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Abstract—This paper deals with the theoretical and numerical 

investigation of magneto hydrodynamic boundary layer flow of a 
nanofluid past a wedge shaped wick in heat pipe used for the cooling 
of electronic components and different type of machines. To 
incorporate the effect of nanoparticle diameter, concentration of 
nanoparticles in the pure fluid, nanothermal layer formed around the 
nanoparticle and Brownian motion of nanoparticles etc., appropriate 
models are used for the effective thermal and physical properties of 
nanofluids. To model the rotation of nanoparticles inside the base 
fluid, microfluidics theory is used. In this investigation ethylene 
glycol (EG) based nanofluids, are taken into account. The non-linear 
equations governing the flow and heat transfer are solved by using a 
very effective particle swarm optimization technique along with 
Runge-Kutta method. The values of heat transfer coefficient are 
found for different parameters involved in the formulation viz. 
nanoparticle concentration, nanoparticle size, magnetic field and 
wedge angle etc. It is found that, the wedge angle, presence of 
magnetic field, nanoparticle size and nanoparticle concentration etc. 
have prominent effects on fluid flow and heat transfer characteristics 
for the considered configuration. 
 

Keywords—Heat transfer, Heat pipe, numerical modeling, 
nanofluid applications, particle swarm optimization, wedge shaped 
wick.  

I. INTRODUCTION 

detailed study about the heat pipes can be found in [1]. 
The rate of heat transfer depends upon the design of the 

wick structure in heat pipe and the working fluid inside the 
heat pipe having high value of thermal conductivity. The 
traditional fluids like water, ethylene glycol or oil etc. have 
low values of thermal conductivity. On the other hand, the 
metals and their oxide have high thermal conductivities 
compared to these fluids. Choi et al. [2] proposed that the 
uniform dispersion of small concentration of nano-sized metal/ 
metal oxides particles into a fluid enhances the thermal 
conductivity of the base fluid, and such fluids were termed as 
nanofluids. Taking this concept in mind various researchers 
have worked on the experimental and theoretical studies on 
thermo physical properties of nanofluids. An extensive review 
of thermal properties of nanofluids can be found in [3]. 
Literature survey reveals that the thermal conductivity of 
nanofluids depends upon various factors, such as nanoparticle 
size, nanoparticle concentration in the base fluid, nanoparticle 
material, base fluid properties, Brownian motion of the 
nanoparticles in base fluid, nanoparticle shape, nanoparticle 
base fluid interfacial layer, and particle clustering etc. Wang et 
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al. [4] found that the insertion of nanoparticle increases the 
viscosity of the fluid. Yu et al. [5] investigated the role of 
interfacial layers in the enhanced thermal conductivity of 
nanofluids using a renovated Maxwell model. Various 
theoretical studies have been done to model the thermal 
conductivity and viscosity of nanofluids, but these modeled 
mathematical expressions do not satisfy the experimental data 
up to a satisfying range. Corcione [6] analyzed the 
experimental data of thermal conductivity and viscosity of 
nanofluids, which were obtained by various researchers for 
different types of nanoparticles, dispersed in different base 
fluids, and found an empirical correlating equation for the 
prediction of effective thermal conductivity and dynamic 
viscosity of nanofluids. Invention of nanofluids attracted 
various researchers towards the applications of nanofluids in 
industry. Uddin et al. [7] studied the natural convection heat 
transfer of nanofluids along a vertical plate embedded in 
porous medium and found that nanofluids help in the 
enhancement of heat transfer rate. Mohsen et al. [8] found the 
numerical results for the MHD nanofluid flow and heat 
transfer considering viscous dissipation. 

As, the nanofluids have high thermal conductivity as 
compared to the common fluids. Therefore, nanofluid is a 
good option to enhance the heat transfer rate in heat pipe. A 
detailed description about the use of nanofluids in different 
heat pipes can be found in [9] and [10]. Flow around the 
wedge shaped bodies is also of great industrial importance; 
therefore, various studies have been done on this topic.Uddin 
et al. [11] proved that the heat transfer rate for the flow around 
a wedge shaped body is high as compared to the flow around a 
horizontal plate under the same flow conditions. Authors also, 
showed that the increase in wedge angle increases the heat 
transfer rate.  

From the literature survey, it is observed that, the heat 
transfer depends upon the shape of the body and the nature of 
the fluid. In the author’s knowledge no work has been done 
earlier for the flow of a nanofluid past a wedge shaped wick in 
presence of magnetic field.Therefore, the scope of the current 
research is to implement the appropriate models for the 
nanofluid thermos physical properties, and to analyze the 
effect of nanofluids on heat transfer enhancement using the 
nanofluids inside the heat pipe with wedge shaped wick 
structure.  

II. MATHEMATICAL FORMULATION  

In the present mathematical model, steady viscous, 
incompressible, nanofluid flowing past a wedge shaped wick 
in heat pipe is considered. The physical model and coordinate 
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