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MHD Natural Convection Flow of Tangent
Hyperbolic Nanofluid Past a Vertical Permeable

Cone
A. Mahdy

Abstract—In this paper, a non-similraity analysis has been
presented to exhibit the two-dimensional boundary layer flow
of magnetohydrodynamic (MHD) natural convection of tangent
hyperbolic nanofluid nearby a vertical permeable cone in the presence
of variable wall temperature impact. The mutated boundary layer
nonlinear governing equations are solved numerically by the an
efficient implicit finite difference procedure. For both nanofluid
effective viscosity and nanofluid thermal conductivity, a number of
experimental relations have been recognized. For characterizing the
nanofluid, the compatible nanoparticle volume fraction model has
been used. Nusselt number and skin friction coefficient are calculated
for some values of Weissenberg number W , surface temperature
exponent n, magnetic field parameter Mg , power law index m and
Prandtl number Pr as functions of suction parameter. The rate of heat
transfer from a vertical permeable cone in a regular fluid is less than
that in nanofluids. A best convection has been presented by Copper
nanoparticle among all the used nanoparticles.

Keywords—Tangent hyperbolic nanofluid, finite difference,
non-similarity, isothermal cone.

I. INTRODUCTION

NANOFLUID represents an innovative class of heat

transfer fluid. Nanofluid is described as a combination

of nanoparticles with the length scales of 1 − 100 nm

and the regular fluid. Choi [1] in 1995 presented an

innovative technique, that used a mixture of regular fluid

and nanoparticles for enhancing advanced heat transfer fluids

with higher conductivities. Choi pointed out the resulting

mixture as a nanofluid. To save the energy, the heat transfer

enhances are needful in the evolution and manufacturing

of electronic devices. Due to this requirement, in recent

years, a number of researchers have been focused on

addressing the nanofluid. Cheng [2] reported the natural

convection boundary layer nanofluid flow through a porous

horizontal cylinder of elliptic cross section. The laminar

natural convection past a vertical wavy surface immersed in

a porous medium saturated with a nanofluid was examined

by Mahdy and Ahmed [3]. The single nanoparticle impact

on the contact line motion was addressed by Li et al. [4].

The authors obtained three types of contact line motion

involving complete slipping, alternate pinning-depinning, and

complete pinning, and theoretically illustrated them. There are

two sorts allow to incorporate nanoparticle aspect on fluid

flow, namely single-phase nanofluid model as Sarkar [5] and

two-phase nanofluid model as Buongiorno [6] Contributions
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of both theoretical and experimental on nanofluid heat transfer

properties are pointed out [7]-[17].

Non-Newtonian liquids’ salient properties have been

examined substantially by many researchers due to its wide

existence in different industrial and technological applications.

Non-Newtonian materials characteristics related to their shear

stress behavior which are not denoted by a single constitutive

relationship. With slip conditions and Joule heating, the

impacts of MHD on peristaltic flow of hyperbolic tangent

nanofluid in an inclined channel is explored by Hayat et

al. [18]. Hayat et al. [19] reported the characteristics of

magnetic field and melting heat transfer flow of tangent

hyperbolic fluid in stagnation point. Shehzad et al. [20]

examined the impact of magnetic field in three-dimensional

flow of an Oldroyd-B nanofluid past a radiative surface.

Waqas et al. [21] addressed the generalized Burgers fluid

associated with model of Cattaneo-Christov heat flux. Abbas

et al. [22] addressed three dimensional peristaltic hyperbolic

tangent fluid flow in non-uniform channel with flexible walls.

Ibrahim et al. [23] addressed the problem of non-Darcy

free and forced convection of a non-Newtonian fluid from

an isothermal vertical plate in the existence of surface

injection or suction. Mahdy [24] exhibited non-Newtonian

nanofluid natural convection flow associated with mixed

thermal boundary conditions past a vertical cone. Similarity

solutions have been presented for non-Newtonian natural

convection flow over horizontal cylinder and a sphere in

porous media by Chen and Chen [25, 26]. An analysis

is performed to investigate the impact of heat generation

and absorption on tangent hyperbolic nanofluid near the

stagnation point over a stretched cylinder by Salahuddin et

al. [27]. Ramesh et al. [28] exhibited stagnation point of

Maxwell nanofluid flow along permeable stretching surface.

A comprehensive review for the boundary layer natural

convection flow towards cones [29]-[32], Cheng [33] presented

a numerical solution for free convection boundary layer

micropolar fluid flow over a permeable vertical cone with

non-uniform heating surface. Postelnicu [34] examined the

natural convection of a micropolar fluid past a vertical frustum

of a cone.

The major purpose of this article is to exhibit the MHD

natural convection boundary layer flow towards an isothermal

vertical permeable cone in tangent hyperbolic nanofluid. A

convenient non-similar transformations are invoked to mutate

the governing boundary layer equations into a non-similar

form. The finite difference procedure is chosen to get the
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Fig. 1 Sketch of problem geometry

numerical solution of the resulting system.

II. MATHEMATICAL MODEL

Let us exhibit two-dimensional, steady, MHD free

convection boundary layer flow of a tangent hyperbolic

nanofluid nearby a permeable vertical cone considering

variable wall temperature. The coordinate system origin is

positioned at the vertex of the isothermal cone (x = 0), with

x is the cone surface coordinate that measured from the origin

and y is the coordinate normal to the cone surface as sketched

in Fig. 1. The surface of the permeable cone is held at a

mutable temperature Tw(x) which is greater than the ambient

fluid temperature T∞, i.e Tw > T∞. A magnetic field with

uniform strength B0 is applied in y-direction, i.e, normal to

flow direction. The magnetic Reynolds number is assumed to

be petty and thus the induced magnetic field has been ignored.

The aspect both of Hall and electric field have been neglected.

With Boussinesq approximations help, the governing equations

for the present model flow can be formulated as:

∂(ru)

∂x
+

∂(rv)

∂y
= 0 (1)

ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= μnf (1−m)

∂2u

∂y2
− σnfB

2
0u+

√
2 mμnfγ

(
∂u

∂y

)
∂2u

∂y2
+ g(ρβ)nf (T − T∞) cosA (2)

(ρcp)nf

(
u
∂T

∂x
+ v

∂T

∂y

)
= knf

∂2T

∂y2
(3)

subjected to the compatible boundary conditions at the cone

surface and far away from it

u(x, 0) = v(x, 0) + Vw = 0, T (x, 0) = Tw = T∞ + axn

u(x,∞) → 0, T (x,∞) → T∞ (4)

We denoted by u, v to the nanofluid velocity components

in x and y directions, respectively, r represents the radius of

the cone, μnf , ρnf , knf , σnf and (cP )nf point out nanofluid

TABLE I
THE NANOFLUID EFFECTIVE VISCOSITY AND THERMAL CONDUCTIVITY

Nano. μnf/μf knf/kf

Cu [40] (1− ϕ)−5/2 kp+2kf+2.662ϕ(kp−kf )

kp+2kf−2.662ϕ(kp−kf )

Al2O3 [38] 1+39.11ϕ+533.9ϕ2 1+7.47ϕ
Ag [39] 1.005+0.497ϕ-0.1149ϕ2 0.9508+0.9692ϕ
TiO2 [38] 1+5.45ϕ+108.2ϕ2 1+2.92ϕ-11.99ϕ2

viscosity, nanofluid density, nanofluid thermal conductivity,

effective electrical conductivity and specific heat at constant

pressure, βnf gives the expansion effective thermal volumetric

coefficient, m refers to the power law index, γ is the time

dependent material constant. the half angle of the cone is

denoted by A. In addition, Vw represents the suction velocity,

a indicates a constant, and n refers to the power law of

surface temperature. We present the stream function ψ(x, y)
which leads to the continuity equation (1) be satisfied as

u = r−1∂ψ/∂y and v = −r−1∂ψ/∂x. As the radius of

the cone is relatively large compared with the thickness of

boundary layer, then the local radius to a point inside the

region of boundary layer can be determined by r = x sinA.

Now, the relations that characterize the effective properties

of nanofluid are given as

ρnf = (1− ϕ)ρf + ϕρp,

(ρcp)nf = (1− ϕ)(ρcp)f + ϕ(ρcp)p

(ρβ)nf = (1− ϕ)(ρβ)f + ϕ(ρβ)p,

σnf = σf

(
1 +

3(σ − 1)ϕ

σ + 2− (σ − 1)ϕ

)
,

(
σ =

σp

σf

)
(5)

ϕ gives the volume fraction of nanoparticles, ρf and ρp
represent density of base fluid and nanoparticles, (cp)f and

(cp)p indicate specific heat of the base fluid and nanoparticles,

σf and σp denote the electrical conductivity of base fluid and

nanoparticles, βf and βp are thermal volumetric coefficient

of the base fluid and nanoparticles respectively and kf and

ks give thermal conductivity of base fluid and nanoparticles

respectively. For each sort of nanoparticles, experimental

relations for both the nanofluid thermal conductivity knf and

the nanofluid effective viscosity μnf have been applied. These

relations can be collected as listed in Table I. Again, the

properties of thermo-physical of nanoparticles and water are

presented clearly in Table II.

We present the following non-similarity transformation

η =
y

x
Gr1/4, ξ = Vwx/

(
νfGr1/4

)
,

ψ = rνfGr1/4
(
F +

1

2
ξ

)
, θ =

T − T∞
Tw − T∞

(6)

Then the governing boundary layer equations, (2) and (3) can

be reformulated as(
μnf

μf

)
((1−m)F ′′′ +mWF ′′F ′′′)− σnf

σf
MgF

′ +

ρnf
ρf

(
n+ 7

4
FF ′′ + ξF ′′ − n+ 1

2
F ′2
)
+

(ρβ)nf
(ρβ)f

θ =

ρnf
ρf

1− n

4
ξ

(
F ′ ∂F

′

∂ξ
− F ′′ ∂F

∂ξ

)
(7)
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TABLE II
THERMO-PHYSICAL PROPERTIES OF WATER AND NANOPARTICLES [37]

ρ cp k β × 105 σ × 10−6

Cu 8933 385 401 1.67 59.6
Al2O3 3970 765 40 0.85 36.9
Ag 10500 235 429 1.89 63
TiO2 4250 686.2 8.9538 0.90 2.4
H2O 997.1 4179 0.6130 21 5.5×10−12

1

Pr

knf
kf

θ′′ +
(ρcp)nf
(ρcp)f

(
n+ 7

4
Fθ′ − nF ′θ + ξθ′

)
=

(ρcp)nf
(ρcp)f

1− n

4
ξ

(
F ′ ∂θ

∂ξ
− θ

∂F ′

∂ξ

)
(8)

In addition, the convenient boundary conditions can be

reformulated in dimensionless form as

F (ξ, 0) = F ′(ξ, 0) = 0, θ(ξ, 0) = 1

F ′(x,∞) → 0, θ(ξ,∞) → 0 (9)

the parameter W =
√
2μfγGr3/4

ρfx2 gives the Weissenberg

number, Pr =
μf (cp)f

kf
refers to Prandtl number, Mg =

σfB
2
0x

2

μfGr1/2
indicates the magnetic field parameter, Gr =

ρ2
fgβf (Tw−T∞)x3 cosA

μ2
f

is the Grashof number and ξ means the

suction parameter.

Now, skin friction coefficient and local Nusselt number

represent the most important physical quantities and are given

by

Cf =
τw

1
2ρfU

2
, Nu =

xqw
kf (Tw − T∞)

(10)

U is a reference velocity, the quantities τw and qw refer to the

surface shear stress, and the local heat transfer rate per unit

area of surface and are given by

τw = μnf

(
(1−m)

∂u

∂y
+

mγ√
2

(
∂u

∂y

)2
)

y=0

,

qw = −knf

(
∂T

∂y

)
y=0

(11)

In non-dimensional form the skin friction coefficient Cf and

local Nusselt number Nu are formulated as

1

2
Gr1/4 Cf =

μnf

μf

(
(1−m)F ′′ +

mW

2
F ′′2

)
(ξ,0)

,

Gr−1/4 Nu = −knf
kf

θ′(ξ, 0) (12)

III. RESULTS AND DISCUSSION

The finite difference method represents the used numerical

algorithm to get the solution of the non-dimensional governing

PDEs. Equations (7) and (8) related to the boundary conditions

(9). To approximate the derivatives of the first and second

orders of the dependent variables with respect to η, a formula

of three-point central difference has been selected, whereas the

formula of backward is chosen for the derivatives with respect

to suction variable ξ. The resulted algebraic system has been

solved considering the tri-diagonal matrix algorithm (TDMA).

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

η

F 
’

Cu
Ag

Al2O3
TiO2

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

η

F 
’

Cu

φ =0.0, 0.01, 0.02, 0.03, 0.05, 0.10

Fig. 2 F ′ profiles with different types nanoparticles and ϕ

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

η

θ

Cu
Ag

Al2O3
TiO2

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

ξ

G
r−1

/4
 N

u

0.26 0.27 0.28

2

2.2

2.4

Ag
TiO2

Cu
Al2O3

Fig. 3 Variation of θ and Gr−1/4Nu with nanoparticles

This procedure has been illustrated in detail by Blottner [36].

Now, in order to examine the accuracy of the present

method, our obtained computations have been compared in

particular cases with the previously published papers. For

various values of suction variable ξ, Table III stands for a

comparison of Gr−1/4Nu when m = 0, n = 0.5,W =
0, P r = 0.1 and ϕ = 0. The table explains that the present

results are in excellent agreement with the data obtained

by Cheng [33] and Hossain and Paul [35]. Influence of
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different types of nanoparticles and solid volume fraction of

nanoparticles ϕ on velocity F ′ profiles have been given in Fig.

2. As shown, Cu-nanoparticle leads to a large upgrade in the

velocity profile with respect to the other types of nanoparticles.

Hence, Cu-nanoparticle has the largest rate of fluid flow. The

Al2O3 nanoparticle gives the lowest distribution of velocity

behavior. In addition, as noticed the Ag-nanoparticle velocity

profile is higher than the TiO2-nanoparticle velocity profile.

An increment in ϕ tends to enhance the velocity distribution.

Unlike the behavior of velocity, the temperature curve in the

case of Al2O3-nanoparticle leads to the largest value compared

with the other nanoparticles, whilst the Ag-nanoparticle has the

lowest one as seen in Fig. 3 which sketches the temperature

curves and Nusselt number for some different types of

nanoparticles. Again, the temperature distribution in the case

of Cu-nanoparticle is higher than that of the TiO2-nanoparticle.

Moreover, Fig. 3 explores that Cu-nanoparticle has the highest

value of the local Nusselt number Gr−1/4Nu.

Figs. 4 and 5 illustrate the impact of surface temperature

exponent parameter (n = 0.0, 0.5, 1.0, 1.5 and 2) with W =
0.5,Mg = 1.0, P r = 6.2 and m = 0.5 for Cu and Al2O3

nanoparticles as ϕ = 0.05. Enlarging n parameter tends to

upgrade the buoyancy force, then the flow is accelerated and

therefore enhancing the local heat transfer rate Gr−1/4Nu.

As clear, the local Nusselt number tends to upgrade when

the surface temperature exponent enlarges for small values of

suction variable ξ and this behavior absent for large values

of ξ, whereas an opposite behavior is happened with the

skin friction coefficient Fig. 4, i.e. Gr1/4Cf downgrades with

enlarging the surface temperature exponent. In addition, The

impact of surface temperature exponent on velocity F ′ and

temperature θ curves is given in Figs. 4 and 5. A clear

reduction is happened for both of velocity and temperature

curves.

The aspect of the nanoparticle solid volume friction ϕ on

the temperature θ distribution and the local Nusselt number

Gr−1/4Nu for the Cu-nanoparticle is given in Fig. 6. An

upgrade in ϕ, all of θ and Gr−1/4Nu upgrade. Generally,

the nanofluid thermal conductivity has an important role in

such types of problems. Due to this point, the behaviors

of θ and Gr−1/4Nu is significantly under the aspect of ϕ.

Therefore, as ϕ enlarges, the nanofluid thermal conductivity

upgrades which tends to a best convection. Magnetic field

parameter Mg impact (Mg = 0.0, 1.0, 2.0, 3.0 and 5.0) with

W = 0.5, n = 1.0, P r = 6.2 and m = 0.5 for Al2O3

nanoparticle as ϕ = 0.05 is explored in Figs. 7 and 8.

Variations As observed, magnetic field parameter leads to

reduce the velocity profile whilst rise the temperature profiles.

The plotted figures illustrate that both of the local Nusselt

number and local skin friction coefficient tend to downgrade

when the magnetic filed parameter is enlarged. Fig. 9 explains

the impact of Weissenberg number on the velocity distribution

and skin friction coefficient. The figure illustrates that an

enlarge in Weissenberg number leads to reduce the velocity

profile, but upgrade the skin friction coefficient.

The influence of power law index m on velocity profile and

skin friction coefficient is plotted in Fig. 10. As m increases

the skin friction coefficient downgrades. Rising m values leads
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to upgrade the velocity profile nearby the surface of the cone

then the velocity reduces far away from the surface. Finally,

the impact of suction parameter ξ on temperature and velocity

profiles is plotted in Fig. 11. The figure displays that suction

variable higher values make thinner thermal layer thickness,

upgrading the temperature gradient at the wall cone and hence

upgrade the rate of heat transfer. While, enlarging the suction

variable leads to reduce the velocity profiles.
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IV. CONCLUSION

MHD free convection boundary layer flow of a tangent

hyperbolic nanofluid of a single-phase model over an

isothermal vertical permeable cone has considered in the

present article. A non-similar solution with the help of an

implicit finite difference technique have been performed to

solve the motion governing equations. For both the nanofluid

effective viscosity and the nanofluid thermal conductivity,

different experimental relations have been used with each sort

of fluid. Results illustrate that Weissenberg number leads to

downgrade the velocity profile and enhances the skin friction

coefficient. Also, Cu-nanoparticle gives higher rates of heat

transfer. In addition, an upgrade in the surface temperature

exponent gives a reduction in velocity but, an upgrade local

Nusselt number.

TABLE III
COMPARISON −θ′(0, 0) VALUES FOR DIFFERENT VALUES OF ξ WITH

n = 0.5, Pr = 0.1 AND ϕ = 0

[33] [35] Present
0.0 0.2460 0.24584 0.245954
0.1 0.2509 0.25089 0.250936
0.2 0.2559 0.25601 0.255926
0.4 0.2660 0.26630 0.265941
0.6 0.2760 0.27662 0.276019
0.8 0.2862 0.28694 0.286180
1.0 0.2965 0.29731 0.296446
2.0 0.3503 0.35131 0.350137
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