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Abstract—Leo Breimans Random Forests (RF) is a recent 

development in tree based classifiers and quickly proven to be one of 
the most important algorithms in the machine learning literature. It 
has shown robust and improved results of classifications on standard 
data sets. Ensemble learning algorithms such as AdaBoost and 
Bagging have been in active research and shown improvements in 
classification results for several benchmarking data sets with mainly 
decision trees as their base classifiers.  In this paper we experiment to 
apply these Meta learning techniques to the random forests. We 
experiment the working of the ensembles of random forests on the 
standard data sets available in UCI data sets. We compare the 
original random forest algorithm with their ensemble counterparts 
and discuss the results.  

 
Keywords— Random Forests [RF], ensembles, UCI. 

I. PROBLEM DOMAIN 
ANDOM Forests (RF) [1] are one of the most successful 
tree based classifiers. It has proven to be fast, robust to 

noise, and offers possibilities for explanation and visualization 
of its output. In the random forest method, a large number of 
classification trees are grown and combined. Statistically 
speaking two elements serve to obtain a random forest - 
resampling and random split selection. Resampling is done 
here by sampling multiple times with replacement from the 
original training data set. Thus in the resulting samples, a 
certain event may appear several times, and other events not at 
all. About 2/3rd of the data in the training sample are taken for 
each bootstrap sample and the remaining one-third of the 
cases are left out of the sample. This oob (out-of-bag) data is 
used to get a running unbiased estimate of the classification 
error as trees are added to the forest. It is also used to get 
estimates of variable importance. The design of random 
forests is to give the user a good deal of information about the 
data besides an accurate prediction. Much of this information 
comes from using the oob cases in the training set that have 
been left out of the bootstrapped training set.  

Random split selection is used in each trees growing 
process. It is computationally effective and offer good 
prediction performance. It generates an internal unbiased 
estimate of the generalization. It has an effective method for 
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estimating missing data and maintains accuracy when a large 
proportion of the data are missing. It generates an internal 
unbiased estimate of the generalization error as the forest 
building progresses and thus does not over fit. These 
capabilities of RF can be extended to unlabeled data, leading 
to unsupervised clustering, data views and outlier detection. 

Several authors have noted that constructing ensembles of 
base learners can significantly improve the performance of 
learning. Bagging, boosting, are the most popular examples of 
this methodology. The success of ensemble methods is usually 
explained with the margin and correlation of base classifiers 
[13]. To have a good ensemble one needs base classifiers 
which are diverse (in a sense that they predict differently), yet 
accurate. The ensemble mechanism which operates on the top 
of base learners then ensures highly accurate predictions. Here 
we experiment with random forests as themselves as the base 
classifiers for making ensembles and test the performance of 
the model. The ensembles are applied on UCI standard data 
sets and compared with the original random forest algorithm.  

The paper is organized as follows. In section II we 
introduce the decision tress the bases for constructing the 
random forests.   Section III introduces the actual random 
forests algorithm. Section IV discusses the ensemble learning 
and making of bagged and boosted random forests. The 
experiments with UCI data sets are described in section V. 
Results are discussed in Section VI. 

II. DECISION TREES – A BASE FOR RANDOM FORESTS 

The decision-tree representation is the most widely used 
logic method for efficiently producing classifiers from the 
data. There is a large number of decision-tree induction 
algorithms described primarily in the machine-learning and 
applied-statistics literature. The decision tree algorithm is well 
known for its robustness and learning efficiency with its 
learning time complexity of O(nlog2n). The output of the 
algorithm is a decision tree, which can be easily represented as 
a set of symbolic rules (IF…THEN). The symbolic rules can 
be directly interpreted and compared with the existing domain 
knowledge, providing the useful information for the domain 
experts.  

A typical decision-tree learning system adopts a top-down 
strategy that searches for a solution in a part of the search 
space. It guarantees that a simple, but not necessarily the 
simplest, tree will be found. A decision tree consists of nodes 
that where attributes are tested. The outgoing branches of a 
node correspond to all the possible outcomes of the test at the 

Meta Random Forests  
                                 Praveen Boinee, Alessandro De Angelis, and Gian Luca Foresti 

R 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1895

 

 

node. A simple decision tree for classification of samples with 
two input attributes X and Y is given Fig. 1.  

 

 

 

 

 

 

Fig. 1 A simple decision tree with the tests on attributes X and Y 

 
All samples with feature values X>1 and Y=B belong to 

Class2, while the samples with values X<1 belong to Class1, 
whatever the value for feature Y. The samples, at a nonleaf 
node in the tree structure, are thus partitioned along the 
branches and each child node gets its corresponding subset of 
samples. Decision trees that use univariate splits have a simple 
representational form, making it relatively easy for the user to 
understand the inferred model; at the same time, they 
represent a restriction on the expressiveness of the model. In 
general, any restriction on a particular tree representation can 
significantly restrict the functional form and thus the 
approximation power of the model. A well-known tree-
growing algorithm for generating decision trees based on 
univariate splits is Quinlan's ID3 with an extended version 
called C4.5 [6]. Greedy search methods, which involve 
growing and pruning decision-tree structures, are typically 
employed in these algorithms to explore the exponential space 
of possible models and to remove unnecessary preconditions 
and duplication. 

C4.5 applies a divide and conquers strategy to construct the 
tree. The sets of instances are accompanied by a set of 
properties. A decision tree is a tree where each node is a test 
on the values of an attribute, and the leaves represent the class 
of an instance that satisfies the tests. The tree will return a 
‘yes’ or ‘no’ decision when the sets of instances are tested on 
it. Rules can be derived from the tree by following a path from 
the root to a leaf and using the nodes along the path as 
preconditions for the rule, to predict the class at the leaf. For 
developing random forests, we use the trees that randomly 
choose a subset of attributes at each mode.   

 
III. RANDOM FORESTS 

A random forest is a classifier consisting of a collection of 
tree structures classifiers ( ){ },...1,, =Θ kxh k  where the 

{ }kΘ  are independent identically distributed random vectors 
and each tree casts a unit vote for the most popular class at 
input x. The forest chooses the classification having the most 
votes over all the trees in the forest.  

Each tree is grown as follows:  

1. If the number of cases in the training set is N, sample 
N cases at random - but with replacement, from the original 
data. This sample will be the training set for growing the tree.  

2. If there are M input variables, a number m<<M is 
specified such that at each node, m variables are selected at 
random out of the M and the best split on these m is used to 
split the node. The value of m is held constant during the 
forest growing.  

3. Each tree is grown to the largest extent possible. 
There is no pruning.  
 

and the  overall forest error rate depends on two things:  
• The correlation between any two trees in the forest. 

Increasing the correlation increases the forest error rate.  
• The strength of each individual tree in the forest. A 

tree with a low error rate is a strong classifier. Increasing the 
strength of the individual trees decreases the forest error rate.  

After each tree is built, all of the data are run down the tree, 
and proximities are computed for each pair of cases. If two 
cases occupy the same terminal node, their proximity is 
increased by one. At the end of the run, the proximities are 
normalized by dividing by the number of trees. Proximities 
are used in replacing missing data, locating outliers, and 
producing illuminating low-dimensional views of the data. 

To formalize the working of the random forests, Let the 
forest contain K classifier trees ( ) ( ) ( )xhxhxh K,...,, 21  and 

the joint classifier be ( )xh . Each learning instance is 

represented by an ordered pair (x,y), where each vector of 
attributes x consists of individual attributes aiAi ,...,1, =  (a 
is the number of attributes) and is labeled with the target value  

cjy j ,...,1, =  (c is the number of class values). The correct 

class is denoted as y, without index. Each discrete attribute Ai 

has values 1v through  
imv  ( im  is the number of values of 

attribute Ai). We write p(vi,k) for the probability that the 
attribute Ai has value kv , p(y j) is the probability of the class y j 

, and  ( )kij vyp ,|  is the probability of the class jy  

conditioned by the attribute Ai having the value kv .  
Each training set of n instances is drawn at random with 

replacement from the training set of n instances. With this 
sampling called bootstrap replication, on average 36.8% of 
training instances are not used for building each tree. These 
out of bag instances come handy for computing an internal 
estimate of the strength and correlation of the forest.  Let set 
of out-of-bag instances for classifier ( )xhk  as ( )xOk . Let 

( )jyxQ ,  be the out-of-bag proportion of voted for class jy  

at input x and an estimate of ( )( )jyxhP = : 

Y>1 

Class 1 

Y =A 

X>1 

Class 2 Class 2 Class 1 

Y = C 

Y = B 

NO 
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where I (.) is the indicator function.  
 
Calculate the margin function which measures the extent to 

which the average vote for the right class y exceeds the 
average vote for any other class as follows.  
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It is estimated with ( )yxQ ,  and  ( )jyxQ , . Strength is 

defined as the expected margin, and is computed as the 
average over the training set: 

 

( ) ( )∑
=

≠
= ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

n

i

c

yj
j

jii yxQyxQ
n

s
1 1

,max,1
 

The average correlation is computed as the variance of the 
margin over the square of the standard deviation of the forest: 
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is an out-of-bag estimate of ( )( )yxhP k =  and  
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is estimated for every instance x in the training set 
( )jyxQ , . 

 
Breiman used unpruned decision tress as base classifiers 

and introduces additional randomness into the trees [4].  
Namely, in each interior node of each tree a subset of r 
attributes is randomly selected and evaluated with the Gini 
index heuristics. The attribute with the highest Gini index is 
chosen as split in that node.  

In classification problems, attribute evaluation methods are 
Gini index [5], Gain ratio [6], ReliefF [7], MDL [8], and 
KDM [9]. Random Forests uses the Gini index taken from the 
CART learning system [10]. The gini index is given by the 
formula  
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IV. ENSEMBLES OF RANDOM FORESTS 

Ensemble methods became popular as a relatively simple 
device to improve the predictive performance of a base 
procedure. They combine “base classifiers” to predict the label 
for the new data points. Experiments on several benchmark 
data sets and real world data sets showed an improved 
classification results from these techniques. In this paper we 
concentrate on 2 ensembles techniques AdaBoost and 
Bagging. The bagging procedure turns out to be a variance 
reduction scheme, at least for some base procedures. On the 
other hand, boosting methods are primarily reducing the 
(model) bias of the base procedure. We experiment to 
construct these ensembles with random forests as base 
classifiers. 

The training data set is a collection of the data points 
associated with labels. The data points, usually a vector of 
features (x), and the labels y, are bounded by an underlying 
function f such that y = f(x) for each training data point (x,y). 
Machine learning algorithms search for a best possible 
hypothesis h  to f  that can be applied to assign labels to new x 
values.  Ensemble learning algorithms construct a set of 
hypothesis { }khhh ,...,, 21  and construct a voted classifier to 

predict the label of new data points, where T a criterion to 
combine the hypothesis. 
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A.  Bagging Random Forests 
Bagging is a statistical re-sample and combine technique 

[14] based on bootstrapping and aggregating techniques. The 
basic idea of bagging is to use bootstrap re-sampling to 
generate multiple versions of a predictor which, when 
combined, should perform better than a single predictor built 
to solve the same problem.  Bootstrapping is based on random 
sampling with replacement. Therefore, taking a bootstrap i.e., 
(random selection with replacement) of the training set X, one 
can sometimes avoid or get less misleading training objects in 
the bootstrap training set. Consequently, a classifier 
constructed on such a training set may have a better 
performance. Aggregation actually means combining 
classifiers [15]. Often a combined classifier gives better 
results than individual classifiers, because of combining the 
advantages of the individual classifiers in the final solution. 
Therefore, bagging might be helpful to build a better classifier 
on training sample sets with misleaders.  

On average, when taking a bootstrap sample of the training 
set, approximately 37% of the objects are not presented in the 
bootstrap sample, meaning that possible ‘outliers’ in the 
training set sometimes do not show up in the bootstrap 
sample. Thus,      better classifiers (with a smaller apparent 
error – classification error on the training data set) may be 
obtained by the bootstrap sample than by the original training 
set. These classifiers will be presented ‘sharper’ in the 
apparent error than those obtained on the training sets with 
outliers. Therefore, they will be more decisive than other 
bootstrap versions in the final judgment. Thus, aggregating 
classifiers in bagging can sometimes give a better 
performance than individual classifiers. 

In this section we discuss the application of bagging 
algorithm to grow the ensembles of random forest. The 
random forest itself is considered to be the varied version of 
bagged decision trees. As the growth of trees in RF is based 
on randomization, we try to experiment the growth of 
ensembles of random forests with bagging in order to reduce 
the overall bias and variance of learning system. Fig. 2 
describes the bagged random forest algorithm.  

 
Algorithm  
Input:  
Training Set T <xi,yi>, xi is a d-dimension input vector, yi 

a univariate response or label of the input vector 
Random Forest Algorithm h RRd →: , d is the 

dimension of the input vector 
Integer J [ Number of random forests to be generated]  
1. Construct a bootstrap sample 

( )1
**

1 , yx ,…, ( )NN yx ** ,  by randomly drawing n times with 

replacement from the data ( )11 , yx ,…, ( )NN yx ,  
2. for each iteration i=1..j 
3. { 

4. Generate a random forest RFi(X) over the 

bootstrapped sample ( )1
**

1 , yx ,…, ( )NN yx ** ,  as described 
in section randomforest  which can minimize the bias over the 
data set. 

5. } 
6. The final bagged ensemble of RF, RFbag(X) is formed 

by the combination of  individual RFi(X)  

7. ( )∑
=

=
J

i
i XRF

1

1-J RFbag(X)  

Output: RFbag(X)  
 

Fig. 2 Bagged random Forests  
 
B.   AdaBoosted Random Forests 
Boosting works by repeatedly running a learning algorithm 

on various distributions over the training data, and then 
combining the classifiers produced by the learner into the 
single composite classifier [16].  The boosting algorithm takes 
as input a training set of m examples  

( ) ( )( )mm yxyxS ,,...,, 11=  where each instance ix  is a 

vector of attributes drawn from the input space X and iy  

belonging to finite label set Y ,   is the class label associated 
with ix . In boosting classifiers and training sets are obtained 
in a strictly deterministic way. Both training sets and 
classifiers are obtained sequentially in the algorithm, in 
contrast to bagging, where training sets and classifiers are 
obtained randomly and independently from the previous step 
of the algorithm. At each step of the boosting, training data 
are reweighed in such a way that incorrectly classified objects 
get larger weights in a new modified training set [17]. 
AdaBoost manipulates the training examples to generate 
multiple hypotheses. It maintains the probability distribution 

( )xpl  over the training examples. In each iteration l , it 
weights the training samples with the probability 
distribution ( )xpl . The learning algorithm is then applied to 

produce the classifier lh . The error rate lε  of this classifier on 
the training examples is computed and used to adjust the 
probability distribution on the training examples. The effect of 
the change in the weights is to place more weight on training 
examples that were misclassified by lh  and less weight on 
examples that were correctly classified in the last stage. In 
subsequent iterations, therefore, AdaBoost tend to construct 
progressively more difficult learning problems. The final 
classifier, finalh , is constructed by a weighted vote of the 

individual classifiers nhhh ,..., 21 .  Each classifier is weighted 

according to its accuracy for the distribution lp  that it was 
trained on. 

A boosted random forest can be constructed in 2 ways. The 
first is to boost the forests. The main idea is to build Adaboost 
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for each random vector θ  to obtain a simple Adaboost 
classifier, each with small number of variables. The second 
approach is to use random forests algorithms as a weak 
learner. Figure 3 describes the algorithm  

 
Algorithm 
Input: Train Set T , with the sequence of m-labels 
( ) ( ) >< mm yxyx ,,...,, 11  with labels { }kYyi ,...1=∈  
 
Random Forest as the base learner RF 
Integer T  specifying number of iterations.  
Distribution lD over the m examples.  

Initialize ( ) miDl
1=  for all I, initialize the weights.  

rffinal = 0; // the final hypothesis from boosted random forest 
 
Dltotal = 0 
for i=1;i<=m;i++ 
{ 
 Dltotal = Dltotal+ Dl(i); 
} 
 
for t=1 ;t<=T;t++ 
{ 
 
// compute the normalized weights  
 
 
for i=1;i<=m;i++ 
{ 
 Dl(i)= Dl(i)/Dltotal; 
} 
 
 
// call the random forest to get the hypothesis ht 
 
K = Number of trees to be generated in the random forest 
 
for (k =1, k<=K, k++) 
{ 
 
for( i=1;i<=m;i++) 
 { 
 Generate vector kθ ; 

 Construct a tree kixh θ,( ) with C4.5 algorithm. 
 Each tree casts 1 vote for the most popular class. 
} 
 The final selection of class for a test row is selected by a 

voted majority 
 
Return the hypothesis ht 

} 
//Calculate the error of ht : 

tε  = 0 
for( i=1;i<=m;i++)  
{ 
 
  if ( ( ) iit yxh ≠  ) 
   {  
    tε  = tε + Dt(i); 
   } 
} 
if tε  > ½ 
 T =t-1; 
Else 
Exit(0); // abort loop 
 

t

t
t ε

εβ −= 1 ; 

 
// update distribution Dt 

 

if ( ( ) iit yxh = ) 
{ 

 ( ) ( )
( )iD

iDiD
l

t
t =+1  * tβ ; 

} 
else 
 ( )iDt 1+  = 1; 

// upsate the final hypothesis  
 
rffinal = rffinal + log (1/ tβ )  ; 
} 
 
Output: The final hypothesis  
for (y=1;y<=k;y++) 
{ 
rffinal = 

Yy∈
maxarg  rffinal ; 

}  
 

Fig. 3  Boosted Random Forests 
 

V. EXPERIMENTS ON UCI DATA SETS 
UCI machine learning repository [11] contains data sets that 

have been in use to evaluate learning algorithms. Each data 
file contains individual records described in terms of attribute-
value pairs. The ensembles of RF along with the original RF 
have been evaluated on several datasets from the UCI 
Machine learning Repository. The data sets used in the 
experiment are summarized in the table I. These data sets 
show considerable diversity in the size, number of classes and 
number of type of attributes. 
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TABLE I 
DESCRIPTION OF UCI DATA SETS  

Name Cases Classes Attributes 
Cont   Discr 

Breast Cancer 699 2 9 0 
Letter 20000 26 16 - 
Labour 57 2 8 8 
Vehicle 846 4 18 - 
Sonar 208 2 60 - 
Glass 214 6 9 - 
Vowel 990 11 11 10 
Hepatitis 155 2 6 13 
Heart-c 303 2 8 5 
Wave Form 300 3 21 - 
Letter 20000 26 16 - 

 
For the original random forest algorithm, the parameter T 

governing the number of classifiers generated was set at 20 for 
these experiments. In our experiments a random forest with 20 
trees have shown significant improvements in the 
classification accuracies, further growth of trees have not 
shown any significant improvements in classification 
accuracies (figure 4). The experiment is conducted with 
unpruned trees, and the variable yielding the smallest gini 
index has been used for splitting, tree building is stopped 
when the number of instances in a node is 5 or less. RF 
facilitate to deal with the fractional instances, required when 
some attributes have missing values, which can be easily 
adapted to handle the instance weights used in the ensembles.  

The following parameters are used for bagging random 
forest. A 100% bagSizePercent [Size of each bag, as a 
percentage of the training set size] without any out-of bag 
errors. We used 20 random forests to grow the bagged 
ensembles with a random seed of 1. Further increases in 
random forests have not shown any significant improvements. 
Most of the improvement from bagging is evident with in few 
replications, and it is interesting to see the performance 
improvement that can be bought by a single order of 
magnitude increase in computation.  

The boosting random forests have been grown with the 
same parameters for RF described above. For boosting 
ensembles, 20 random forests have been grown with a random 
number seed of 1. The weight threshold for weight pruning 
has set to 100, only reweighing has been performed without 
any resampling of data sets.  

Improvement in Random Forest Accuracy
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Fig. 4 Performance of random forests as function of number of trees 

 

Classification Accuracies Chart
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Fig. 5 Classification accuracies for RF and its ensembles for various 
UCI data sets 

VI. COMPARATIVE STUDY OF CLASSIFICATION RESULTS 
Table II shows the classification results for Random forests 

(RF), Bagged RF and Boosted RF on various UCI data sets.  
The data sets are splitted in 66% for training and remaining 
34% for testing. Though the ensembles take much time than 
single classifiers they produce improved classification results. 
We saw significant improvements with bagged random 
forests. Adaboosted random forests also showed improved 
classification results though they are inferior to that of bagged 
ones.   

The statistical measures used in the comparative study are 
the following: 

 
• ROC curves (AREA): A Receiver Operating 

Characteristic (ROC) curve summarizes the performance of a 
two-class classifier across the range of possible thresholds.  It 
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is recommended for comparing classifiers, as it does not 
merely summarize performance at a single arbitrarily selected 
decision threshold, but across all possible decision thresholds.  
It plots the sensitivity (class two true positives) versus one 
minus the specificity (class one false negatives). An ideal 
classifier hugs the left side and top side of the graph, and the 
area under the curve is 1.0. 

• Classification accuracy (%):  The classification 
accuracy for a classifier is defined as percentage of number of 
correctly classified samples to the total number of samples. 
 

• Mean absolute Error (MAE):  It is the ratio of 
Incorrectly Classified Instances to that of Total Number of 
Instances. 
 

Fig. 5 gives the classification accuracies as bar charts for 
various data sets. Fig. 6 shows the ROC curves. Bagged 
random forests have shown clear improvements over the 
original random forests, whereas boosted technique has 
ranged from the best to rather medicore results. When bagging 
and boosting are compared head to head, boosting leads to 
greater accuracies for vowel and hepatitis data sets.  
But it also performed inferior to random forests in data sets 
like Glass, Breast cancer. Bagging has shown consistent 
performances and been less risky. It proved to more suitable 
for increasing the random forest accuracies.  
 

VII. DISCUSSION 
 The ensembles have shown classification improvements 

for the original random forests. In overall rankings Bagged 
random forests have shown superior results.  

The possible reason for boosting failure is the deterioration 
in generalization performances.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A large number of trials T allow the composite classifier 
rfboost to become very complex. A simple alteration to avoid  
overfitting by keeping T as small as possible without 
impacting the objective. Adaboost.M1 stops when the error of 
any of any base classifier drops to zero, but does not address 
the possibility that the final classifier rfboost might correctly 
classify all the training data even though no base classifier 
does.  Further trials in this situation have increased the 
complexity of the rfboost but cannot improve its performance 
on the data sets.  

The undeniable benefits of boosting are not attributable just 
to producing a composite classifier rfboost that performs well 
on the training data. It also calls into question the hypothesis 
that overfitting is sufficient to explain boosting’s failure on 
some data sets, since much of the benefit realized by boosting 
seems to be caused by overfitting.   

In this paper, we investigated the possibilities of improving 
the random forests. Experiments over diverse collection of 
data sets have confirmed that the ensembles of random forest 
have improved the performance of classifications. Boosting 
and Bagging both have a sound theoretical base and also have 
the advantage that the extra computation they require is 
known in advance – if T classifiers are generated, then both 
require T times the computational effort of random forests. In 
these experiments, a little increase in computation can buys a 
significant increase in the classification accuracies.  In many 
applications, improvements of this magnitude would be well 
worth the computational cost.  

 The future work will be concentrated on experimenting 
with other ensemble techniques such as multi-boost, random 
committee.  
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                  Fig. 6 ROC curves for various UCI data sets

 TABLE II   
 THE CLASSIFICATION RESULTS FOR RANDOM FORESTS (RF), BAGGED RF AND BOOSTED RF ON VARIOUS UCI DATA SETS.  

NOTATIONS % FOR CLASSIFICATION ACCURACY, MAE FOR MEAN ABSOLUTE ERROR, ROC FOR ROC AREA 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

            RF         BAGRF       BOOSTRF 

DATA SETS %           MAE    ROC   %            MAE        ROC   %             MAE    ROC   

BREAST 
CANCER 

69.23    .362      .634 73.46       .377       .683 66.32      .361        .624 

HEART-C 82.69    .099       .917 84.61        .099       .937 82.69      .099        .917 

GLASS 69.86   .108        .804 72.60        .118       .804 67.12      .093        .839 

HEPATITIS 84.90   .221        .893 84.90        .272       .866 88.67      .113       .900 

LABOUR 90        .205         .998 95              .210       .978 95            .216       .978 

SONAR 73.23   .314        .857 80.28        .328       .915 73.23      .314       .857 

VOWEL 88.13   .054        .999 91.09         .062      1 92.28       .013          1 

LETTER 93  .14  .014       .993 93  .14     .014         .993 93  .14  .014          .993 

WAVEFORM 80.82    .188       .935 84.76      .196          .952 83.05     .113        .944 
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