to activate the OH groups of the 
cellulose. After that, the insoluble α-cellulose was filtered and 
washed with 8.3% NaOH. 10% acetic acid was poured and 
used to neutralize the excess NaOH present in the cellulose 
residue. Then, the cellulose obtained was dried in an oven at 
105ºC overnight. 

3. Preparation of MCC 

The purified cellulose fibers were then subjected to 
ultrasonic treatments at resonance condition, using a Daihan 
Ultrasonic bath. 1.0 g of the cellulose EFB fiber was mixed 
into 200 ml of 10% sodium hydroxide solution. This mixture 
was then treated by the ultrasonicator at 50ºC for 3 hr. After 
ultrasonication process, the suspension was then washed with 
distilled water and filtered to separate the MCC from it. The 

EFB fiber, holocellulose, α-cellulose and MCC were then 
analysed for their structural properties. Commercial MCC also 
was used as the standard. 

4. Composition Analysis of Isolated Cellulose and 
Microcrystalline Cellulose 

The chemical composition of the isolated fibers was 
determined by methods shown in the following sequence: 
holocellulose and α-cellulose (TAPPI T257 om-85), Klason 
lignin (TAPPI T222 om-88). 

5. X-Ray Diffraction 

X-ray diffraction (XRD) was carried out to study the 
crystallinity of the samples. The sample patterns of all the 
cellulosic and MCC samples were pressed to form pellets and 
recorded on X’Pert X-ray diffractometer (SIEMENs XRD 
D5000) using Ni-filtered Cu Kα radiation (30 kV and 30 mA). 
The diffraction intensities were measured between Bragg 
angles (2θ) of 5–69º. The crystallinity index (CrI) was 
calculated by Segal’s formula [6] using intensity measurement 
at 22.5º and 18.5º (amorphous background) 2θ: 

 
CrI ൌ   ሺܫ଴଴ଶ  െ ܫ௔௠ሻ/ܫ଴଴ଶ                          (1) 

 
ሺ%ሻ ܫݎܥ ൌ  (2)                                100 ܫݎܥ

 
where I002 denotes the maximum intensity of the 002 peak at 
about 2θ = 22.5º and Iam is the lowest intensity corresponding 
to 2θ value near 18.5º 

III. RESULTS AND DISCUSSION 

A. Fiber Composition 

From the analysis, it is observed that the cellulose, 
hemicellulose and lignin content in untreated EFB fiber were 
similar to that reported by [5] in which the cellulose, 
hemicellulose and lignin content were 51.22%28.24% and 
15.19%, respectively. In actual fact, EFB fiber is governed by 
the lignocellulosic components, especially the lignin that gives 
strengths to the fibrils and the polysaccharides, especially the 
cellulose and hemicellulose. Thus, the most important features 
of an effective treatment strategy include breaking the 
lignocellulosic complex. In the early stage of pretreatment 
process, the ground EFB fiber was treated with acetic acid and 
sodium chlorite in delignification process in which this 
treatment involved the removal of lignin. Therefore, as we can 
see from Table I, the chemical composition of lignin for the 
treated EFB decreased. Further down, in the production of 
holocellulose into α-cellulose, a greater part of the lignin and 
hemicellulose were degraded and the values for cellulose 
content increased. This can be described as a disruption of the 
cell-wall matrix including the connection between 
carbohydrates and lignin, as well as depolymerizing and 
solubilizing the hemicelluloses leaving the α-cellulose content. 
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