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Abstract—The medical studies often require different methods 

for parameters selection, as a second step of processing, after the 
database’s designing and filling with information. One common 
task is the selection of fields that act as risk factors using well-
known methods, in order to find the most relevant risk factors and 
to establish a possible hierarchy between them. Different methods 
are available in this purpose, one of the most known being the 
binary logistic regression. We will present the mathematical 
principles of this method and a practical example of using it in the 
analysis of the influence of 10 different psychiatric diagnostics 
over 4 different types of offences (in a database made from 289 
psychiatric patients involved in different types of offences). 
Finally, we will make some observations about the relation 
between the risk factors hierarchy established through binary 
logistic regression and the individual risks, as well as the results of 
Chi-squared test. We will show that the hierarchy built using the 
binary logistic regression doesn’t agree with the direct order of risk 
factors, even if it was naturally to assume this hypothesis as being 
always true.     
 

Keywords—Databases, risk factors, binary logistic 
regression, hierarchy.  

I. INTRODUCTION 
N medical statistical studies a very important task is to 
design and to create the database for data collecting, 

because it must offers the optimal frame for all the 
physician’s demands concerning data storing and further 
processing. After the data are stored into a regular database, 
the physician begins usually the second step of data 
processing, by trying to select the most relevant parameters 
for further medical interpretations. Many statistical methods 
are available in this purpose, and they are strongly 
connected with the data nature and the researcher’s projects. 
A classic method, for example, is the principal components 
analysis, which takes in consideration all the parameters 
stored in a database and selects, using some mathematical 
principles, the most important ones – by identifying and 
eliminating the parameters that don’t change the global 

 
Manuscript received February 12, 2008.  
C. G. Dascălu, Ph.D., Lecturer, is with the University of Medicine and 

Pharmacy “Gr. T. Popa”, Iaşi, Romania – The Medical Informatics and 
Biostatistics Department, Faculty of Dental Medicine (phone: 0040-232-
206441, e-mail: cdascalu@umfiasi.ro).  

E. M. Carausu, Ph.D., Assoc. Professor, is with the University of 
Medicine and Pharmacy “Gr. T. Popa”, Iaşi, Romania – The Public Health 
and Medical Management Department, Faculty of Dental Medicine (e-mail: 
cm72@email.ro).  

D. Manuc is with Public Health Ministry, Bucharest, Romania (e-mail: 
cotrutz@yahoo.com). 

nature and behavior of data when they are missing; another 
method in the same area is the discriminant analysis, used 
eventually in connection with different algorithms for data 
clustering. 

Another method for parameters selection, a bit more 
complicated, takes in consideration the internal links 
between parameters. This is the binary logistic regression, 
which can be viewed as a generalization of the linear 
regression models, and is useful when we want to 
investigate the connections between one or more categorical 
independent variables (ordinal or binary) and a dependant 
categorical binary variable. This method is very useful in 
the study of risk factors over a certain situation (diagnostics, 
behavior, a.s.o.), because it builds a model that establish an 
hierarchy between all the possible risk factors, by selecting 
the most relevant ones, which have prediction value over the 
presence / absence of the investigated situation.  

In this way the database we are working with can be 
substantially simplified (and eventually divided in smaller 
data sets)  - in cases when we want to find statistical results 
about a well-defined diagnosis. In such a case we will select 
from the main database only the records where the 
investigated diagnosis is found, and for those records, only 
the relevant fields for the diagnosis, identified through 
binary logistic regression, in order to redirect the further 
statistical analysis only over those data.  

II. MATERIAL AND METHODS 
The binary logistic regression is used, as we said before, 

when we want to make a prediction about the presence / 
absence of a certain parameter based on the values of a set 
of independent predictor variables [1] – which are 
categorical, ordinal or binary. The logistic regression curve 
coefficients can be used to estimate the relative risks (odds 
ratio) for each independent variable used in the model. A 
thing important to be noticed is that, in order to build a 
logistic regression model, is not necessary to check in 
advance the regular requirements about the nature of the 
values distribution for the predictor variables or about their 
variance – therefore the logistic regression can be viewed as 
an available alternative to be used when the compulsory 
requirements for the discriminant analysis, for example, are 
not fulfilled. Because of these characteristics, the logistic 
regression is used with good results especially in 
epidemiologic databases, because this model approximates 
the probability to find a certain result (the dependant 
variable) when a certain set of conditions is checked (the 
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independent variables). 
Let’s assume that we have n independent variables 

(predictors), x1, x2, … xn, corresponding to the conditions 
we mentioned before, and we want to find the probability to 
appear the result (denoted by pi) for an individual case i 
from all the cases in the studied database (for example a 
patient). In order to calculate this probability we add an 
auxiliary variable, denoted by Z, continuous, which can be 
interpreted as “the favorable tendency” to appear the desired 
result [2], [3] – in such a way so Z varies directly 
proportional with the pi probability: as Z increases, the 
probability to appear the result increases too. Using the 
logistic regression model, the relation between Z and pi is 
described by the function: 
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i

i

z

z

e
e
+1

 = 
ize−+1

1  

⇒ Zi = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− i

i

p
p

1
log . 

Because Z is a continuous variable involved into a 
regressional model, it follows that the relation between Z 
and the predictor variables respects the general equation of 
the multiple linear regression: 
Zi = b0 + b1⋅xi1 + b2⋅xi2 + … + bn⋅xin ,  
where bj, j∈{1, 2, … n} - the coefficients of the predictors  
xi1, xi2, … xin. 

If the Z variable could be observed, in order to calculate 
the pi probability it would be enough to fit a regression line 
to the values Z, xi1, xi2, … xin. In practice, instead, the Z 
variable cannot be observed – therefore the pi probability is 
calculated using the relation: pi = 

)...( 221101
1

innii xbxbxbbe ⋅++⋅+⋅+−+
 - the equation of the logistic 

regression. 

III. RESULTS 
We will use the binary logistic regression model in the 

analysis of a database made from 289 psychiatric patients 
from Iasi county, hospitalized in Grajduri hospital, and 
involved in 4 different types of offences. The set is made 
from 236 males (81.7%) and 53 females (18.3%), coming 
from the urban area (97 cases – 33.6%), but mostly from the 
rural area (192 cases – 66.4%). The patients suffer of 10 
different types of psychiatric disorders, codified as it 
follows: DG1 – schizophrenia; DG2 – epilepsy; DG3 – 
organic psychic disorders; DG4 – ethylismus; DG5 – 
encephalopathy; DG6 – cerebral retard; DG7 – personality 
disorders; DG8 – bipolar affective disorder; DG9 – 
syndrome of depressive status; DG10 – psychotic disorders. 
The patients were involved in the following types of 
offences: OFF1 – murder; OFF2 – burglary; OFF3 – rape; 
OFF4 – serious bodily injury. The statistical processing was 
made using SPSS 15.0. All parameters were codified as 
binary variables (value 0 – absent / 1 – present) and our 
purpose was to identify from the 10 diagnostics, the most 
relevant ones (if there are) for each mentioned offence.  

In this purpose we built every time a binary logistic 
regression model having the predictors DG1 – DG10 and 
the dependant variable OFF1 / respectively OFF2 … OFF4. 

The first stage in defining the model consists in checking 
the hypothesis that the model describes adequately the 
observed data. In this purpose we used the Hosmer and 
Lemenshow test of “quality of fitting” [4], which gave 
results not statistically significant – which means that the 
model is adequate (Table I). 

 
TABLE I 

HOSMER AND LEMESHOW TEST – QUALITY OF DATA FITTING 
 

Step 
Chi-

square df Sig. 
 

Step 
Chi-

square df Sig. 
1 .000 0 . 1 .000 0 . 
2 .000 0 . 2 .007 1 .934 
3 .000 0 . 3 .070 1 .791 

 
OFF1 

4 .000 1 1.000

 
OFF2 

4 1.276 3 .735 
1 .000 0 . 1 .000 0 .  

OFF3     

 
OFF4 2 .000 1 1.000 

 
In the following stage the logistic regression model 

analyzes all the predictors and makes their selection, by 
calculating for each of them a statistical score. The final 
purpose is to identify the predictors that influence 
significantly the values of the dependant variable, and 
therefore can be used to make hypothesis about those 
values. The calculation method was “Forward stepwise” [1], 
[4]: we begin at step 0 with no predictors and at each step 
we add a new predictor into the model - the one with the 
highest statistically significant score. The procedure stops 
when there are not new predictors to be added into the 
model (all the recorded scores are not statistically 
significant). Finally, the obtained predictors are checked 
again, in order to reconfirm that the probability changes 
added by these predictors are indeed significantly. We 
obtained the following results: 

1) For the variable OFF1: The predictors were found in 
4 steps, by adding them in the following order: (Table IIA). 
All the predictors were confirmed as adding statistically 
significant changes over the model’s probability (Table 
IIIA). 
 

TABLE IIA 
THE SCORES OF THE PREDICTORS ADDED INTO THE MODEL – OFF1 

OFF1 Score df Sig. 
Step 1 DG9 6.263 1 .012 
Step 2 DG1 7.758 1 .005 
Step 3 DG5 11.201 1 .001 
Step 4 DG10 10.243 1 .001 

 
TABLE IIIA 

CHANGES IN PROBABILITY BROUGHT BY THE PREDICTORS – OFF1 

Variable 
Model Log 
Likelihood 

Change in -2 
Log Likelihood df 

Sig. of the 
Change 

Step 1 DG9 -155.281 4.968 1 .026 
Step 2 DG1 -152.797 7.740 1 .005 
  DG9 -152.237 6.620 1 .010 
Step 3 DG1 -150.337 10.887 1 .001 
  DG5 -148.927 8.067 1 .005 
  DG9 -148.629 7.471 1 .006 
Step 4 DG1 -149.436 17.874 1 .000 
  DG5 -146.078 11.158 1 .001 
  DG9 -145.321 9.644 1 .002 
  DG10 -144.894 8.790 1 .003 
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2) For the variable OFF2: The predictors were also 
found in 4 steps, by adding them in the following order: 
DG6, DG2, DG4, DG10 (Table IIB). They influence 
statistically significant the model’s probability (Table IIIB). 

 
TABLE IIB 

THE SCORES OF THE PREDICTORS ADDED INTO THE MODEL – OFF2 
OFF2 Score df Sig. 
Step 1 DG6 20.319 1 .000 
Step 2 DG2 9.268 1 .002 
Step 3 DG4 6.206 1 .013 
Step 4 DG10 4.323 1 .038 

 
TABLE IIIB 

CHANGES IN PROBABILITY BROUGHT BY THE PREDICTORS – OFF2 

Variable 
Model Log 
Likelihood 

Change in -2 
Log Likelihood df 

Sig. of the 
Change 

Step 1 DG6 -157.677 18.731 1 .000 
Step 2 DG2 -148.311 7.919 1 .005 
  DG6 -155.193 21.682 1 .000 
Step 3 DG2 -145.278 7.027 1 .008 
  DG4 -144.352 5.175 1 .023 
  DG6 -153.321 23.113 1 .000 
Step 4 DG2 -142.638 7.057 1 .008 
  DG4 -141.332 4.446 1 .035 
  DG6 -149.554 20.889 1 .000 
  DG10 -141.764 5.310 1 .021 

 
3) For the variable OFF3: The predictor was found in a 

single step: DG6 (Tables IIC, IIIC). 
 

TABLE IIC 
THE SCORES OF THE PREDICTORS ADDED INTO THE MODEL – OFF3 

OFF3 Score df Sig. 
Step 1 DG6 3.898 1 .048 

 
TABLE IIIC 

CHANGES IN PROBABILITY BROUGHT BY THE PREDICTORS – OFF3 

Variable 
Model Log 
Likelihood 

Change in -2 
Log Likelihood df 

Sig. of the 
Change 

Step 1  DG6 -75.278 3.497 1 .061 
 

4) For the variable OFF4: The predictors were found in 
2 steps (Tables IID, IIID). 

 
TABLE IID 

THE SCORES OF THE PREDICTORS ADDED INTO THE MODEL – OFF4 
OFF4 Score df Sig. 
Step 1 DG7 5.224 1 .022 
Step 2 DG1 4.732 1 .030 

 
TABLE IIID 

CHANGES IN PROBABILITY BROUGHT BY THE PREDICTORS – OFF4 

Variable 
Model Log 
Likelihood 

Change in -2 
Log Likelihood df 

Sig. of the 
Change 

Step 1 DG7 -143.500 4.500 1 .034 
Step 2 DG1 -141.251 4.762 1 .029 
  DG7 -142.505 7.271 1 .007 

 
The next step was to generate the classification tables, 

which show the practical results of using the identified 
regression model (Table IV). These tables show the number 
of correct and incorrect predictions made by the model at 
each step, as a consequence of using the predictors 
previously identified, and calculate the percentage of right 
predictions (at each step and globally). We have to check 

here if the percentage is improved from a step to another or 
not. 

TABLE IV 
THE CLASSIFICATION TABLES 

Predicted 
OFF1 Observed 

  0 1 
Percentage 

Correct 
Step 1 OFF1 0 222 1 99.6 
 Overall Percentage: 77.9 1 63 3 4.5 
Step 2 INFR1 0 222 1 99.6 
 Overall Percentage: 77.9 1 63 3 4.5 
Step 3 INFR1 0 218 5 97.8 
 Overall Percentage: 78.2 1 58 8 12.1 
Step 4 INFR1 0 218 5 97.8 
 Overall Percentage: 78.2 1 58 8 12.1 

OFF2 Observed 
 0 2 

Percentage 
Correct 

Step 1 OFF2 0 221 0 100.0 
 Overall Percentage: 76.5 2 68 0 .0 
Step 2 OFF2 0 220 1 99.5 
 Overall Percentage: 76.8 2 66 2 2.9 
Step 3 OFF2 0 219 2 99.1 
 Overall Percentage: 77.2 2 64 4 5.9 
Step 4 OFF2 0 219 2 99.1 
 Overall Percentage: 77.2 2 64 4 5.9 

OFF3 Observed 
 0 3 

Percentage 
Correct 

Step 1 OFF3 0 268 0 100.0 
 Overall Percentage: 92.7 3 21 0 .0 

OFF4 Observed 
 0 4 

Percentage 
Correct 

Step 1 OFF4 0 232 0 100.0 
 Overall Percentage: 80.3 4 57 0 .0 
Step 2 OFF4 0 232 0 100.0 
 Overall Percentage: 80.3 4 57 0 .0 

 
The synthesis of the obtained results is then presented in 

the tables of parameters estimation (Table V), which show 
the effect of each predictor over the values of the dependant 
variable. The coefficient of logistic regression, B, is the 
measure of each predictor’s importance for the model – 
because it represents the probability for the dependant 
variable to have the “present” value when the predictor is 
present. The B sign shows also the nature of the relation 
between predictor and the dependant variable. The Wald 
statistics ( = (B / S.E.)2 ) is used to check if the predictor is 
significant for the model or not. The value Exp(B) has the 
significance of a relative risk (odds ratio), being calculated 
with the formula: 

Exp(B) = eB = 
)0..(var

)1.(var
=

=
dependP

depP  in the presence of the 

specified predictor.    
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TABLE V 
THE PARAMETERS ESTIMATION 

OFF1  B S.E. Wald df Sig. Exp(B) 
Step 
1(a) 

DG9 .262 .129 4.108 1 .043 1.300 

DG1 .802 .292 7.561 1 .006 2.229 Step 
2(b) DG9 .307 .131 5.527 1 .019 1.359 

DG1 .994 .309 10.376 1 .001 2.702 
DG5 .416 .143 8.515 1 .004 1.516 

Step 
3(c) 
  DG9 .328 .131 6.276 1 .012 1.389 

DG1 1.489 .383 15.091 1 .000 4.433 
DG5 .515 .150 11.846 1 .001 1.673 
DG9 .383 .133 8.249 1 .004 1.467 

Step 
4(d) 
  
  
  DG10 .152 .050 9.114 1 .003 1.164 

OFF2  
Step 
1(a) 

DG6 .217 .050 19.011 1 .000 1.242 

DG2 .649 .223 8.462 1 .004 1.915 Step 
2(b) DG6 .240 .052 21.647 1 .000 1.271 

DG2 .622 .227 7.487 1 .006 1.863 
DG4 .418 .181 5.348 1 .021 1.519 

Step 
3(c) 
 DG6 .251 .052 22.932 1 .000 1.285 

DG2 .632 .231 7.456 1 .006 1.881 
DG4 .387 .181 4.561 1 .033 1.472 
DG6 .240 .053 20.698 1 .000 1.272 

Step 
4(d) 
 
 

DG10 -.146 .076 3.726 1 .054 .864 
OFF3 
Step 
1(a) 

DG6 .149 .077 3.699 1 .054 1.160 

OFF4 
Step 
1(a) 

DG7 .143 .064 4.900 1 .027 1.153 

DG1 .705 .328 4.623 1 .032 2.024 Step 
2(b) DG7 .197 .070 7.854 1 .005 1.218 
 

In conclusion, from this analysis follows that, if we want 
to make further studies about the patients involved in OFF1 
– murder, it is enough to take in considerations only the 
diagnostics DG9 – syndrome of depressive status; DG1 – 
schizophrenia; DG5 – encephalopathy and DG10 – 
psychotic disorders – eventually in this order; to study the 
patients involved in  OFF2 – burglary, it is enough to take in 
consideration only the diagnostics  DG6 – cerebral retard; 
DG2 – epilepsy; DG4 – ethylismus and again DG10 – 
psychotic disorders; to study the patients involved in OFF3 
– rape, it is enough to take in considerations only the 
diagnostics DG6 – cerebral retard, and to study the patients 
involved in OFF4 – serious bodily injury, it is enough to 
take in considerations only the diagnostics DG7 – 
personality disorders and DG1– schizophrenia.  

IV. DISCUSSIONS 
Now we are going to compare these results with the direct 

calculated risks for each diagnosis, taken in consideration 
independently. As we said before, the value Exp(B) from 
Table 5 has the significance of a relative risk – being 
exactly equal with the odds ratio when we build the logistic 
regression model using only a single predictor and the 
dependant variable.  

In this context, our assumption was that the order of 
predictors selected by the logistic regression model must be 
the same with the predictors descending order according to 
their independent calculated odds ratio or positive risks. 

This order can be eventually influenced by the results of the 
Chi-squared significance test (only the predictors that have a 
statistically significant influence over the dependant 
variable being taken into consideration). The number of 
predictors found within the regression model must also be 
equal with the number of predictors having positive risks 
(risks > 1.00) and statistically significant results of the Chi-
squared test. 

In order to check this assumption, we calculated these 
statistics for each dependant variable. The results are 
showed in Tables VIA – 6D (the cells colored in grey shows 
the positive risks). 

 
TABLE VIA 

THE DIRECT RISKS FOR EACH DIAGNOSIS – OFF1 
 

Diagnosis 
The risk 
for the 
cohort 

OFF1 = 1 

Odds 
Ratio 
(1/0) 

Pearson 
Chi-

squared 

Asimpt. sig. p 

DG1 1.707 2.006 6.118 .013 SS 
DG2 .316 .259 3.719 .054 SS 
DG3 .917 .895 .037 .848 NS 
DG4 - - 2.749 .097 NS 
DG5 2.550 4.488 5.643 .018 SS 
DG6 .603 .531 3.110 .078 NS 
DG7 .712 .655 .566 .452 NS 
DG8 .571 .505 .811 .368 NS 
DG9 3.393 10.571 6.263 .012 SS 
DG10 1.385 1.553 1.178 .278 NS 

 
The diagnosis selected from this table, taking in 

consideration the direct risks (positive and arranged in 
descending order) and the results of the Chi-squared test 
are: DG9, DG5, DG1, DG10. We can see that the same 
diagnosis were selected also using the regressional model – 
only their order differs (at steps 2 and 3). 

 
TABLE VIB 

THE DIRECT RISKS FOR EACH DIAGNOSIS – OFF2 
 

Diagnosis 
The risk 
for the 
cohort 

OFF2 = 1 

Odds 
Ratio 
(1/0) 

Pearson 
Chi-

squared 

Asimpt. sig. p 

DG1 .419 .330 13.411 .000 SS 
DG2 1.952 2.650 5.599 .018 SS 
DG3 .888 .858 .069 .792 NS 
DG4 2.469 4.306 5.295 .021 SS 
DG5 .464 .397 .796 .372 NS 
DG6 2.525 3.678 20.319 .000 SS 
DG7 1.267 1.377 .462 .497 NS 
DG8 1.450 1.675 .845 .358 NS 
DG9   1.248 .264 NS 
DG10 .235 .186 6.318 .012 SS 

 
The diagnosis selected from this table, using the same 

criteria, are DG6, DG4, DG2 – in this order. DG10 was not 
selected, because its risk is not positive (being much smaller 
than 1); instead, DG10 has a statistically significant 
influence over the dependant variable OFF2 – and this 
probably is the reason for which the regressional model 
selected this diagnosis. 
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TABLE VIC 
THE DIRECT RISKS FOR EACH DIAGNOSIS – OFF3 

 
Diagnosis 

The risk 
for the 
cohort 

OFF3 = 1 

Odds 
Ratio 
(1/0) 

Pearson 
Chi-

squared 

Asimpt. sig. p 

DG1 .774 .759 .352 .553 NS 
DG2 1.065 1.070 .008 .930 NS 
DG3 1.496 1.554 .321 .571 NS 
DG4 1.556 1.625 .204 .652 NS 
DG5 1.556 1.625 .204 .652 NS 
DG6 2.260 2.440 3.898 .048 SS 
DG7   2.051 .152 NS 
DG8 .913 .907 .008 .927 NS 
DG9   .318 .573 NS 
DG10 .388 .369 .992 .319 NS 

 
There are a few diagnosis with positive risks, but only 

one has also a significant result at the Chi-squared test; this 
is DG6, which is identically with the choice of the 
regressional model. 

 
TABLE VID 

THE DIRECT RISKS FOR EACH DIAGNOSIS – OFF4 
 

Diagnosis 
The risk 
for the 
cohort 

OFF4 = 1 

Odds 
Ratio 
(1/0) 

Pearson 
Chi-

squared 

Asimpt. sig. p 

DG1 1.398 1.519 2.002 .157 NS 
DG2 .973 .966 .004 .947 NS 
DG3 1.072 1.092 .023 .880 NS 
DG4 1.131 1.169 .037 .848 NS 
DG5   2.282 .131 NS 
DG6 .492 .429 4.492 .034 SS 
DG7 2.070 2.713 5.224 .022 SS 
DG8 .664 .613 .408 .523 NS 
DG9   .997 .318 NS 
DG10 .913 .893 .056 .813 NS 

 
There are also a few diagnosis with positive risks, and  

DG7 has a significant result at the Chi-squared test; the 

other diagnosis with positive risks failed at the Chi-squared 
test, and, even if DG6 passed the Chi-squared test, its risk is 
smaller than 1. This order is different again from the 
selection made by the regressional model, which uses also 
the diagnosis DG1 (found here with positive risk, but with 
not significant Chi-squared result). 

V. CONCLUSION 
It follows from these tables that our assumption is not 

entirely checked, because the binary logistic regressional 
model can find more significant predictors than the direct 
risks calculation. The reason for this situation is the way in 
which the predictor scores are calculated, which takes in 
consideration not only the predictors, but also the 
connections between them. We also must notice that, every 
time when a new predictor is added into the model, all 
scores are updated, and the analysis of the new possible 
predictors takes in consideration these new results. 

Therefore, the binary logistic regressional model is a 
sensitive method to identify sets of predictors, which are 
related one to the other – being the best solution to study the 
internal links between parameters. Instead, every time when 
we want to analyze independent parameters, it is not 
necessary to use this model, being more accurate and easier 
to calculate only the relative risks and the corresponding 
Chi-squared statistics.     
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