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Abstract—The problem of magnetohydrodynamics boundary 

layer flow and heat transfer on a permeable stretching surface in a 
second grade nanofluid under the effect of heat generation and partial 
slip is studied theoretically. The Brownian motion and 
thermophoresis effects are also considered. The boundary layer 
equations governed by the PDE’s are transformed into a set of ODE’s 
with the help of local similarity transformations. The differential 
equations are solved by variational finite element method. The effects 
of different controlling parameters on the flow field and heat transfer 
characteristics are examined. The numerical results for the 
dimensionless velocity, temperature and nanoparticle volume fraction 
as well as the reduced Nusselt and Sherwood number have been 
presented graphically. The comparison confirmed excellent 
agreement. The present study is of great interest in coating and 
suspensions, cooling of metallic plate, oils and grease, paper 
production, coal water or coal-oil slurries, heat exchangers 
technology, materials processing exploiting. 

 
Keywords—Viscoelastic nanofluid, partial slip, stretching sheet, 

heat generation/absorption, MHD flow, FEM. 

I. INTRODUCTION 

ONVECTIVE heat transfer can be enhanced passively by 
changing the flow geometry, boundary conditions, or by 

enhancing thermal conductivity of the fluid. Various 
techniques have been proposed to enhance the heat transfer 
performance of fluids. Researchers have also tried to increase 
the thermal conductivity of base fluids by suspending micro- 
or larger-sized solid particles in fluids, since the thermal 
conductivity of solid is typically higher than that of liquid. 
Modern nanotechnology provides new opportunities to 
process and produce materials with average crystallite sizes 
below 50 nm. Fluids with nanoparticles suspended in them are 
called nanofluids, a term first proposed by Choi [1]. Choi et al. 
[2], and Masuda et al. [3] have shown that a very small 
amount of nanoparticles (usually less than 5%), when 
dispersed uniformly and suspended stably in base fluids, can 
provide dramatic improvements in the thermal conductivity 
and in the heat transfer coefficient of the base fluid. Nanofluid 
is a suspension of nanoparticles in the base fluid.  

A comprehensive survey of convective transport in 
nanofluids was made by Buongiorno [4]. Khan and Pop [5] 
have used the model of Kuznetsov and Nield [6] to study the 
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fundamental work on the boundary layer flow of nanofluid 
over a stretching sheet. Makinde and Aziz [7] extended the 
work of Khan and Pop [5] for convective boundary conditions. 

It is now well accepted fact that many fluids of industrial 
and geophysical importance are non-Newtonian. Due to much 
attention in many industrial applications, the research on 
boundary layer behaviour of a viscoelastic fluid over a 
continuously stretching surface keeps going. McCormack and 
Crane [8] have provided comprehensive discussion on 
boundary layer flow caused by stretching of an elastic flat 
sheet moving in its own plane with a velocity varying linearly 
with distance. Several researchers viz. Gupta and Gupta [9], 
Dutta et al. [10], Chen and Char [11] extended the work of 
Crane [8] by including the effects of heat and mass transfer 
under different situations. Later on, Rajagopal et al. [12] and 
Chang [13] presented an analysis on flow of viscoelastic fluid 
over a stretching sheet. The above sources all utilize the no-
slip condition. Wang [14] discussed the partial slip effects on 
the planar stretching flow. Off late, Noghrehabadi et al. [15] 
investigated the development of the slip effects on the 
boundary layer flow and heat transfer over a stretching sheet. 

A study of utilizing heat source or sink in moving fluids 
assumes a greater significant in all situations which dealing 
with exothermic or endothermic chemical reaction and those 
concerned with dissociating fluids. Sparrow and Cess [16] 
investigated the steady stagnation point flow and heat transfer 
in the presence of temperature dependent heat absorption. 
Later, Azim et al. [17] discussed the effect of viscous Joule 
heating on MHD-conjugate heat transfer for a vertical flat 
plate in the presence of heat generation. One of the latest work 
is the study of the heat transfer characteristic in the mixed 
convection flow of a nanofluid along a vertical plate with heat 
source/sink was studied by Rana and Bhargava [18]. 

In real situations in Nanofluids, the base fluid do not satisfy 
the properties of Newtonian fluids, hence it is more justified to 
consider them as viscoelastic fluids. In the present paper, the 
base fluid is taken as second grade fluid. To our best of 
knowledge, no studies have far been investigated to analyze 
the partial slip effect on the boundary layer flow of 
viscoelastic nanofluid over a permeable stretching sheet under 
the effect of MHD and heat generation. The objective of the 
present paper is therefore to extend the work of Noghrehabadi 
[15] by taking base fluid as second grade fluid. A similarity 
solution is presented and used to predict the heat and mass 
transfer characteristics of the flow. The effects of the 
embedded flow controlling parameters on the fluid velocity, 
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temperature, nanoparticle concentration, heat transfer rate, and 
the nanoparticle volume fraction rate have been demonstrated 
graphically and discussed. A comparative study is also 
present. 

II. MATHEMATICAL FORMULATION 
Consider two-dimensional, steady, incompressible, laminar 

flow of non-Newtonian nanofluid past a stretching sheet in a 
quiescent fluid. The velocity of the stretching sheet is 

wu U cx= = . The x-axis is taken along the plate in the 
vertically upward direction and the y-axis is taken normal to 
the plate. A transverse magnetic field of strength oB  is 
applied parallel to the y-axis. The surface of plate is 
maintained at uniform temperature and concentration, wT and

wC , respectively, and these values are assumed to be greater 

than the ambient temperature and concentration, T∞  and C∞ , 
respectively. Moreover, it is assumed that both the fluid phase 
and nanoparticles are in thermal equilibrium state. The thermo 
physical properties of the nanofluid are assumed to be 
constant. The pressure gradient and external forces are 
neglected. The governing equations are:  
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The boundary conditions for the velocity, temperature, and 

concentration fields are given as follows:     
         

             , , , 0w w w
uu U v v T T C C at y
y

κυ ∂
= + = = = =

∂
           (5a)                             

                      0, ,u T T C C as y∞ ∞= = = → ∞                        (5b) 
 
where u and v are the velocity component along the x and y
directions, respectively, p is the pressure, fρ  is the density 

of base fluid, pρ  is the nanoparticle density, μ  is the 

absolute viscosity of the base fluid, υ  is the kinematic 
viscosity of the base fluid, σ  is the electrical conductivity of 
the base fluid, 1α  is the material fluid parameter, T  is the 

fluid temperature, mα  is the thermal diffusivity, 

( ) ( )( )/
p f

C Cτ ρ ρ=
 
is the ratio of effective heat capacity of 

the nanoparticle material to heat capacity of the fluid, C is the 

nanoparticle volume fraction, BD and TD are the Brownian 
diffusion coefficient and the thermophoresis diffusion 
coefficient, T∞ is the free stream temperature, pC is the 

specific heat at constant pressure, and g , k are the 
acceleration due to gravity, the thermal conductivity of the 
fluid respectively. 
To transform the governing equations into a set of similarity 
equations, the following dimensionless parameters are 
introduced         
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The transformed momentum, energy and concentration 

equations together with the boundary conditions given by (1)-
(4), (5a), (5b) can be written as              
         
            ( )2 2 2 0ivf ff f Mf f f f ffα′′′ ′′ ′ ′ ′′ ′ ′′′+ − − − − + =             (7)                  
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 The transformed boundary conditions are          
 

( ) ( ) ( ) ( ) ( )0 , 0 1 0 , 0 1, 0 1 0f s f Kf atθ φ η′ ′′= = + = = =    (10a)                   

( ) ( ) ( )0, 0, 0f asθ φ η′ ∞ → ∞ → ∞ → → ∞            (10b) 
 
 where primes denote differentiation with respect to η  and the 
seven parameters appearing in (7)-(9) are defined as follows  
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In (11), Pr, , , , ,Le M Q Nbα  and Nt  denote the Prandtl 

number, the Lewis number, the magnetic field strength 
parameter, the viscoelastic parameter, the heat source/sink 
parameter, the Brownian motion parameter, and the 
thermophoresis parameter, respectively.  

The physical quantities of interest are the local heat flux 
Nu  and the local mass diffusion flux Sh  from the vertical 
moving plate, which are defined as    
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where wτ is the wall skin friction, wq is the surface heat flux 

and wh is the wall mass flux given by   
                               

       
0 0

,w w B
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Using (6) in (12), one can obtain 
 

( ) ( )1/2 1/2Re 0 , Re 0x x x xNu Shθ φ− −′ ′= − = −              (14) 
 
where ( )Re /x wu x x υ=  

is the local Reynolds number based 

on the stretching velocity ( )wu x . Kuznetsov and Nield [6] 

referred 1/2Rex xNu−  and 1/2Rex xSh− as the reduced Nusselt 

number ( )0Nur θ′= −  and reduced Sherwood number 

( )0Shr φ′= − , respectively. 

III. METHOD OF SOLUTION 
The Finite Element Method (FEM) is a numerical and 

computer-based technique of solving a variety of practical 
engineering problems that arise in different fields. It has been 
applied to a number of physical problems, where the 
governing differential equations are available. The method 
essentially consists of assuming the piecewise continuous 
function for the solution and obtaining the parameters of the 
functions in a manner that reduces the error in the solution. 
The steps involved in the finite element analysis are as 
follows: 
• Discretization of the domain into set of finite elements. 
• Weighted integral formulation of the differential equation. 
• Defining an approximate solution over the element. 
• Substitution of the approximate solution & the generation 

of the element equations. 
• Assembly of the stiffness matrices for each element. 
• Imposition of the boundary conditions. 
• Solution of assembled equations.  

The entire flow domain is divided into 10000 quadratic 
elements of equal size. Each element is three-noded and 
therefore the whole domain contains 20001 nodes. A system 
of equations has been obtained which is solved by the Gauss 
elimination method. The code of the algorithm has been 
executed in MATLAB running on a PC. Excellent 
convergence was achieved for all the results. 

IV. RESULT AND DISCUSSION 
The nonlinear ordinary differential equations (7)-(9) 

together with the boundary conditions (10a) & (10b) are 
solved numerically using FEM. The numerical computations 
have been carried out for different values of the parameters 
involved. The aim of the present study is to examine the 
variations of different quantities of parameters in which 
0 10,0 10, 0 Pr 70, 0.1 0.5,K Ntα≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

0.1 0.5,Nb≤ ≤ and 5 30Le≤ ≤ . The computational 
work is carried out by taking size of the element

0.0001η∇ = . It is observed that, if the number of elements 
is increased or the size of the element is decreased in the same 
domain, even then the accuracy is not affected. 

Figs. 1-3 illustrate the velocity, temperature and 
concentration profiles for different values of the slip parameter
K . Fig. 1 demonstrates that the effect of increasing value of 
slip parameter K is to shift the streamlines toward stretching 
boundary and thereby reduce thickness of the momentum 
boundary layer. Therefore, the effect of slip parameter K is 
seen to decrease the boundary layer velocity while the 
temperature and concentration are increased with the increase 
of the slip parameter. Figs. 4-6 show the effect of viscoelastic 
parameter α on the evolution of fluid motion and subsequent 
on the distribution of heat and mass across the sheet as time 
evolves. From this plot it is evident that increasing values of 
viscoelastic parameter α opposes the motion of the liquid 
close to the stretching sheet and assists the motion of the 
liquid far away from the stretching sheet. Increasing values of 
second-grade parameter enables the liquid to flow at a faster 
rate due to which there is decline in the heat transfer. This is 
responsible for the increase in momentum boundary layer 
whereas the thermal and concentration boundary layers reduce 
when the viscoelastic effects intensify.  

The variations in velocity field, temperature distribution and 
nanoparticle concentration profile for various values of M are 
presented in Figs. 7-9. It is clear from these figures that the 
velocity decreases, whereas the temperature and concentration 
increase with the increase of the magnetic field parameter. The 
hydromagnetic force in (7) is a linear Lorentzian body force 
which acts transverse to the direction of application i.e. in the 
negative x-direction, parallel to the plate surface. It is directly 
proportional to the applied magnetic field, B0. This force 
inhibits momentum development and decelerates the flow. 
The supplementary work done in dragging the conducting 
nanofluid against the action of the magnetic field, B0, is 
manifested as thermal energy. This heats the conducting 
nanofluid and elevates temperatures. The warming of the 
boundary layer therefore also aids in nanoparticle diffusion 
which causes a rise in nanoparticle volume fraction, φ. 

Figs. 10, 11 depict the effects of suction parameter S on 
velocity and concentration profile. It is noticed that both 
momentum and concentration boundary layer thickness 
decrease with the increase in the suction parameter. In order to 
understand the influence of magnetic parameter M on heat 
and mass transfer the local Nusselt and Sherwood number are 
plotted in Figs. 12, 13 for different values of viscoelastic 
parameterα . From the earlier graphical results, we have 
noticed that the thickness of the thermal and concentration 
boundary layers reduce when the viscoelastic effects intensify. 
This reduction is compensated with the increase in the rate of 
heat and mass transfer at the stretching surface.  
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In the present study, the local rate of heat transfer ( Nur ) 
and local rate of mass transfer at the sheet ( Shr ), defined in 
(14), are the important characteristics. The numerical values of 
Nur  and Shr  are exhibited in Tables I, II. Table I shows 
that the excellent correlation between the current FEM 
computations and the earlier results of Wang [19] and Gorla 
and Sidawi [20], for reduced Nusselt number ( (0)θ ′− ) by 

neglecting slip effect ( K ), the viscoelastic parameter (α ), 
Brownian effect (Nb) and thermophoresis (Nt) for various 
values of Prandtl number (Pr) with step size, h = 0.0003. 
Variations of reduced Nusselt number Nur  and reduced 
Sherwood number Shr  for various values of ,Nb Nt and

Le  when 0.1, 0.5, 1.0, 0.5, 1.0,Pr 1.0,Q M s Kα= = = = = =  are 
depicted in Table II. 

A. Graphs 

 
Fig. 1 Effect of K  on velocity profile for 

Pr 1.0, 0.5, 0.1, 0.5, 0.5Le M Nb Nt Q sα= = = = = = = =  
 

 

Fig. 2 Effect of K on temperature profile for 0.5s =

Pr 1.0, 0.5, 0.1, 0.5,Le M Nb Nt Q α= = = = = = =  
 

 
Fig. 3 Effect of K  on nanoparticle concentration profile for 

Pr 1.0, 0.5, 0.5, 0.1, 0.5,Le M Nb Nt s Q α= = = = = = = =  
 

 
Fig. 4 Effect of α  on velocity profile for 

Pr 2.0, 1.0, 1.0, 0.1, 0.1, 0.1, 1.0, 0.5M Le Nb Nt Q K s= = = = = = = =
 

  
Fig. 5 Effect of α on temperature profile for 

Pr 2.0, 1.0, 1.0, 0.1, 0.1, 0.1, 1.0, 0.5M Le Nb Nt Q K s= = = = = = = =
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Fig. 6 Effect of α  on nanoparticle concentration profile for 

Pr 2.0, 1.0, 1.0, 0.1, 0.1, 0.1, 1.0, 0.5M Le Nb Nt Q K s= = = = = = = =  
 

 
Fig. 7 Effect of M  on velocity profile for 

Pr 1.0, 0.5, 0.1, 0.5, 1.0, 0.5Le Nb Nt Q K sα= = = = = = = =   
 

 
Fig. 8 Effect of M on temperature profile for 

Pr 1.0, 0.5, 0.1, 0.5, 1.0, 0.5Le Nb Nt Q K sα= = = = = = = =  
 

 

Fig. 9 Effect of M  on nanoparticle concentration profile for 
Pr 1.0, 0.5, 0.1, 0.5, 1.0, 0.5Le Nb Nt Q K sα= = = = = = = =  

 

 
Fig. 10 Effect of s  on velocity profile for 

Pr 1.0, 1.0, 0.3, 0.1, 0.1, 1.0,M Le Nb Nt Q K= = = = = = =  
 

 

Fig. 11 Effect of s  on temperature profile for Pr 1.0,M= =
1.0, 0.3, 0.1, 0.1, 1.0,Le Nb Nt Q K= = = = =  
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Fig. 12 Effect of andM α  on reduced Nusselt number Nur for 
Pr 1.0, 0.3, 0.1, 0.1, 1.0, 1.5Le Nb Nt Q K s= = = = = = =  

 

 

Fig. 13 Effect of andM α  on reduced Sherwood number Shr for 
Pr 1.0, 0.3, 0.1, 0.1, 1.0, 1.5Le Nb Nt Q K s= = = = = = =  

B. Tables 
TABLE I 

COMPARISON OF RESULT FOR REDUCED NUSSELT NUMBER ( )0θ′−
 
FOR

0, 10, 0,K s M Le Nb Ntα= = = = = = =  

Pr  Wang 
[16] 

Gorla and Sidawi 
[17 ] 

Present result 

0.07 0.0656 0.0656 0.0695 
0.20 0.1691 0.1691 0.1694 
0.70 0.4539 0.5349 0.4541 
2.00 0.9114 0.9114 0.9120 
7.00 1.8954 1.8905 1.8954 
20.0 3.3539 3.3539 3.3539 
70.0 6.4622 6.4622 6.4623 

 
 
 
 
 
 
 
 
 
 
 

TABLE II 
VARIATION OF Nur AND Shr WITH ,Nb Nt AND Le  WHEN

0.5, 1.0,Pr 1.0, 0.1, 1.0, 0.5,s K Q M α= = = = = =  

Nb
 

Nt  1Le =  10Le =  

Nur  Shr  Nur  Shr  
0.1 0.1 0.50278 0.25287 0.48513 4.6238 

 0.2 0.48406 -0.15312 0.45966 4.3467 
 0.3 0.46576 -0.52569 0.43552 4.1034 
 0.4 0.44788 -0.86599 0.41262 3.8909 
 0.5 0.43041 -1.1751 0.39089 3.7066 

0.3 0.1 0.44173 0.44173 0.41204 4.8534 
 0.2 0.42444 0.40848 0.39010 4.7790 
 0.3 0.40757 0.34848 0.36947 4.7140 
 0.4 0.39110 0.24442 0.34984 4.6575 
 0.5 0.37502 0.15688 0.33120 4.6089 

0.5 0.1 0.38546 0.62732 0.34938 4.8975 
 0.2 0.36959 0.56696 0.33066 4.8621 
 0.3 0.35412 0.51221 0.31292 4.8313 
 0.4 0.33903 0.46290 0.29611 4.8048 
 0.5 0.32430 0.41882 0.28015 4.7821 

V. CONCLUSION   
The problem of MHD boundary-layer flow of a viscoelastic 

nanofluid past a stretching sheet has been solved numerically 
to exhibit the effect of partial slip (i.e. Navier’s condition) and 
heat source/sink on the fluid flow and heat transfer 
characteristics. The result can be summarized as follows: 
1. With the increase in the second grade parameterα , the 

velocity and the momentum boundary layer thickness 
increases, however the temperature and nanoparticles 
concentration decrease. 

2. There is a decrease in the velocity, but temperature and 
concentration are found to increase with an increase in 
velocity slip parameter K . 

3. Magnetic field decelerates the flow and enhances 
temperatures and nano-particle volume fraction 
(concentration) distributions in the boundary layer. 

4. With increase in the slip parameter K , heat transfer rate 
and mass transfer rate decrease. 

5. By the increase of thermophoretic number Nt , the effect 
of velocity slip parameter K  on reduced Nusselt number 
Nur and reduced Sherwood number Shr increase and 
decrease respectively. 

6. The reduced Nusselt number and reduced Sherwood 
number both increases with the increase of viscoelastic 
parameterα . 
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