International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:8, 2012

MICOSIm: A simulator for modelling economic
scheduling in Grid computing

Mohammad Bsoul, lain Phillips, and Chris Hinde

Abstract—This paper is concerned with the design and imple-
mentation of MICOSim, an event-driven simulator written in Java
for evaluating the performance of Grid entities (users, brokers and
resources) under different scenarios such as varying the numbers
of users, resources and brokers and varying their specifications and
employed strategies.

Keywords—Grid computing; Economic Scheduling; Simulation;
Event-Driven; Java.

|. INTRODUCTION

N Grid computing, the entities such as users, brokers and

resources employ strategies that their performance need to
be evaluated under different circumstances. Unfortunately, it
is nearly impossible to evaluate the performance of different
entities in a repeatable and controllable manner for different
scenarios such as changing the number of entities in real Grid
environments. The reason is that the availability of resources
and their load change with time and it is impossible for an
individual user to control actions of other users on the Grid.

Thus, a simulator is needed for evaluating the performance
of different entity strategies under different scenarios. Those
scenarios comprise:

« Varying the numbers of users, resources and brokers.

« Varying the entities’ specifications such as varying the
numbers of jobs that are owned by different users and
jobs’ lengths and classes, and varying the numbers of
processors the resources have and processors’ speeds.

« Varying the strategies that are employed by various users,
brokers and resources.

« Varying the strategies’ parameters like the parameters
they send to other entities such as prices, completion
times and deadlines.

After this introduction, Section Il discusses related work
including some of its limitations. Section 1l and IV introduce
the implemented simulator’s components and their interac-
tions, respectively. Finally, section V concludes this paper.

Il. RELATED WORK

Simulation is defined as “attempting to predict aspects of the
behavior of some system by creating an approximate model for
it” [1]. Building simulators has a number of advantages: there

M. Bsoul is with the Department of Computer Science and Applications,
The Hashemite University, P.O. Box 150459, Zarga 13115, Jordan email:
mbsoul@hu.edu.jo.

I. Phillips and C. Hinde are with the Department of Computer Science,
Loughborough University, Garendon Wing, Holywell Park, Loughborough,
LE11 3TU, United Kingdom.

is no need for building a real system, conducting more easily
controlled experiments and allowing to run a huge number of
experiments. A number of simulators have been implemented
such as Bricks, SimGrid, GangSim, OptorSim and GridSim.

Bricks [2] is a Java-based simulator developed at the Tokyo
Institute of Technology in Japan and is used for comparing
scheduling algorithms and frameworks in client-server like
global computing systems under different circumstances such
as varying the workload. However, it uses centralized schedul-
ing which is known to have drawbacks such as inscalability
and single point of failure.

SimGrid [3] is an event-driven simulator developed in the
university of California and it deals with single-client multi-
server scheduling. However, because it can only be used for
simulating a single client, it is hard to simulate a group of
competing users that each employs its own strategy.

SimGrid 2 [4] and 3 [5] are enhanced versions of SimGrid
which have new features involving simulating distributed
scheduling agents in dynamic distributed environments and
supporting more network models.

GangSim [6] simulates environments where there is a large
number of institutions and users that control a huge number
of computers and storage systems. In GangSim, the allocation
of resources is decided from the interaction between virtual
organisations (VOs). In MICOSim, the allocation of resources
is determined from the interaction between individual entities.

OptorSim [7] is a Data Grid simulator written in Java for
evaluating replica optimiser algorithms in various grid config-
urations. Furthermore, it is used for evaluating an economic
model using a Peer to Peer auction protocol [8]. The economic
model is used to choose replicas for running jobs and to
determine where to create replicas dynamically in Grid sites
by employing a file revenue prediction function.

Finally, Gridsim [9] is a Java-based toolkit and is used for
modelling and simulation of entities in Grid environments. It
is built on top of SimJava which is a discrete event simulation
engine that runs entities in separate threads. It is mainly
concern is Grid economy where there are users (buyers),
resources (sellers) and brokers for discovering the available
resources and allocating them to user jobs. Threads have a
drawback which is platform dependency, so the program runs
differently under various operating systems platforms [10].
GridSim does not support that the brokers have their own
strategies too in order to maximise their own utilities.

Therefore, a simulator that supports decentralized schedul-
ing in Grid computing has to be implemented. In this simu-
lator, all entities can have their own utilities and can interact
with each other using tender model. In this paper, an event-

934

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:8, 2012

driven simulator, MICOSim, that was implemented in Java and
overcomes the limitations of the above simulators is described.
In this simulator, threads were not used because of their
drawback which is platform dependency. Additionally, this
simulator was built from scratch.

I11. MICOSIM COMPONENTS

MICOSim’s basic components are TheSystem, Entity, Enti-
tystrategy and Scenario. TheSystem is the class that is respon-
sible for handling the interaction (communications) between
different entities. Entity is the class that different entities are
created from. Also, each entity has an Entitystrategy that is
an abstract class that contains definitions of methods that
their bodies are the same for all strategies. It also contains
abstract methods that are missing their bodies and that are
defined in the subclasses inherited from this class such as
user, broker and resource strategies. The definitions of those
abstract methods in the subclasses rely on the specification of
the created strategy. Scenario is the class that indicates the
specifications of the performed simulation.

A. TheSystem

TheSystem is responsible for the interactions occur between
various entities. For example, it informs the entities’ strategies
to take actions according to their order in its event list. Addi-
tionally, it forwards the messages between different entities
like informing the entity that won the award of executing
the job. An event list is a Vector class which contains the
events that should happen through the simulation ordered by
the occurrence time. An event is represented by an object
which comprise the event’s occurrence time, the entity’s class
and the entity’s number. At the begining of the simulation,
the list contains events that their relevant actions are initiating
negotiations for user jobs. When the simulation starts, the
system removes the first event from the list and executes the
relevant action. Any new events that occur as a result are
inserted on the list at the appropriate point. This continues until
the event list becomes empty. If two or more events have the
same occurrence time, then their relevant actions are executed
sequentially.

B. Entity

Entity is an object that can send and receive both jobs
and bids. However, the sub-classes that are created from
Entity class have some of the capabilities the entity has. For
example, users can only send jobs and receive bids, while
resources can do the opposite. On the other hand, brokers
can send and receive both jobs and bids, but cannot execute
jobs as resources. Three classes of entities are created from
Entity: users, brokers and resources. All entities have common
things such as name which is unique, number which is used
in communications to specify the recipient of job or bid
parameters and strategy which is the course of action to
achieve entity’s goal(s).

The next sections describe the parameters and methods that
are specific to each category of entities.

1) User: User is the entity that sends jobs and receives
bids. The parameters that are specific to a user are:

« Number of jobs: The number of jobs the user has.

« Job IDs: The IDs (numbers) of the jobs belong to the
user.

« Job lengths: The length of jobs belong to the user in
Million Instructions (MI).

« Jobs’ classes: The class of each job belongs to the user.
The class shows the computer resources it requires when
running.

« Job numbers of negotiations: How many negotiations
occurred between the user and the brokers for every job.

« The number of jobs that were executed.

« Job costs: The cost the user paid for executing each of
its jobs.

« The number of brokers the user knows about.

« Historical performance of each broker: Each broker has
an integer value between min (very poor) and max (very
good). Initially, each broker is given a value between
min and max. This value is used to determine with
which brokers the user keeps negotiating. This value is
decreased or increased by the strategy that is employed by
the user based on the occurrence of specific conditions.

Each user has also methods for informing the broker that the
user accepted its bid, updating the historical performance of
the broker that submitted the job that has just finished its
execution, increasing the number of jobs that were executed
when a job of the user is completed, increasing the number
of negotiations occurred between the user and a broker and
creating a new event for a new job if the submission of jobs
is dynamic (e.g. the submission time of each job is determined
based on the completion of the previous job).

2) Broker: The broker sends and receives jobs and bids.
Every broker has a number of parameters and methods that
are used during the negotiations. The broker parameters are:

« The job parameters (jobs which are owned by users who
the broker acts on behalf) mentioned above like IDs,
lengths and classes in addition to the IDs of the users
sent them. The broker needs to keep information about the
jobs submitted to it, so it can pass them later to resources
which the broker will interact with.

« Jobs’ numbers of negotiations: How many negotiations
occurred between the broker and users, and between
the broker and resources for every job submitted to the
broker.

« Cost per MI: The cost resulted from acting on behalf of
a job owner measured in MI.

« Cost per time unit: A continuous cost that results from
maintaining the broker’s requirements such as maintain-
ing the broker’s software and keeping the security up to
date, and it is measured per time unit.

« Revenue: The entire amount of income before any deduc-
tions are made.

« Profit: The excess of income over expenses. The expenses
are represented by cost per MI and cost per time unit.

« The number of resources the broker knows about.

« Historical performance of each resource: The same as

935

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:8, 2012

historical performance in users, except it is for a resource

and not for a broker.
The broker has four methods. The first method increases the
number of negotiations occurred between it and a resource.
The second method informs the resource that the broker
accepted its bid. The third method updates the historical per-
formance of the resource that did not meet its sent completion
time for a job. Finally, the fourth method increases the broker’s
profit and revenue when its bid is accepted by a user.

3) Resource: The resource is an entity that receives jobs in
order to execute them. Moreover, it sends bids to brokers that
submitted jobs to it . As users and brokers, each resource has
its parameters and methods. The resource parameters are:

o Number of processors: The number of processors the

resource has.

o Number of free processors: The number of processors
that are unallocated to any job.

« Processors’ speeds measured in MIPS (Million Instruc-
tion per second).

« Next availabilities: The next availability for a processor
is the time when the processor will be available (free).
In other words, it is the time when the job currently
executing on the processor in addition to the jobs that
currently in the execution queue if there are any will be
completed.

« Total number of jobs that were executed on the resource.

« Total number of jobs that are waiting in the execution
queue or currently executing on the resource.

« Jobs’ numbers of negotiations: How many negotiations
took place between the resource and brokers for every
job submitted to the resource.

o Cost per MI: The cost resulted from executing the job
measured in MI.

« Cost per time unit: A continuous cost that results from
maintaining the resource’s requirements like sustaining its
machines, software and security and it is measured per
time unit.

« Revenue: The same as revenue in brokers.

« Profit: The same as profit in brokers.

Each resource comprises the following methods that are called
when the resource:

« receives a job to update its profit, revenue, number of free
processors, the availability of the processor allocated to
the job and the number of jobs waiting in the execution
queue or currently executing. Additionally, an object that
contains information about the submission of the job is
created. For example, it contains information about when
the job was submitted and when it is going to be received
by its owner.

« finishes executing a job for updating the number of
executed jobs on the resource and the numbers of jobs that
are waiting in the execution queue or currently executing.

C. Entitystrategy

As mentioned above, Entitystrategy contains definitions for
the methods that their bodies are the same for all inherited
strategies, and misses definitions for the abstract methods

that their contents rely on the characteristics of the inherited
classes. Entitystrategy has two defined methods for copying:

« job parameters from the entity (user or broker) that
employs it in order for TheSystem to send them to a
group of entities (broker(s) or resource(s)).

« bid parameters from the entity (broker or resource) that
employs it in order for TheSystem to send them to a
group of entities (user(s) or broker(s)).

On the other hand, Entitystrategy has also four abstract
methods. The first method returns an object containing the
parameters of the strategy (subclass) for a particular job. The
second method determines how the strategy behaves. The third
method is used for updating the availability of the processor
allocated to a job. Finally, the fourth method is used to
calculate the expected time needed to finish executing the job.
The last two methods are only used by resource strategies.

There are three kinds of strategies that are user, broker and
resource strategies. The sections below describe the parameters
of each kind of strategy.

1) User strategy parameters. Each strategy comprises a
number of parameters such as current deadlines and prices
of jobs belong to the user who employs the strategy, to when
the user wants to wait for each job before making a decision
and other parameters that are specific to the strategy.

2) Broker strategy parameters. Each strategy controls a
number of parameters that are:

« The broker’s (that employs the strategy) current prices,
deadlines, and completion times for users’ jobs that acts
on behalf of them.

« Expiry dates of broker’s sent bids.

« A parameter that specifies if the broker sent a new bid in
the last negotiation or not.

« Waiting time which determines until when the broker
wants to wait before making a decision.

« Other variables that are specific to the strategy.

3) Resource strategy parameters: The parameters that are
included in each resource strategy are:

« The resource’s (that employs the strategy) current prices
and completion times for users’ jobs submitted by brokers
to the resource which employs it.

« The job classes that are acceptable.

« A parameter that specifies if the resource sent a new bid
in the last negotiation or not.

« Expiry dates of resource’s sent bids.

« Other variables that are specific to the strategy.

D. Scenario

This class indicates the characteristics of the performed
experiment involving:

« The kind of submission (e.g. static, dynamic).

o Number of users and number and lengths of jobs owned
by each of them.

« Number of brokers.

« Number of resources and number and speeds of proces-
sors belong to each of them.

« The strategies employed by different entities.

936

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:8, 2012

o Costs per MI and costs per time unit of brokers and
resources.

« Strategies’ related parameters such as increment in price,
initial price and maximum acceptable price.

IV. MICOSIM COMPONENTS’ INTERACTION

Fig. 1 shows the interaction occurs between MICOSim’s
components. First of all, Scenario’s parameters are passed to
TheSystem. Then, TheSystem checks the first event in its
eventlist to know which entity should start the negotiation
first. Next, that entity employs its strategy to know the course
of action to be taken. Then, the strategy adds a new event
to the TheSystem event list that specifies with what entities
it wants to negotiate. Furthermore, the strategy copies the
needed parameters to the appropriate object and that will
be used by the entities that will respond to the negotiation.
Then, TheSystem deletes the current event and checks the next
event to see what should happen next. This continues until the
eventlist is empty.

Strategy
TheSystem
Strategy
Scenario
Strategy
Fig. 1. Interaction between MICOSim’s components.

Fig. 2 shows the negotiation occurs between a user and a
broker. First, the user employs its strategy and then copies
the required parameters for negotiation to a job description.
Then, the job description is passed to TheSystem which in
turn forwards it to the appropriate broker when its time to
take an action comes. When the broker employs its strategy,
it copies the required parameters to a bid description which
is passed to the TheSystem. Eventually, the TheSystem sends
the bid description to the user when its time to take an action
is reached.

Job description Job description
T e) e Y
Bid description Bid description
Fig. 2. Negotiation between a user and a broker.
On the other hand, Fig. 3 shows the negotiation happens
between a broker and a resource. What happens is similar to
what mentioned above for Fig. 2 except that the broker passes

a job description to the TheSystem, and the resource passes a
bid description to the TheSystem.

- Job description - Job description
ThesyStem
Bid description Bid description

Fig. 3. Negotiation between a broker and a resource.

V. CONCLUSION

In this paper, a simulator called MICOSim, for modelling
economic scheduling in Grid computing using tender model
has been described. It has the ability to simulate Grid entities
under different scenarios. The users can have different number
of jobs with different lengths measured by MI, while resources
can have different number of processors with different speeds
measured by MIPS. Additionally, the users can employ various
strategies with different parameters such as prices and dead-
lines as well as resources that can employ various strategies
with different parameters like prices and completion times.
MICOSim also simulates brokers with different interests for
acting on behalf of users.

This paper has also presented the MICOSim’s components
including the required parameters and methods for each of
them. Finally, the interaction occurs between various compo-
nents of MICOSIim has been introduced.

This object-oriented simulator can be easily extended to
support more models such as commodity and auction models.
This can be achieved by modifying some of the classes which
compose the simulator.

REFERENCES

[1] ProModel Corporation, “What is simulation?” Available at http://www.
promodel.com/simulation.asp.

[2] A. Takefusa, S. Matsuoka, K. Aida, H. Nakada, and U. Nagashima,
“Overview of a performance evaluation system for global computing
scheduling algorithms,” in HPDC '99: Proceedings of the The Eighth
|EEE International Symposium on High Performance Distributed Com-
puting. Washington, DC, USA: IEEE Computer Society, 1999, pp.
97-104.

[3] H. Casanova, “Simgrid: A toolkit for the simulation of application
scheduling,” ccgrid, vol. 00, pp. 430-437, 2001.

[4] A. Legrand, L. Marchal, and H. Casanova, “Scheduling distributed
applications: the simgrid simulation framework,” ccgrid, vol. 00, pp.
138-145, 2003.

[5] A. Legrand, “Simgrid 3.0 is out,” Available at http://gforge.inria.fr/
forum/forum.php?forum_id=234.

[6] C. Dumitrescu and I. T. Foster, “Gangsim: a simulator for grid schedul-
ing studies.” in CCGRID, Cardiff, UK, 2005, pp. 1151-1158.

[71 W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger,
and F. Zini, “Optorsim: A Grid simulator for studying dynamic data
replication strategies,” 1IJHPCA, vol. 17, no. 4, pp. 403-416, Winter
2003.

[8] ——, “Simulation of dynamic grid replication strategies in optorsim,”
in GRID '02: Proceedings of the Third International Workshop on Grid
Computing. London, UK: Springer-Verlag, 2002, pp. 46-57.

[9] R. Buyya and M. Murshed, “Gridsim: a toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing.” Concurrency and Computation: Practice and Experience,
vol. 14, no. 13-15, pp. 1175-1220, 2002.

[10] A. Holub, “Programming java threads in the real world, part 1,”
Available at http://www.javaworld.com/jw-09-1998/jw-09- threads.html.

937

