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Abstract—We describe a novel method for removing noise (in 

wavelet domain) of unknown variance from microarrays. The method 
is based on a smoothing of the coefficients of the highest subbands. 
Specifically, we decompose the noisy microarray into wavelet 
subbands, apply smoothing within each highest subband, and 
reconstruct a microarray from the modified wavelet coefficients. This 
process is applied a single time, and exclusively to the first level of 
decomposition, i.e., in most of the cases, it is not necessary a 
multirresoltuion analysis. Denoising results compare favorably to the 
most of methods in use at the moment. 
 

Keywords—Directional smoothing, denoising, edge preservation, 
microarrays, thresholding, wavelets 

I. INTRODUCTION 
 microarray is affected by noise in its acquisition and 
processing. Microarray denoising is used to remove the 

additive noise while retaining as much as possible the 
important image features. In the recent years there has been an 
important amount of research on wavelet thresholding and 
threshold selection for bioimages denoising, e.g., microarray 
images [1], [2], because wavelet provides an appropriate basis 
for separating noisy signal from the image signal. The 
motivation is that as the wavelet transform is good at energy 
compaction, the small coefficients are more likely due to noise 
and large coefficient due to important signal features [3]-[5]. 
These small coefficients can be thresholded without affecting 
the significant features of the image.  
 

In general, the results of the microarray processing combine 
two sample images that after further image processing, gene 
expression data can be produced for further analysis, such as 
gene clustering or identification [1], [2]. These three crucial 
steps, experiment, image processing and data analysis, 
determine the success or not of the microarray analysis. Image 
processing plays a potentially large impact on the subsequent 
analysis. In recent years, a large number of commercial tools 
have been developed in microarray image processing [1], [2]. 
The tasks of all these tools mainly focus on two major targets, 
namely: spot segmentation and spot intensity extraction. 
However, the quality of the images from the experiments is 
not always perfect. The gene array experiments involve a 
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large number of error-prone steps which lead to a high level of 
noise in the resulting images [1], [2]. Hence, the accuracy of 
the gene expressions derived from these images will largely be 
affected in the process.  

 
In order to assure the accuracy of the gene expression, 

normally the replicated experiments and incorporated 
statistical methods are needed to estimate the errors [1], [2]. 
These methods deal mainly with measurement error, such as 
preparation of the sample, cross hybridization, and fluctuation 
of fluorescence value from gene to gene. But none deals 
particularly with the effect of the noise [1], [2]. 

 
In fact, the thresholding technique is the last approach 

based on wavelet theory to provide an enhanced approach for 
eliminating such noise source and ensure better gene 
expression. Thresholding is a simple non-linear technique, 
which operates on one wavelet coefficient at a time. In its 
basic form, each coefficient is thresholded by comparing 
against threshold, if the coefficient is smaller than threshold, 
set to zero; otherwise it is kept or modified. Replacing the 
small noisy coefficients by zero and inverse wavelet transform 
on the result may lead to reconstruction with the essential 
signal characteristics and with less noise. Since the work of 
Donoho & Johnstone [5], there has been much research on 
finding thresholds, however few are specifically designed for 
images [3], [4], [6].  

 
Unfortunately, this technique has the following disadvan-

tages:   
1) it depends on the correct election of the type of 

thresholding, e.g., OracleShrink, VisuShrink (soft-thre-
sholding, hard-thresholding, and semi-soft-thresholding), 
SureShrink, Bayesian soft thresholding, Bayesian MMSE 
estimation, Thresholding Neural Network (TNN), due to 
Zhang, NormalShrink, , etc. [3]-[7],  

2) it depends on the correct estimation of the threshold 
which is arguably the most important design parameter,  

3) it doesn't have a fine adjustment of the threshold after 
their calculation, 

4) it should be applied at each level of decomposition, 
needing several levels, and 

5) the specific distributions of the signal and noise may not 
be well matched at different scales. 

 
Therefore, a new method without these constraints will 

represent an upgrade. 
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II. SMOOTHING OF COEFFICIENTS (SC) IN WAVELET DOMAIN 
We decompose the noisy microarray into four wavelet 

subbands: Coefficients of Approximation (CA), and noisy 
coefficients of Diagonal Detail (CDDn), Vertical Detail 
(CVDn), and Horizontal Detail (CHDn), respectively. We 
apply a bidimensional smoothing within each highest 
subband, and reconstruct a microarray from the modified 
wavelet coefficients, that is to say, denoised coefficients of 
Diagonal Detail (CDDd), Vertical Detail (CVDd), and 
Horizontal Detail (CHDd), respectively, as shown in Fig. 1, 
where: DWT-2D is the Bidimensional Discrete Wavelet 
Transform, and IDWT-2D is the inverse of DWT-2D. 

 

 
 

Fig. 1 Smoothing of Coefficients (SC) in wavelet domain 

 
If we use an original microarray of R-by-C pixels, then 

each subbands will have (R/2)-by-(C/2) coefficients. The SC 
process is applied - in principle - a single time, and 
exclusively to the first level of decomposition. 

 
On the other hand, to protect the edges from blurring while 

smoothing the respective coefficients of subband, an appro-
priate filter must be applied. The most of statistical filters have 
a speckle reduction approach that performs spatial filtering in 
a square-moving window defined as kernel, and is based on 
the statistical relationship between the central pixel and its 
surrounding pixels as shown in Fig. 2. 
 

The size of the filter window can range from 3-by-3 to 33-
by-33, with an odd number of cells in both directions. A larger 
filter window means that a larger area of the subband will be 
used for calculation and requires more computation time 
depending on the complexity of the filter’s algorithm. If the 
size of filter window is too large, the important details will be 
lost due to over smoothing. On the other hand, if the size of 
the filter window is too small, speckle reduction may not be 
very effective. In practice, a 3-by-3 or a 7-by-7 filter window 
usually yields good results in the cases under study [8]-[9]. 

 
 

Fig. 2 3-by-3 filter window for noise smoothing over each highest 
subband (CHD, CVD, and CDD) using directional smoothing 

 
 
For example, if the statistical filter used inside SC method 

(that is to say, over each highest subbands) is Directional 
Smoothing (DS), then, let x[r, c] denote the value of the 
corresponding noisy detail coefficient at location (r, c). Let 
W[r, c] represent the group of coefficients contained in a 
filtering window with the size of 3-by-3 pixels and centered at 
location (r, c) of the corresponding noisy detail coefficient, as 
shown in Fig. 2: 

 
W[r, c] = { x[r+p, c+q] | (p, q) ∈ [-1,0,1] }              (1) 

 
where p and q are integer indices each individually ranging 
from −1 to 1. Here, r and c are the row and the column 
indices, respecttively, with 2 ≤ r ≤ (R/2)-1 and 2 ≤ c ≤ (C/2)-1.  

 
The noisy input subband is processed by sliding a 3-by-3 

filtering window on the subband. The window is started from 
the upper-left corner of the subband and moved sideways and 
progressively downwards in a raster scanning fashion. 
Meanwhile, the directional averaging filter (selective with 
respect to direction) examine the average based on several 
directionally oriented masks, as shown in Fig. 2, and it 
compute averages in d1 , d2 , d3 and d4 directions Avg i ; i = 1, 2, 
3, 4. Such as, y[r,c] = Avg i where Avg i is the one closest in 
amplitude to x(r,c), i.e. |x(r,c)-Avg i| minimum. That is to say, 
it has a tendency not to destroy boundaries. On the other hand, 
the directional analysis can also be used to check if a 
coefficient belongs to a directional edge (leave unchanged) or 
is noise (remove noise). 

 
Finally, any used filter performs the filtering based on 

either local statistical data given in the filter window to 
determine the noise variance within the filter window, or 
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estimating the local noise variance of the subband under 
study, e.g., Median, Lee, Kuan, Gamma-Map, Enhanced Lee, 
Frost, Enhanced Frost [3], [8], Wiener [8], DS [8], [9] and 
Enhanced DS (EDS) [8]. 

III. NOISE SOURCES AND ITS STATISTICAL MEASUREMENT IN 
MICROARRAY IMAGING 

It is well known microarray technology can monitor 
thousand of DNA sequences in a high density array on a glass. 
The basic procedure for a microarray experiment is simply 
described as follow. Two mRNA samples are reverse-
transcribed into cDNA, labeled using different fluorescent 
dyes (e.g., the red fluorescent dye Cy5 and the green 
fluorescent dye Cy3), then mixed and hybridized with the 
arrayed DNA sequences. After this competitive hybridization, 
the slides are imaged using a scanner which makes 
fluorescence measurement for each dye. From the differential 
hybridization of the two samples, the relative abundance of 
the spotted DNA sequences can be assessed. A schematic 
diagram for this process created is shown in [2]. 

 
The results of the microarray experiment are two 16-bit 

tagged mage files, one for each fluorescent dye. The Fig. 3(a) 
show an example of the mentioned microarray image. As 
shown in Fig. 3(b), the image is not perfect and it includes 
noisy sources that blur such image for further gene expression 
experimentation. The noise source originates from different 
sources during the course of experiment, such as photon noise, 
electronic noise, laser light reflection, dust on the slide, and so 
on. Hence, it is crucial to denoise the resultant image within 
this process. 

 
Exciting methods to reduce the noise source include using 

clean glass slide and using a higher laser power rather than 
higher PMT voltages. However, there are not adequate for the 
required image qualities and an enhanced software procedure 
embedded within the process in a much better alternative. In 
this paper, we focus on the implementation of the SC method 
(in wavelet domain) to the denoising on microarray images 
[2].  

 
Yet there are some fundamental obstacles that need 

clarification before the full potential of microarrays can be 
explored. One of the major problems in interpretation of 
microarray data is that different clustering techniques produce 
different results.  

 
On the other hand, the assessment parameters that are used 

to evaluate the performance of noise reduction [10], [11] are 
the following ones: 
 

A. Absolute Average Difference (AAD): 
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C. Peak Signal to Noise Ratio (PSNR): 
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D. Image Fidelity (IFy): 
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E. Correlation Quality (CQy): 
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F. Structural Content (SCt): 
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Where for an image of R*C (rows-by-columns) pixels, r 

means row, c means column, I means original image (without 
noise), and Id means denoised image. Such as, a lower AAD 
gives a “cleaner” image as more noise is reduced; larger SNR 
and PSNR indicates a smaller difference between the original 
(without noise) and denoised image; if IFy and SCt spread at 
1, we will obtain an image Id of better quality; and a larger 
value of CQy usually corresponds to a better quantitative 
perfor-mance [10], [11]. 

 
On the other hand, to compare edge preservation 

performances of different noise reduction schemes, we adopt 
the Pratt’s figure of merit (FOM) [9] defined by 
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Where N̂  and Nideal are the number of detected and ideal 
edge pixels, respectively, di is the Euclidean distance between 
the ith detected edge pixel and the nearest ideal edge pixel, 
and α is a constant typically set to 1/9. FOM ranges between 
0 and 1, with unity for ideal edge detection. 

IV. RESULTS 
The simulations demonstrate that the SC technique 

improves the noise reduction performance to the maximum, 
for bioimages. Here, we present a set of experimental results 
using two bioimages. Such images were converted to bitmap 
file format for their treatment [11]. On the other hand, the 
statistical filters used inside SC method were DS and EDS. 
For statistical filters employed along, i.e., Median, Lee, Kuan, 
Gamma-Map, Enhanced Lee, Frost, Enhanced Frost, Wiener, 
DS, and EDS, we use a reduction scheme [8]. 

 
Figure 3 shows the noisy (30 %) and filtered microarray 

images used in the first experiment of [1], with a 274-by-274 
(pixels) by 65536 (gray levels) bitmap matrix. 

 
Table 1 summarizes the assessment parameters vs. 19 

filters for Fig. 3, where En-Lee means Enhanced Lee Filter, 
En-Frost means Enhanced Frost Filter, ST means Soft-
Thresholding, HT means Hard-Thresholding and SST means 
Semi-Soft-Thresholding. The assessment parameters were 
applied to the whole image. 

 
Figure 4 shows the noisy (10 %) and filtered microarray 

images used in the second experiment of [1], with a 256-by-
256 (pixels) by 65536 (gray levels) bitmap matrix. 

 
Table 2 summarizes the assessment parameters vs. 19 

filters for Figure 4. 
 
In both cases, the bioimages were processed by using 10 

statistical filters, VisuShrink with Daubechies 4 wavelet basis 
and 1 level of decomposition (improvements were not noticed 
with other basis of wavelets) [2], [3], [5], [6], [8], SureShrink, 
Oracle-Shrink, BayesShrink, NormalShrink, TNN [5]-[8], and 
SC respectively. 

 
Figures 3 and 4 summarize the edge preservation perfor-

mance of the SC technique vs. the rest of the filters with a 
considerably acceptable computational complexity. A 3-by-3 
kernel was employed for all statistic noise filters. For TNN [7] 
the empirical function parameter value λ = 0.01. 

 
For Lee, Enhanced Lee, Kuan, Gamma, Frost and 

Enhanced Frost filters the damping factor is set to 1, see [3], 
[8]. The quantitative results of Table 1 and 2 shows that the 
SC technique can eliminate noise without distorting useful 
image information and without destroying the important 
image edges. Also, in the experiment, the SC outperformed 
the conventional and no conventional noise reducing filters in 
terms of edge preservation measured by Pratt figure of merit 
[9]. In nearly every case in every homogeneous region, the SC 
produced the lowest standard deviation and was able to 

preserve the mean value of the region.  
 
The numerical results are further supported by qualitative 

examination, as shown in Fig. 3 and 4. 
 

On the other hand, all filters was applied to complete 
image, for Figure 3 (274-by-274) pixels and Figure 4 (256-by-
256) pixels, and all the filters were implemented in 
MATLAB® (Mathworks, Natick, MA) on a PC with an 
Athlon (2.4 GHz) processor. 

V. CONCLUSIONS 
In this paper we have developed a SC technique based tools 

for removing additive noise in microarrays. The simulations 
show that the SC have better performance than the most 
commonly used filters for microarrays (for the studied 
benchmark parameters) which include statistical filters, 
wavelets, and a version of TNN. The SC exploits the local 
coefficient of variations in reducing noise. The performance 
figures obtained by means of computer simulations reveal that 
the SC technique provides superior performance in 
comparison to the above mentioned filters in terms of 
smoothing uniform regions and preserving edges and features. 
The effectiveness of the technique encourages the possibility 
of using the approach in a number of ultrasound and radar 
applications. Besides, the method is computationally efficient 
and can significantly reduce the noise while preserving the 
resolution of the original microarray image. Considerably 
increased Pratt’s figure of merit strongly indicates impro-
vement in detection performance. Also, cleaner images 
suggest potential improvements for classification and 
recognition.   
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Fig. 3 Original, noisy and filtered images 
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Fig. 4 Original, noisy and filtered images. 
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TABLE I 

ASSESSMENT PARAMETERS VS. FILTERS FOR FIGURE 3 
Assessment Parameter Filter AAD SNR PSNR IF CQ SC FOM 

En-Frost 38.2653 3.4464 33.7364 0.7109 150.7467 0.5663 0.39857 
En-Lee 39.7437 3.3363 33.8373 0.7112 150.7472 0.5632 0.49876 
Frost 38.4374 3.2423 33.7033 0.7106 150.5244 0.5689 0.48756 
Lee 39.2427 3.4242 32.6363 0.7015 150.4141 0.5924 0.43447 

Gamma 39.6252 3.1112 33.2703 0.7063 150.1918 0.5751 0.44235 
Kuan  39.8224 3.1243 31.8272 0.7041 149.3121 0.5715 0.45342 

Median 39.5252 3.1131 32.7916 0.6852 148.9172 0.5896 0.40704 
Wiener 39.1829 3.4557 33.7033 0.7106 150.5244 0.5689 0.44236 

DS 38.7332 3.4657 33.9997 0.7169 150.9898 0.5599 0.64111 
EDS 38.1484 3.6969 34.1315 0.7182 151.5252 0.5612 0.64324 

VisuShrink (ST) 39.1450 3.4596 33.7412 0.7109 151.1527 0.5657 0.44382 
VisuShrink (HT) 38.8612 3.5283 34.4115 0.7166 151.3316 0.5666 0.44324 
VisuShrink (SST) 38.1829 3.5557 34.7033 0.7196 151.9202 0.5612 0.46432 

SureShrink 38.1612 3.5751 34.7193 0.7198 151.9244 0.5611 0.43322 
OracleShrink 38.1189 3.6957 34.7233 0.7198 151.9844 0.5619 0.45534 
BayesShrink 38.1145 3.6968 34.7237 0.7199 151.9953 0.5612 0.46329 

NormalShrink 38.1098 3.6998 34.8734 0.7199 151.9983 0.5609 0.59333 
TNN 38.1008 3.7157 34.8833 0.7199 151.9992 0.5600 0.65432 
SC 37.7155 3.7772 36.8388 0.7353 155.4613 0.5513 0.69123 

 
TABLE II 

ASSESSMENT PARAMETERS VS. FILTERS FOR FIGURE 4 
Assessment Parameter Filter AAD SNR PSNR IF CQ SC FOM 

En-Frost 12.4747 290.1324 363.6712 0.9830 226.4744 0.8972 0.41265 
En-Lee 12.8474 290.2522 363.9321 0.9883 226.8373 0.8932 0.51986 
Frost 12.1847 290.2772 363.0233 0.9828 226.3272 0.8923 0.55312 
Lee 12.3733 290.2333 363.0238 0.9838 226.2822 0.8943 0.44421 

Gamma 12.3830 290.8331 363.3433 0.9882 226.8383 0.8934 0.51235 
Kuan  12.3833 290.8272 363.4923 0.9887 226.8381 0.8934 0.54129 

Median 12.9973 289.1212 361.8374 0.9673 225.9287 0.8734 0.51286 
Wiener 11.9042 290.8635 363.5568 0.9866 226.8901 0.8954 0.56413 

DS 11.4572 290.9950 363.9393 0.9898 226.9723 0.8993 0.64213 
EDS 11.5792 290.9998 363.9865 0.9899 226.9975 0.8993 0.64449 

VisuShrink (ST) 11.9055 289.2367 361.5523 0.9761 222.7564 0.8872 0.51228 
VisuShrink (HT) 11.9042 290.8673 363.5615 0.9966 226.8909 0.8976 0.56424 
VisuShrink (SST) 11.7864 290.9546 363.9822 0.9975 226.8937 0.8984 0.56389 

SureShrink 11.7074 291.0753 363.8343 0.9991 226.8942 0.8991 0.57432 
OracleShrink 11.8436 290.9332 363.7363 0.9968 226.8963 0.8983 0.55234 
BayesShrink 11.9353 290.9363 363.7361 0.9923 226.8942 0.8962 0.56328 

NormalShrink 11.6875 290.9992 363.9353 0.9992 226.9021 0.8999 0.59611 
TNN 11.4447 291.7243 363.9991 0.9994 226.9732 0.9002 0.62900 
SC 10.9071 294.9237 383.1090 0.9992 229.8972 0.9173 0.69322 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


