
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1894

Abstract—Leo Breimans Random Forests (RF) is a recent

development in tree based classifiers and quickly proven to be one of
the most important algorithms in the machine learning literature. It
has shown robust and improved results of classifications on standard
data sets. Ensemble learning algorithms such as AdaBoost and
Bagging have been in active research and shown improvements in
classification results for several benchmarking data sets with mainly
decision trees as their base classifiers. In this paper we experiment to
apply these Meta learning techniques to the random forests. We
experiment the working of the ensembles of random forests on the
standard data sets available in UCI data sets. We compare the
original random forest algorithm with their ensemble counterparts
and discuss the results.

Keywords— Random Forests [RF], ensembles, UCI.

I. PROBLEM DOMAIN
ANDOM Forests (RF) [1] are one of the most successful
tree based classifiers. It has proven to be fast, robust to

noise, and offers possibilities for explanation and visualization
of its output. In the random forest method, a large number of
classification trees are grown and combined. Statistically
speaking two elements serve to obtain a random forest -
resampling and random split selection. Resampling is done
here by sampling multiple times with replacement from the
original training data set. Thus in the resulting samples, a
certain event may appear several times, and other events not at
all. About 2/3rd of the data in the training sample are taken for
each bootstrap sample and the remaining one-third of the
cases are left out of the sample. This oob (out-of-bag) data is
used to get a running unbiased estimate of the classification
error as trees are added to the forest. It is also used to get
estimates of variable importance. The design of random
forests is to give the user a good deal of information about the
data besides an accurate prediction. Much of this information
comes from using the oob cases in the training set that have
been left out of the bootstrapped training set.

Random split selection is used in each trees growing
process. It is computationally effective and offer good
prediction performance. It generates an internal unbiased
estimate of the generalization. It has an effective method for

Manuscript received September 30, 2005.
Praveen Boinee is the PhD Student in Computer Science in Udine

University, Udine, 33100, Italy (phone: 0039-0432-558231; e-mail:
boinee@fisica.uniud.it).

Alessandro De Angelis is the Professor in Experimental and Computational
Physics at Udine University, Udine, 33100, Italy (e-mail:
deangelis@fisica.uniud.it).

Gian Luca Foresti is the Professor in Computer Science at Udine
University, Udine, Italy (email: foresti@dimi.uniud.it).

estimating missing data and maintains accuracy when a large
proportion of the data are missing. It generates an internal
unbiased estimate of the generalization error as the forest
building progresses and thus does not over fit. These
capabilities of RF can be extended to unlabeled data, leading
to unsupervised clustering, data views and outlier detection.

Several authors have noted that constructing ensembles of
base learners can significantly improve the performance of
learning. Bagging, boosting, are the most popular examples of
this methodology. The success of ensemble methods is usually
explained with the margin and correlation of base classifiers
[13]. To have a good ensemble one needs base classifiers
which are diverse (in a sense that they predict differently), yet
accurate. The ensemble mechanism which operates on the top
of base learners then ensures highly accurate predictions. Here
we experiment with random forests as themselves as the base
classifiers for making ensembles and test the performance of
the model. The ensembles are applied on UCI standard data
sets and compared with the original random forest algorithm.

The paper is organized as follows. In section II we
introduce the decision tress the bases for constructing the
random forests. Section III introduces the actual random
forests algorithm. Section IV discusses the ensemble learning
and making of bagged and boosted random forests. The
experiments with UCI data sets are described in section V.
Results are discussed in Section VI.

II. DECISION TREES – A BASE FOR RANDOM FORESTS

The decision-tree representation is the most widely used
logic method for efficiently producing classifiers from the
data. There is a large number of decision-tree induction
algorithms described primarily in the machine-learning and
applied-statistics literature. The decision tree algorithm is well
known for its robustness and learning efficiency with its
learning time complexity of O(nlog2n). The output of the
algorithm is a decision tree, which can be easily represented as
a set of symbolic rules (IF…THEN). The symbolic rules can
be directly interpreted and compared with the existing domain
knowledge, providing the useful information for the domain
experts.

A typical decision-tree learning system adopts a top-down
strategy that searches for a solution in a part of the search
space. It guarantees that a simple, but not necessarily the
simplest, tree will be found. A decision tree consists of nodes
that where attributes are tested. The outgoing branches of a
node correspond to all the possible outcomes of the test at the

Meta Random Forests
 Praveen Boinee, Alessandro De Angelis, and Gian Luca Foresti

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1895

node. A simple decision tree for classification of samples with
two input attributes X and Y is given Fig. 1.

Fig. 1 A simple decision tree with the tests on attributes X and Y

All samples with feature values X>1 and Y=B belong to

Class2, while the samples with values X<1 belong to Class1,
whatever the value for feature Y. The samples, at a nonleaf
node in the tree structure, are thus partitioned along the
branches and each child node gets its corresponding subset of
samples. Decision trees that use univariate splits have a simple
representational form, making it relatively easy for the user to
understand the inferred model; at the same time, they
represent a restriction on the expressiveness of the model. In
general, any restriction on a particular tree representation can
significantly restrict the functional form and thus the
approximation power of the model. A well-known tree-
growing algorithm for generating decision trees based on
univariate splits is Quinlan's ID3 with an extended version
called C4.5 [6]. Greedy search methods, which involve
growing and pruning decision-tree structures, are typically
employed in these algorithms to explore the exponential space
of possible models and to remove unnecessary preconditions
and duplication.

C4.5 applies a divide and conquers strategy to construct the
tree. The sets of instances are accompanied by a set of
properties. A decision tree is a tree where each node is a test
on the values of an attribute, and the leaves represent the class
of an instance that satisfies the tests. The tree will return a
‘yes’ or ‘no’ decision when the sets of instances are tested on
it. Rules can be derived from the tree by following a path from
the root to a leaf and using the nodes along the path as
preconditions for the rule, to predict the class at the leaf. For
developing random forests, we use the trees that randomly
choose a subset of attributes at each mode.

III. RANDOM FORESTS

A random forest is a classifier consisting of a collection of
tree structures classifiers (){ },...1,, =Θ kxh k where the

{ }kΘ are independent identically distributed random vectors
and each tree casts a unit vote for the most popular class at
input x. The forest chooses the classification having the most
votes over all the trees in the forest.

Each tree is grown as follows:

1. If the number of cases in the training set is N, sample
N cases at random - but with replacement, from the original
data. This sample will be the training set for growing the tree.

2. If there are M input variables, a number m<<M is
specified such that at each node, m variables are selected at
random out of the M and the best split on these m is used to
split the node. The value of m is held constant during the
forest growing.

3. Each tree is grown to the largest extent possible.
There is no pruning.

and the overall forest error rate depends on two things:
• The correlation between any two trees in the forest.

Increasing the correlation increases the forest error rate.
• The strength of each individual tree in the forest. A

tree with a low error rate is a strong classifier. Increasing the
strength of the individual trees decreases the forest error rate.

After each tree is built, all of the data are run down the tree,
and proximities are computed for each pair of cases. If two
cases occupy the same terminal node, their proximity is
increased by one. At the end of the run, the proximities are
normalized by dividing by the number of trees. Proximities
are used in replacing missing data, locating outliers, and
producing illuminating low-dimensional views of the data.

To formalize the working of the random forests, Let the
forest contain K classifier trees () () ()xhxhxh K,...,, 21 and

the joint classifier be ()xh . Each learning instance is

represented by an ordered pair (x,y), where each vector of
attributes x consists of individual attributes aiAi ,...,1, = (a
is the number of attributes) and is labeled with the target value

cjy j ,...,1, = (c is the number of class values). The correct

class is denoted as y, without index. Each discrete attribute Ai

has values 1v through
imv (im is the number of values of

attribute Ai). We write p(vi,k) for the probability that the
attribute Ai has value kv , p(y j) is the probability of the class y j

, and ()kij vyp ,| is the probability of the class jy

conditioned by the attribute Ai having the value kv .
Each training set of n instances is drawn at random with

replacement from the training set of n instances. With this
sampling called bootstrap replication, on average 36.8% of
training instances are not used for building each tree. These
out of bag instances come handy for computing an internal
estimate of the strength and correlation of the forest. Let set
of out-of-bag instances for classifier ()xhk as ()xOk . Let

()jyxQ , be the out-of-bag proportion of voted for class jy

at input x and an estimate of ()()jyxhP = :

Y>1

Class 1

Y =A

X>1

Class 2 Class 2 Class 1

Y = C

Y = B

NO

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1896

()
() ()()

() ()()∑

∑

=

=

∈

∈=
= K

k
kk

K

k
kjk

j

OyxxhI

OyxyxhI
yxQ

1

1

,;

,;
,

where I (.) is the indicator function.

Calculate the margin function which measures the extent to

which the average vote for the right class y exceeds the
average vote for any other class as follows.

 () ()() ()()j

c

yj
j

yxhPyxhPyxmr =−==
≠
=1

max,

It is estimated with ()yxQ , and ()jyxQ , . Strength is

defined as the expected margin, and is computed as the
average over the training set:

() ()∑
=

≠
= ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

n

i

c

yj
j

jii yxQyxQ
n

s
1 1

,max,1

The average correlation is computed as the variance of the
margin over the square of the standard deviation of the forest:

()
()()

() ()

2

1

2^^

1

2

1

2
1

,max,1

var

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −++

−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

==

∑

∑

=

=
≠
=−

K

t
kk

n

i

c

yj
j

jii

pppp
k

syxQyxQ
n

hsd
mrρ

Where

()()
()

()()
()
∑

∑

∈

∈

=
=

ki

ki

Oyx
k

Oyx
k

k xhI

yxhI
p

,

,

is an out-of-bag estimate of ()()yxhP k = and

()
()

()()
()
∑

∑

∈

∈
⎟
⎠
⎞

⎜
⎝
⎛ =

=

ki

ki

Oyx
k

Oyx
jk

k xhI

yxhI
p

,

,

^

^

is an out-of-bag estimate of () ⎟
⎠
⎞

⎜
⎝
⎛ =

^

jk yxhP and

()j

c

yj
jj yxQy ,maxarg

1

^

≠
=

=

is estimated for every instance x in the training set
()jyxQ , .

Breiman used unpruned decision tress as base classifiers

and introduces additional randomness into the trees [4].
Namely, in each interior node of each tree a subset of r
attributes is randomly selected and evaluated with the Gini
index heuristics. The attribute with the highest Gini index is
chosen as split in that node.

In classification problems, attribute evaluation methods are
Gini index [5], Gain ratio [6], ReliefF [7], MDL [8], and
KDM [9]. Random Forests uses the Gini index taken from the
CART learning system [10]. The gini index is given by the
formula

() () () ()
2

1
,

1
,

2

1
∑∑∑

===

+−=
c

i
jii

m

j
ji

c

i
ii vypvpypAGini

i

IV. ENSEMBLES OF RANDOM FORESTS

Ensemble methods became popular as a relatively simple
device to improve the predictive performance of a base
procedure. They combine “base classifiers” to predict the label
for the new data points. Experiments on several benchmark
data sets and real world data sets showed an improved
classification results from these techniques. In this paper we
concentrate on 2 ensembles techniques AdaBoost and
Bagging. The bagging procedure turns out to be a variance
reduction scheme, at least for some base procedures. On the
other hand, boosting methods are primarily reducing the
(model) bias of the base procedure. We experiment to
construct these ensembles with random forests as base
classifiers.

The training data set is a collection of the data points
associated with labels. The data points, usually a vector of
features (x), and the labels y, are bounded by an underlying
function f such that y = f(x) for each training data point (x,y).
Machine learning algorithms search for a best possible
hypothesis h to f that can be applied to assign labels to new x
values. Ensemble learning algorithms construct a set of
hypothesis { }khhh ,...,, 21 and construct a voted classifier to

predict the label of new data points, where T a criterion to
combine the hypothesis.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1897

() () () ()()xhxhxhTxH n,...,, 21
* =

A. Bagging Random Forests
Bagging is a statistical re-sample and combine technique

[14] based on bootstrapping and aggregating techniques. The
basic idea of bagging is to use bootstrap re-sampling to
generate multiple versions of a predictor which, when
combined, should perform better than a single predictor built
to solve the same problem. Bootstrapping is based on random
sampling with replacement. Therefore, taking a bootstrap i.e.,
(random selection with replacement) of the training set X, one
can sometimes avoid or get less misleading training objects in
the bootstrap training set. Consequently, a classifier
constructed on such a training set may have a better
performance. Aggregation actually means combining
classifiers [15]. Often a combined classifier gives better
results than individual classifiers, because of combining the
advantages of the individual classifiers in the final solution.
Therefore, bagging might be helpful to build a better classifier
on training sample sets with misleaders.

On average, when taking a bootstrap sample of the training
set, approximately 37% of the objects are not presented in the
bootstrap sample, meaning that possible ‘outliers’ in the
training set sometimes do not show up in the bootstrap
sample. Thus, better classifiers (with a smaller apparent
error – classification error on the training data set) may be
obtained by the bootstrap sample than by the original training
set. These classifiers will be presented ‘sharper’ in the
apparent error than those obtained on the training sets with
outliers. Therefore, they will be more decisive than other
bootstrap versions in the final judgment. Thus, aggregating
classifiers in bagging can sometimes give a better
performance than individual classifiers.

In this section we discuss the application of bagging
algorithm to grow the ensembles of random forest. The
random forest itself is considered to be the varied version of
bagged decision trees. As the growth of trees in RF is based
on randomization, we try to experiment the growth of
ensembles of random forests with bagging in order to reduce
the overall bias and variance of learning system. Fig. 2
describes the bagged random forest algorithm.

Algorithm
Input:
Training Set T <xi,yi>, xi is a d-dimension input vector, yi

a univariate response or label of the input vector
Random Forest Algorithm h RRd →: , d is the

dimension of the input vector
Integer J [Number of random forests to be generated]
1. Construct a bootstrap sample

()1
**

1 , yx ,…, ()NN yx ** , by randomly drawing n times with

replacement from the data ()11 , yx ,…, ()NN yx ,
2. for each iteration i=1..j
3. {

4. Generate a random forest RFi(X) over the

bootstrapped sample ()1
**

1 , yx ,…, ()NN yx ** , as described
in section randomforest which can minimize the bias over the
data set.

5. }
6. The final bagged ensemble of RF, RFbag(X) is formed

by the combination of individual RFi(X)

7. ()∑
=

=
J

i
i XRF

1

1-J RFbag(X)

Output: RFbag(X)

Fig. 2 Bagged random Forests

B. AdaBoosted Random Forests
Boosting works by repeatedly running a learning algorithm

on various distributions over the training data, and then
combining the classifiers produced by the learner into the
single composite classifier [16]. The boosting algorithm takes
as input a training set of m examples

() ()()mm yxyxS ,,...,, 11= where each instance ix is a

vector of attributes drawn from the input space X and iy

belonging to finite label set Y , is the class label associated
with ix . In boosting classifiers and training sets are obtained
in a strictly deterministic way. Both training sets and
classifiers are obtained sequentially in the algorithm, in
contrast to bagging, where training sets and classifiers are
obtained randomly and independently from the previous step
of the algorithm. At each step of the boosting, training data
are reweighed in such a way that incorrectly classified objects
get larger weights in a new modified training set [17].
AdaBoost manipulates the training examples to generate
multiple hypotheses. It maintains the probability distribution

()xpl over the training examples. In each iteration l , it
weights the training samples with the probability
distribution ()xpl . The learning algorithm is then applied to

produce the classifier lh . The error rate lε of this classifier on
the training examples is computed and used to adjust the
probability distribution on the training examples. The effect of
the change in the weights is to place more weight on training
examples that were misclassified by lh and less weight on
examples that were correctly classified in the last stage. In
subsequent iterations, therefore, AdaBoost tend to construct
progressively more difficult learning problems. The final
classifier, finalh , is constructed by a weighted vote of the

individual classifiers nhhh ,..., 21 . Each classifier is weighted

according to its accuracy for the distribution lp that it was
trained on.

A boosted random forest can be constructed in 2 ways. The
first is to boost the forests. The main idea is to build Adaboost

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1898

for each random vector θ to obtain a simple Adaboost
classifier, each with small number of variables. The second
approach is to use random forests algorithms as a weak
learner. Figure 3 describes the algorithm

Algorithm
Input: Train Set T , with the sequence of m-labels
() () >< mm yxyx ,,...,, 11 with labels { }kYyi ,...1=∈

Random Forest as the base learner RF
Integer T specifying number of iterations.
Distribution lD over the m examples.

Initialize () miDl
1= for all I, initialize the weights.

rffinal = 0; // the final hypothesis from boosted random forest

Dltotal = 0
for i=1;i<=m;i++
{
 Dltotal = Dltotal+ Dl(i);
}

for t=1 ;t<=T;t++
{

// compute the normalized weights

for i=1;i<=m;i++
{
 Dl(i)= Dl(i)/Dltotal;
}

// call the random forest to get the hypothesis ht

K = Number of trees to be generated in the random forest

for (k =1, k<=K, k++)
{

for(i=1;i<=m;i++)
 {
 Generate vector kθ ;

 Construct a tree kixh θ,() with C4.5 algorithm.
 Each tree casts 1 vote for the most popular class.
}
 The final selection of class for a test row is selected by a

voted majority

Return the hypothesis ht

}
//Calculate the error of ht :

tε = 0
for(i=1;i<=m;i++)
{

 if (() iit yxh ≠)
 {
 tε = tε + Dt(i);
 }
}
if tε > ½
 T =t-1;
Else
Exit(0); // abort loop

t

t
t ε

εβ −= 1 ;

// update distribution Dt

if (() iit yxh =)
{

 () ()
()iD

iDiD
l

t
t =+1 * tβ ;

}
else
 ()iDt 1+ = 1;

// upsate the final hypothesis

rffinal = rffinal + log (1/ tβ) ;
}

Output: The final hypothesis
for (y=1;y<=k;y++)
{
rffinal =

Yy∈
maxarg rffinal ;

}

Fig. 3 Boosted Random Forests

V. EXPERIMENTS ON UCI DATA SETS
UCI machine learning repository [11] contains data sets that

have been in use to evaluate learning algorithms. Each data
file contains individual records described in terms of attribute-
value pairs. The ensembles of RF along with the original RF
have been evaluated on several datasets from the UCI
Machine learning Repository. The data sets used in the
experiment are summarized in the table I. These data sets
show considerable diversity in the size, number of classes and
number of type of attributes.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1899

TABLE I
DESCRIPTION OF UCI DATA SETS

Name Cases Classes Attributes
Cont Discr

Breast Cancer 699 2 9 0
Letter 20000 26 16 -
Labour 57 2 8 8
Vehicle 846 4 18 -
Sonar 208 2 60 -
Glass 214 6 9 -
Vowel 990 11 11 10
Hepatitis 155 2 6 13
Heart-c 303 2 8 5
Wave Form 300 3 21 -
Letter 20000 26 16 -

For the original random forest algorithm, the parameter T

governing the number of classifiers generated was set at 20 for
these experiments. In our experiments a random forest with 20
trees have shown significant improvements in the
classification accuracies, further growth of trees have not
shown any significant improvements in classification
accuracies (figure 4). The experiment is conducted with
unpruned trees, and the variable yielding the smallest gini
index has been used for splitting, tree building is stopped
when the number of instances in a node is 5 or less. RF
facilitate to deal with the fractional instances, required when
some attributes have missing values, which can be easily
adapted to handle the instance weights used in the ensembles.

The following parameters are used for bagging random
forest. A 100% bagSizePercent [Size of each bag, as a
percentage of the training set size] without any out-of bag
errors. We used 20 random forests to grow the bagged
ensembles with a random seed of 1. Further increases in
random forests have not shown any significant improvements.
Most of the improvement from bagging is evident with in few
replications, and it is interesting to see the performance
improvement that can be bought by a single order of
magnitude increase in computation.

The boosting random forests have been grown with the
same parameters for RF described above. For boosting
ensembles, 20 random forests have been grown with a random
number seed of 1. The weight threshold for weight pruning
has set to 100, only reweighing has been performed without
any resampling of data sets.

Improvement in Random Forest Accuracy

0
10
20
30
40
50
60
70
80
90

0 50 100 150 200 250

Number of Trees

A
cc

ur
ac

y
in

 %

Fig. 4 Performance of random forests as function of number of trees

Classification Accuracies Chart

0

10

20

30

40

50

60

70

80

90

100

Breast
Cancer

Labour Sonar Glass Vow el Wave
Form

Letter

RF

BagRF

BoostRF

Fig. 5 Classification accuracies for RF and its ensembles for various
UCI data sets

VI. COMPARATIVE STUDY OF CLASSIFICATION RESULTS
Table II shows the classification results for Random forests

(RF), Bagged RF and Boosted RF on various UCI data sets.
The data sets are splitted in 66% for training and remaining
34% for testing. Though the ensembles take much time than
single classifiers they produce improved classification results.
We saw significant improvements with bagged random
forests. Adaboosted random forests also showed improved
classification results though they are inferior to that of bagged
ones.

The statistical measures used in the comparative study are
the following:

• ROC curves (AREA): A Receiver Operating

Characteristic (ROC) curve summarizes the performance of a
two-class classifier across the range of possible thresholds. It

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1900

is recommended for comparing classifiers, as it does not
merely summarize performance at a single arbitrarily selected
decision threshold, but across all possible decision thresholds.
It plots the sensitivity (class two true positives) versus one
minus the specificity (class one false negatives). An ideal
classifier hugs the left side and top side of the graph, and the
area under the curve is 1.0.

• Classification accuracy (%): The classification
accuracy for a classifier is defined as percentage of number of
correctly classified samples to the total number of samples.

• Mean absolute Error (MAE): It is the ratio of
Incorrectly Classified Instances to that of Total Number of
Instances.

Fig. 5 gives the classification accuracies as bar charts for
various data sets. Fig. 6 shows the ROC curves. Bagged
random forests have shown clear improvements over the
original random forests, whereas boosted technique has
ranged from the best to rather medicore results. When bagging
and boosting are compared head to head, boosting leads to
greater accuracies for vowel and hepatitis data sets.
But it also performed inferior to random forests in data sets
like Glass, Breast cancer. Bagging has shown consistent
performances and been less risky. It proved to more suitable
for increasing the random forest accuracies.

VII. DISCUSSION
 The ensembles have shown classification improvements

for the original random forests. In overall rankings Bagged
random forests have shown superior results.

The possible reason for boosting failure is the deterioration
in generalization performances.

A large number of trials T allow the composite classifier
rfboost to become very complex. A simple alteration to avoid
overfitting by keeping T as small as possible without
impacting the objective. Adaboost.M1 stops when the error of
any of any base classifier drops to zero, but does not address
the possibility that the final classifier rfboost might correctly
classify all the training data even though no base classifier
does. Further trials in this situation have increased the
complexity of the rfboost but cannot improve its performance
on the data sets.

The undeniable benefits of boosting are not attributable just
to producing a composite classifier rfboost that performs well
on the training data. It also calls into question the hypothesis
that overfitting is sufficient to explain boosting’s failure on
some data sets, since much of the benefit realized by boosting
seems to be caused by overfitting.

In this paper, we investigated the possibilities of improving
the random forests. Experiments over diverse collection of
data sets have confirmed that the ensembles of random forest
have improved the performance of classifications. Boosting
and Bagging both have a sound theoretical base and also have
the advantage that the extra computation they require is
known in advance – if T classifiers are generated, then both
require T times the computational effort of random forests. In
these experiments, a little increase in computation can buys a
significant increase in the classification accuracies. In many
applications, improvements of this magnitude would be well
worth the computational cost.

 The future work will be concentrated on experimenting
with other ensemble techniques such as multi-boost, random
committee.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Com parision - Glass

RF
BagRF
BoostRF

False Posit ive Rat e

Tr
u

e
P

os
it

iv
e

R
at

e

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1901

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Comparision - Heart

RF
BagRF
BoostRF

False Positive Rate

Tr
u

e
P

os
it

iv
e

R
at

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Comparision - SONAR

RF
BagRF
BoostRF

False Positive Rate

Tr
u

e
P

os
it

iv
e

R
at

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Comparision - Wave Form

RF
BagRF
BoostRF

False Positive Rate

Tr
u

e
P

os
it

iv
e

R
at

e

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1902

 Fig. 6 ROC curves for various UCI data sets

 TABLE II
 THE CLASSIFICATION RESULTS FOR RANDOM FORESTS (RF), BAGGED RF AND BOOSTED RF ON VARIOUS UCI DATA SETS.

NOTATIONS % FOR CLASSIFICATION ACCURACY, MAE FOR MEAN ABSOLUTE ERROR, ROC FOR ROC AREA

 RF BAGRF BOOSTRF

DATA SETS % MAE ROC % MAE ROC % MAE ROC

BREAST
CANCER

69.23 .362 .634 73.46 .377 .683 66.32 .361 .624

HEART-C 82.69 .099 .917 84.61 .099 .937 82.69 .099 .917

GLASS 69.86 .108 .804 72.60 .118 .804 67.12 .093 .839

HEPATITIS 84.90 .221 .893 84.90 .272 .866 88.67 .113 .900

LABOUR 90 .205 .998 95 .210 .978 95 .216 .978

SONAR 73.23 .314 .857 80.28 .328 .915 73.23 .314 .857

VOWEL 88.13 .054 .999 91.09 .062 1 92.28 .013 1

LETTER 93 .14 .014 .993 93 .14 .014 .993 93 .14 .014 .993

WAVEFORM 80.82 .188 .935 84.76 .196 .952 83.05 .113 .944

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Comparision- Hepatitis

RF
BagRF
BoostRF

False Positive Rate

Tr
u

e
P

os
it

iv
e

R
at

e

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1903

REFERENCES

[1] Breiman, L.: Random Forests Technical Report, University of

California, 2001.
[2] http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.ht

m#intro
[3] Breiman, L.: Looking Inside the Black Box, Wald Lecture II, Department

of Statistics, California University, 2002.
[4] Sikonja. M, Improving Random Forests. In J.-F. Boulicaut et al.(Eds):

ECML 2004, LNAI 3210, Springer, Berlin, 2004, pp. 359-370.
[5] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J.

Stone. Classification and regression trees. Wadsworth Inc., Belmont,
California, 1984.

[6] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Francisco, 1993.

[7] Igor Kononenko. Estimating attributes: analysis and extensions of
Relief. In Luc De Raedt and Francesco Bergadano, editors, Machine
Learning: ECML-94, pages 171–182. Springer Verlag, Berlin, 1994.

[8] Igor Kononenko. On biases in estimating multi-valued attributes. In
Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI’95), pages 1034–1040. Morgan Kaufmann, 1995.

[9] Thomas G. Dietterich, Michael Kerns, and Yishay Mansour. Applying
the weak learning framework to understand and improve C4.5. In
Lorenza Saitta, editor, Machine Learning: Proceedings of the Thirteenth
International Conference (ICML’96), pages 96–103. Morgan Kaufmann,
San Francisco, 1996.

[10] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J.
Stone. Classification and regression trees. Wadsworth Inc., Belmont,
California, 1984.

[11] http://www.ics.uci.edu/~mlearn/MLRepository.html
[12] J.R. Quinlan, Bagging, Boosting, and C4.5, In Proceedings, Fourteenth

National Conference on Artificial Intelligence, 1996.
[13] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee.

Boosting the margin: a new explanation for the effectiveness of voting
methods. In Douglas H. Fisher, editor, Machine Learning: Proceedings
of the Fourteenth International Conference (ICML’97), pages 322–330.
Morgan Kaufmann, 1997.

[14] Breiman, L., Bagging Predictors, Machine Learning (1996) 24:123-
140.

[15] Carney, J., Cunningham, P.: The NeuralBAG algorithm: optimizing
generalization performance in Bagged Neural Networks. In: Verleysen,
M. (eds.): Proceedings of the 7th European Symposium on Artificial
Neural Networks (1999), pp. 3540.

[16] Freund, Y., Schapire, RE.: Experiments with a new boosting algorithm.
In Proceedings 13th International Conference on Machine Learning
(1996) 148–156.

[17] Skurichina, M., Duin, R.P.W.: Bagging, Boosting and the Random
Subspace Method for Linear Classifiers, Vol. 5, no. 2, Pattern Analysis
and Applications (2002) 121-135.

