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Metric Dimension on Line Graph of Honeycomb
Networks

M. Hussain, Aqsa Farooq

Abstract—Let G = (V,E) be a connected graph and distance
between any two vertices a and b in G is a−b geodesic and is denoted
by d(a, b). A set of vertices W resolves a graph G if each vertex is
uniquely determined by its vector of distances to the vertices in W .
A metric dimension of G is the minimum cardinality of a resolving
set of G. In this paper line graph of honeycomb network has been
derived and then we calculated the metric dimension on line graph
of honeycomb network.
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I. INTRODUCTION

CHEMICAL graph theory is used to model molecules

to gain an accurate and deep understanding of physical

properties of chemical compounds. Chemical graph describes

the structure of chemical compounds in terms of graph theory.

In Chemical Graphs, vertices are represented by different type

of atoms and edges are denoted by bond between atoms.

Metric dimension is one of the most significant fields of

graph theory. It has several applications in various fields of

life, for instance image processing, network theory, pattern

recognition, optimization, robot navigation, network discovery

and verification [28], geometrical routing protocols [29], join

in graphs [30] and coin weighting problems [31] etc. A moving

point along a graph may be traced by calculating the distance

from a point to a conglomeration of sonar stations positioned

clearly in the graph. The representation of chemical compound

is evaluated by more than one suggested structures drawn

along a graph, which expresses the physical and chemical

properties of compound. This mathematical representation for

disparate chemical compounds is of utmost significance for

chemists in drug discovery. As mentioned in [4], [5], the

structure of a chemical compounds is drawn by a labeled graph

where vertex labels specify the atom and edge specifies bond

types. Hence, a graph’s theoretic description of this problem

is to illustrate interpretation for the vertices of a graph in a

way that has specific representations. This is the affairs of [2],

[5], [13].

Through considering G as connected graph, d(u, v) denotes

u-v geodesic. Assume set B = {b1, b2, ..., bk} being an

ordered subset of V (G) (vertex set of G). The representation

r(u|B) of u w.r.t. B is the k−tuple (d(u, b1), d(u, b2), d(u, b3)
, ..., d(u, bk)} where B is called a resolving or locating set

[21, 16], if each graph vertex is uniquely identified by its

distances from the vertices of B. The minimum set of vertices
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in a resolving set is commonly known as the basis for graph

G and cardinality of set of basis element is considered as

the metric dimension of G, which is represented as dim(G)
[10]. A fairish literature related to metric basis is discussed

in [1], [7], [13]. We have an ordered set of vertices B =
{b1, b2, ..., bk} of a graph G, the d(u, bi) is zero iff u = bi. If

r(s|B) �= r(t|B) for each pair of distinct vertices s, t belongs

to (V (G)|B) then B is called a resolving set.

Slater was the first mathematician who introduced the

concept of metric dimension in [16]. Melter et al. also

investigated the same concept independently in [7]. Raj et al.

pored over metric dimensions of various chemical networks as

well as star of David network SD(n) in [22], [23]. The metric

dimension of a connected graph changes when the number

of vertices is altered in the graph and turns infinite when

numbers of vertices are infinite and is known as unbounded

metric dimension. Likewise, metric dimension remains finite

when altering in number of vertices is finite and is called

bounded metric dimension. Finally, if the metric dimension

sticks around same for all number of vertices in a connected

graph G, then it is called a constant metric dimension [24].

The metric dimension of path graph is 1 in [5]; cycles have

metric dimension 2 for every n ≥ 3. Rooted product of two

graphs F and J is stated as take u = |V (F )| copies of

J , and for each vertex uj of F , identify ui with the root

node of the jth copy of J . Godsil et al. [25] rooted product

of Harary graphs H(m,n), Jahangir graphs, antiprism An

and generalized Petersen graphs P (n, 2) by path and cycle

would be calculated and metric dimensions of line graph of

certain families of graphs would be determined. It is also of

interest to determined the rooted product of graphs and then

find out the metric dimension of rooted product of graphs by

path and cycles. Manuel et al. [12] determined the constant

metric dimension of honeycomb networks. After gain some

idea of Manuel, metric dimension of line graph of honeycomb

network would be determined.

A. Honeycomb

There are various designs in which hexagons tender to build

honeycomb network. If HC(1) is a hexagonic honeycomb

network, we will add six hexagons to the exterior edges of

HC(1) in order to obtain the honeycomb network HC(2).
Leading on, the honeycomb network is obtained from HC(n−
1), when we added a layer of hexagon on the boundary of

honeycomb network HC(n− 1), we get honeycomb network

HC(n). The hexagons between the centre and boundary of

HC(n) firm about the parameter n of HC(n).
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Honeycomb networks are extendedly used in computer

graphics [31], cell phone base stations [31], image

processing and in chemistry as the representation of

benzene hydrocarbons. Honeycomb networks are better in

terms of diameter, degree, total number of links, cost and

connected planner graphs. Stojmenovic [32] investigated the

topological properties of Honeycomb network, routing in

Honeycomb network and Honeycomb tourus networks.

Theorem1. For G ∼= L[HC(n)]; n ≥ 2 then G has metric

dimension greater than 2.

Proof. Here, it is essential to show that there does not exist

any set B with two vertices that is a resolving set of G.

Let on contrary G has metric dimension equal to 2. Let

H = {ci+1, a
i
j+1} be a resolving set then

r(vij |H) = r(ui
j+3|H)

so H is not resolving set for the graph. Let H = {uj+1
j+3, u

i+2
j+4}

be a resolving set then

r(ui+2
j+2|H) = r(ui+1

j+5|H)

so H is not resolving set. Let H = {ci+2, u
i+2
j } be a

resolving set then

r(ui+1
j+2|H) = r(ui+1

j+3|B)

so H is not resolving set. Let H = {vi+1
j+1, u

i+2
j+5} be a

resolving set then

r(bij+3|H) = r(bij+4|H)

so H is not resolving set. Let H = {bij+3, u
i+2
j+1} be a

resolving set then

r(bij+2|H) = r(ui+2
j+4|H)

so H is not resolving set. Let H = {aij+3, v
i+2
j+1} be a

resolving set then

r(aij+2|H) = r(vi+2
j+4|H)

so H is not resolving set. Let H = {vi+1
j+3, v

i+2
j+4} be a

resolving set then

r(vi+2
j+2|H) = r(vi+2

j+5|H)

so H is not resolving set. Let H = {aij+1, b
i
j+3} be a

resolving set then

r(vij+5|H) = r(ui
j+2|H)

so H is not resolving set. Let H = {ai+1
j+6, a

i+3
j+5} be a

resolving set then

r(vi+2
j+10|H) = r(vj+13|H)

so H is not resolving set. Let H = {ci+7, b
i
j+8} be a

resolving set then

r(ui
j+14|H) = r(ui

j+10|H)

so H is not resolving set. Let H = {ci+5, v
i+1
j+9} be a

resolving set then

r(vi+1
j+8|H) = r(vi+1

j+10|H)

so H is not resolving set. Similarly there is no set H with
two vertices is a resolving set for L[HC(n)] network so its
metric dimension is greater than 2.
Theorem2. For G ∼= L[HC(n)]; n ≥ 2 then G has metric
dimension 3.
Proof. The L[HC(n)] with one vertex between every two
vertices has vertex set,

V (L(HC(n))) = {vij : 1 ≤ i ≤ n, 1 ≤ j ≤ k, j = 4n− 2i}

∪{aij : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ k, j = 2n− i}

∪{ui
j : 1 ≤ i ≤ n, 1 ≤ j ≤ k, j = 4n− 2i}

∪{bij : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ k, j = 2n− i}

∪{ci : 1 ≤ i ≤ 2n}

λ(vij) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2i+ j − 2, 4n− j − 1, 4n− j − 4
for 1 ≤ i ≤ n, 1 ≤ j ≤ k − 4,

j, 4n− i− j, 4n− i− j − 1
for 1 ≤ i ≤ n, 1 ≤ j ≤ k − 4,

2i+ j − 2, 4n− j, 4n− j − 4
for 1 ≤ i ≤ n, k − 4 ≤ j ≤ k − 3,

2i+ j − 2, 4n− j + 2, 4n− j − 4
for 1 ≤ i ≤ n, j ≤ k,

2i+ j − 2, 4n− j + 1, 4n− j − 4
for j ≤ k − 1,

j, 4n− j, 4n− j − 2i
for j ≤ k − 3,

j, 4n− j, 4n− i− j
for j ≤ k − 2,

j, 4n− j + i, 4n− j − i
for j ≤ k − 1,

j, 4n− j + 2i, 4n− j
for j ≤ k,
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λ(aij) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2i+ 2j − 2, 4n− 2j, 4n− 2j − 3
for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ k − 2,

2j, 4n− 2j, 4n− 2j − 2i
for 1 ≤ i ≤ n− 1, j ≤ k − 2,

2i+ 2j − 2, 4n− 2j + 1, 4n− 2j − 3
for 1 ≤ i ≤ n− 1, j ≤ k − 1,

2i+ 2j − 2, 4n− 2j + 3, 4n− 2j − 3
for 1 ≤ i ≤ n− 1, j ≤ k,

2j, 4n− 2j + 1, 4n− 2j − 2i
for 1 ≤ i ≤ n− 1, j ≤ k − 1,

2j, 4n− 2j + 3, 4n− 2j − 1
for 1 ≤ i ≤ n− 1, i ≤ k,

λ(ui
j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2i+ j − 2, 4n− j − 4, 4n− j − 1
for 1 ≤ i ≤ n, 1 ≤ j ≤ k − 4,

j, 4n− i− j − 1, 4n− i− j
for 1 ≤ i ≤ n, 1 ≤ j ≤ k − 4,

2i+ j − 2, 4n− j − 4, 4n− j
for 1 ≤ i ≤ n, k − 4 ≤ j ≤ k − 3,

2i+ j − 2, 4n− j − 4, 4n− j + 2
for 1 ≤ i ≤ n, j ≤ k,

2i+ j − 2, 4n− j − 4, 4n− j + 1
for 1 ≤ i ≤ n, j ≤ k − 1,

j, 4n− j − 2i, 4n− j
for 1 ≤ i ≤ n, j ≤ k − 3,

j, 4n− j − i, 4n− i
for 1 ≤ i ≤ n, j ≤ k − 2,

j, 4n− j − i, 4n− j + i
for 1 ≤ i ≤ n, j ≤ k − 1,

j, 4n− j, 4n− j + 2i
for 1 ≤ i ≤ n, j ≤ k,

λ(bij) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2i+ 2j − 2, 4n− 2j − 3, 4n− 2j
for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ k − 2,

2j, 4n− 2j − 2i, 4n− 2j
for 1 ≤ i ≤ n− 1, j ≤ k − 2,

2i+ 2j − 2, 4n− 2j − 3, 4n− 2j + 1
for 1 ≤ i ≤ n− 1, j ≤ k − 1,

2i+ 2j − 2, 4n− 2j − 3, 4n− 2j + 3
for 1 ≤ i ≤ n− 1, j ≤ k,

2j, 4n− 2j − 2i, 4n− 2j + 1
for 1 ≤ i ≤ n− 1, j ≤ k − 1,

2j, 4n− 2j − 1, 4n− 2j + 3
for 1 ≤ i ≤ n− 1, j ≤ k,

λ(cj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2j − 1, 4n− 2j, 4n− 2j
for j ≤ 2n− 2

2j − 1, 4n− 2j + i, 4n− 2j + i
for i ≤ 1, j ≤ 2n− 1

2j, 4n− 2j + 3i, 4n− 2j + 3i
for i ≤ 1, j ≤ 2n

Let vis and vit are two distinct vertices from V (L(HC(n))
then

r(vis|H) = r(vit|H)

⇒ (2i + s − 2, 4n − s − 1, 4n − s − 4) =
(2i + t − 2, 4n − t − 1, 4n − t − 4) ⇒ s = t, s = t,
s = t which is contradiction. Let vis and vit are two distinct

vertices from V (L(HC(n)) then

r(vis|H) = r(vit|H)

⇒ (s, 4n− i−s, 4n− i−s−1) = (t, 4n− i− t, 4n− i− t−1)
⇒ s = t, s = t, s = t which is contradiction. Let vis
and vit are two distinct vertices from V (L(HC(n)) then

r(vis|H) = r(vit|H)

⇒ (2i+s−2, 4n−s, 4n−s−4) = (2i+t−2, 4n−t, 4n−t−4)
⇒ s = t, s = t, s = t which is contradiction. Let vis
and vit are two distinct vertices from V (L(HC(n)) then

r(vis|H) = r(vit|H)

⇒ (2i + s − 2, 4n − s + 1, 4n − s − 4) =
(2i + t − 2, 4n − t + 1, 4n − t − 4) ⇒ s = t, s = t,
s = t which is contradiction. Let vis and vit are two distinct

vertices from V (L(HC(n)) then

r(vis|H) = r(vit|H)

⇒ (2i + s − 2, 4n − s + 2, 4n − s − 4) =
(2i + t − 2, 4n − t + 2, 4n − t − 4) ⇒ s = t, s = t,
s = t which is contradiction. Let ais and ait are two distinct

vertices from V (L(HC(n)) then

r(ais|H) = r(ait|H)

⇒ (2i + 2s − 2, 4n − 2s, 4n − 2s − 3) =
(2i + 2t − 2, 4n − 2t, 4n − 2t − 3) ⇒ s = t, s = t,
s = t which is contradiction. Let ais and ait are two distinct

vertices from V (L(HC(n)) then

r(ais|H) = r(ait|H)

⇒ (2s, 4n − 2s, 4n − 2s − 2i) = (2t, 4n − 2t, 4n − 2t − 2i)
⇒ s = t, s = t, s = t which is contradiction. Let ais
and ait are two distinct vertices from V (L(HC(n)) then

r(ais|H) = r(ait|H)

⇒ (2i + 2s − 2, 4n − 2s + 1, 4n − 2s − 3) =
(2i + 2t − 2, 4n − 2t + 1, 4n − 2t − 3) ⇒ s = t,
s = t, s = t which is contradiction. Let ais and ait are two
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distinct vertices from V (L(HC(n)) then

r(ais|H) = r(ait|H)

⇒ (2i + 2s − 2, 4n − 2s + 3, 4n − 2s − 3) =
(2i + t − 2, 4n − 2t + 3, 4n − 2t − 3) ⇒ s = t, s = t,
s = t which is contradiction. Let vis and ait are two distinct

vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i + s − 2, 4n − s − 1, 4n − s − 4) =
(2i + 2t − 2, 4n − 2t, 4n − 2t − 3) ⇒ s = 2t, s = 2t,
s = 2t which is contradiction. Let vis and ait are two distinct

vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i+2s−2, 4n−2s, 4n−2s−3) = (t, 4n−i−t, 4n−i−t−1)
⇒ s = t−2i+2

2 , s = t+i
2 , s = t+i−2

2 which is

contradiction. Let vis and ait are two distinct vertices from

V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i + s − 2, 4n − s, 4n − s − 4) = (2i + 2t − 2, 4n −
2t, 4n − 2t − 3) ⇒ s = 2t, s = 2t, s = 2t − 1 which

is contradiction. Let vis and ait are two distinct vertices from

V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i + s − 2, 4n − s + 1, 4n − s − 4) =
(2i + 2t − 2, 4n − 2t, 4n − 2t − 3) ⇒ s = 2t, s = 2t + 1,

s = 2t − 1 which is contradiction. Let vis and ait are two

distinct vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i + s − 2, 4n − s + 2, 4n − s − 4) =
(2i + 2t − 2, 4n − 2t + 3, 4n − 2t − 3) ⇒ s = 2t,
s = 2t− 1, s = 2t− 1 which is contradiction. Let vis and

ait are two distinct vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i+s−2, 4n−s−1, 4n−s−4) = (2t, 4n−2t, 4n−2t−2i)
⇒ s = 2[t − i + 1], s = 2t − 1, s = 2[t + i − 2] which

is contradiction. Let vis and ait are two distinct vertices from

V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (s, 4n−i−s, 4n−i−s−1) = (2t, 4n−2t, 4n−2t−2i) ⇒

s = 2t, s = 2t− i, s = 2t+ i− 1 which is contradiction.

Let vis and ait are two distinct vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i+s−2, 4n−s, 4n−s−4) = (2t, 4n−2t, 4n−2t−2i)
⇒ s = 2[t − i + 1], s = 2t, s = 2[t + i − 2] which is

contradiction. Let vis and ait are two distinct vertices from

V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i+s−2, 4n−s+1, 4n−s−4) = (2t, 4n−2t, 4n−2t−2i)
⇒ s = 2[t − i + 2], s = 2t + 1, s = 2[t + i − 2] which

is contradiction. Let vis and ait are two distinct vertices from

V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i+s−2, 4n−s+2, 4n−s−4) = (2t, 4n−2t, 4n−2s−2i)
⇒ s = 2[t + 1 − i], s = 2t + 2, s = 2[t + i − 2] which

is contradiction. Let vis and ait are two distinct vertices from

V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i + s − 2, 4n − s − 1, 4n − s − 4) =
(2i + 2t − 2, 4n − 2t, 4n − 2t − 3) ⇒ s = 2t, s = 2t − 1,

s = 2t − 1 which is contradiction. Let vis and ait are two

distinct vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (s, 4n − i − s, 4n − i − s − 1) = (2i + 2t − 2, 4n −
2t + 1, 4n − 2t − 3) ⇒ s = 2i + 2t − 2, s = 2t − 1 − i,
s = 2t+2− i which is contradiction. Let vis and ait are two

distinct vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i+ s− 2, 4n− s, 4n− s− 4) = (2i+ 2t− 2, 4n− 2t+
1, 4n− 2t− 3) ⇒ s = 2t, s = 2t− 1, s = 2t− 1 which

is contradiction. Let vis and ait are two distinct vertices from

V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i + s − 2, 4n − s + 1, 4n − s − 4) =
(2i + 2t − 2, 4n − 2t + 1, 4n − 2t − 3) ⇒ s = 2t,
s = 2t, s = 2t − 1 which is contradiction. Let vis and ait
are two distinct vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)
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⇒ (2i + s − 2, 4n − s + 2, 4n − s − 4) =
(2i + 2t − 2, 4n − 2t + 1, 4n − 2t − 3) ⇒ s = 2t + 1,

s = 2t− 1, s = 2t− 1 which is contradiction. Let vis and

ait are two distinct vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i + s − 2, 4n − s − 1, 4n − s − 4) =
(2i + 2t − 2, 4n − 2t + 3, 4n − 2t − 3) ⇒ s = 2t,
s = 2t− 4, s = 2t− 1 which is contradiction. Let vis and

ait are two distinct vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (s, 4n − i − s, 4n − i − s − 1) = (2i + 2t − 2, 4n −
2t + 3, 4n − 2t − 3) ⇒ s = 2i + 2t − 2, s = 2t − 3 − i,
s = 2t− i+2 which is contradiction. Let vis and ait are two

distinct vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i+ s− 2, 4n− s, 4n− s− 4) = (2i+ 2t− 2, 4n− 2t+
3, 4n− 2t− 3) ⇒ s = 2t, s = 2t+ 3, s = 2t− 1 which

is contradiction. Let vis and ait are two distinct vertices from

V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i + s − 2, 4n − s + 1, 4n − s − 4) =
(2i + 2t − 2, 4n − 2t + 3, 4n − 2t − 3) ⇒ s = 2t,
s = 2t− 2, s = 2t− 1 which is contradiction. Let vis and

ait are two distinct vertices from V (L(HC(n)) then

r(vis|H) = r(ait|H)

⇒ (2i + s − 2, 4n − s + 2, 4n − s − 4) =
(2i + 2t − 2, 4n − 2t + 3, 4n − 2t − 3) ⇒ s = 2t,
s = 2t− 1, s = 2t− 1 which is contradiction. Let vis and

cj are two distinct vertices from V (L(HC(n)) then

r(vis|H) = r(cj |H)

⇒ (2i+s−2, 4n−s−1, 4n−s−4) = (2t−1, 4n−2t, 4n−2t)
⇒ s = 2t − 2i + 1, s = 2t − 1, s = 2t − 4 which is

contradiction. Let vis and cj are two distinct vertices from

V (L(HC(n)) then

r(vis|H) = r(cj |H)

⇒ (s, 4n− i− s, 4n− i− s− 1) = (2t− 1, 4n− 2t, 4n− 2t)
⇒ s = 2t − 1, s = 2t − i, s = 2t − 1 − i which is

contradiction. Let vis and cj are two distinct vertices from

V (L(HC(n)) then

r(vis|H) = r(cj |H)

⇒ (2i+s−2, 4n−s, 4n−s−4) = (2t−1, 4n−2t, 4n−2t) ⇒
s = 2t−2i+1, s = 2t, s = 2t−4 which is contradiction.

Let vis and cj are two distinct vertices from V (L(HC(n)) then

r(vis|H) = r(cj |H)

⇒ (2i+s−2, 4n−s+1, 4n−s−4) = (2t−1, 4n−2t, 4n−2t)
⇒ s = 2t − 2i + 1, s = 2t + 1, s = 2t − 4 which is

contradiction. Let vis and cj are two distinct vertices from

V (L(HC(n)) then

r(vis|H) = r(cj |H)

⇒ (2i+s−2, 4n−s+2, 4n−s−4) = (2t−1, 4n−2t, 4n−2t)
⇒ s = 2t − 2i + 1, s = 2t + 2, s = 2t − 4 which is

contradiction. Let ais and cj are two distinct vertices from

V (L(HC(n)) then

r(ais|H) = r(cj |H)

⇒ (2i+2s−2, 4n−2s, 4n−2s−3) = (2t−1, 4n−2t, 4n−2t)
⇒ s = 2t−2i+1

2 , s = t, s = 2t−3
2 which is contradiction.

Let ais and cj are two distinct vertices from V (L(HC(n)) then

r(ais|H) = r(cj |H)

⇒ (2s, 4n − 2s, 4n − 2s − 2i) = (2t − 1, 4n − 2t, 4n − 2t)
⇒ s = 2t−1

2 , s = t, s = 2t−2i
2 which is contradiction.

Let ais and cj are two distinct vertices from V (L(HC(n)) then

r(ais|H) = r(cj |H)

⇒ (2i + 2s − 2, 4n − 2s + 1, 4n − 2s − 3) =
(2t − 1, 4n − 2t, 4n − 2t) ⇒ s = 2t−2i+1

2 , s = 2t−1
2 ,

s = 2t−3
2 which is contradiction. Let ais and cj are two

distinct vertices from V (L(HC(n)) then

r(ais|H) = r(cj |H)

⇒ (2i + 2s − 2, 4n − 2s + 3, 4n − 2s − 3) =
(2t − 1, 4n − 2t, 4n − 2t) ⇒ s = 2t−2i+1

2 , s = 2t−1
2 ,

s = 2t−3
2 which is contradiction.

II. CONCLUSION

There are various designs in which hexagons tenders

to build honeycomb network. If HC(1) is a hexagonic

honeycomb network, we add six hexagons to the exterior

edges of HC(1) in order to obtain the honeycomb network



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:13, No:11, 2019

212

HC(2). Leading on, the honeycomb network is obtained from

HC(n − 1), when a layer of hexagon on the boundary of

honeycomb network HC(n−1), honeycomb network HC(n)
is obtained. The hexagons between the centre and boundary

of HC(n) firm about the parameter n of HC(n). A metric

dimension of G is the mininum cardinality of a resolving set

of G. We have computed metric dimensions of line graph

of honeycomb,derived from honeycomb network. Further, we

calculated metric dimensions of line graph of Aztec Diamond.
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