
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:10, 2011

2071

 
Abstract—This paper studies mechanical buckling of 

functionally graded beams subjected to axial compressive load that is 
simply supported at both ends lies on a continuous elastic foundation. 
The displacement field of beam is assumed based on Engesser-
Timoshenko beam theory. Applying the Hamilton's principle, the 
equilibrium equation is established. The influences of dimensionless 
geometrical parameter, functionally graded index and foundation 
coefficient on the critical buckling load of beam are presented. To 
investigate the accuracy of the present analysis, a compression study 
is carried out with a known data. 
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I. INTRODUCTION 
HE concept of functionally graded materials (FGMs) was 
first suggested by a group of Japanese scientists in 1984 

to address the needs of aggressive environment of thermal 
shock [1]. Nowadays, FGMs have been widely explored in 
various engineering applications including electronics, 
chemistry, optics, biomedicine and the like [2]. More recently, 
Ichinose et al. [3] succeeded in fabricating ultrasonic 
transducers with functionally graded piezoelectric ceramics. 
On the macroscopic scale, FGMs are anisotropic, 
inhomogeneous and possess spatially continuous mechanical 
properties. Because discernible internal seams or boundaries 
do not exist in FGM, no internal stress peaks are caused when 
external load is applied and thus failure from interfacial 
debonding or from stress concentration can be avoided. In this 
respect, FGMs are more superior to the conventional 
laminated materials [4–6]. Piezoelectric materials have 
coupled effects between electric field and elastic deformation 
and have been widely integrated with structures to control 
deformation, vibration, acoustics, etc. These new structures 
including FGM members bonded with piezoelectric actuators 
and sensors are smart in response to environmental changes 
[7–14]. Ootao and Tanigawa [15] investigated the three-
dimensional transient piezothermoelastic problem of an FGM 
rectangular plate bonded to a piezoelectric plate due to partial 
heat supply. They modeled the FGM plate as a laminate and 
adopted a solution methodology similar to Pagano [16]. 
Through numerical examination, they showed that the 
maximum transient states of transverse normal stress and 
transverse shear stress in the plate can be reduced by 
functional grading.  
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A comprehensive study was conducted for the shape and 
vibration control of FGM plates and shells with integrated 
piezoelectric sensors and actuators by Liew and his associates 
using finite element method [17–18].To the author's 
knowledge, there is no analytical solution available in the 
open literatures for mechanical buckling of functionally 
graded Engesser-Timoshenko beams located on a continuous 
elastic foundation. In the present work, the mechanical 
buckling of a functionally graded Engesser-Timoshenko beam 
subjected to axial compressive loads lies on a continuous 
elastic foundation is studied. Appling the Hamilton's principle, 
the equilibrium equations of beam are derived and solved. The 
effects of the foundation coefficient, dimensionless 
geometrical parameter and functionally graded index on the 
critical buckling load of beam are presented. To investigate 
the accuracy of the present analysis, a compression study is 
carried out with a known data. 

 
II. FORMULATION 

The formulation that is presented here is based on the 
assumptions of Engesser-Timoshenko beam theory. Based on 
this theory, the displacement field can be written as [20]: 
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In view of the displacement field given in Eqs (1), the strain 

displacement relations are given by [20]:  
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Consider a functionally graded beam with rectangular 

cross-section. The thickness, length, and width of the beam are 
denoted, respectively, by , , Lh and .b  The yx −  plane 
coincides with the midplane of the beam and the −z axis 
located along the thickness direction. The Young's modulus E  
is assumed to vary as a power form of the thickness coordinate 
variable )2/2/(  hzhz ≤≤−  as follow [19]: 
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where k  is the power law index and the subscripts m  and c  
refer to the metal and ceramic constituents, respectively. The 
constitutive relations for functionally graded Engesser-
Timoshenko beam are given by [21]: 
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where 11Q, , xzxx σσ  and 55Q are the normal ,shear stresses 
and plane stress-reduced stiffnesses respectively. Also, u and 
w  are the displacement components in the −x  and 
−z directions, respectively. 

 
The potential energy can be expressed as [20]:  
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Substituting Eqs. (2)-(4) into Eq. (6) and neglecting the 
higher-order terms lead to 
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The width of beam is assumed to be constant, which is 

obtained by integrating along y over .v Then Eq. (7) becomes 
 

dx
dx
dw

dx
dwA

dx
dDbU

L

)]2

)((
)1(2

[
2 0

22
2

φ

φ
ν

φ

+

+
+

+⎟
⎠
⎞

⎜
⎝
⎛= ∫

              

(8) 
  
where 
 

                     ∫
+

−

=
2

2

55 (z)d

h

h

zQA            

                     ∫
+

−

=
2

2

11
2 (z)d

h

h

zQzD                            (9) 

 
 
where A and D  are the shear rigidity and  flexural rigidity 
respectively. Note that, the extensional displacement is 
neglected. Thus, the potential energy can be written as 
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The beam is subjected to the axial compressive loads, P as 

shown in Fig. 1. 

 
Fig. 1 Simply supported beam under compressive loads. 

 
The work done by the axial compressive load can be 

expressed as [20]: 
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We apply the Hamilton's principle to derive the equilibrium 
equations of beam, that is [21]: 
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Substitution from Eqs. (10) and (11) into Eq. (12) leads to 

the following equilibrium equations of the the functionally 
graded beam based on first order shear deformation theory. 
Assume that a functionally graded beam that is simply 
supported at both ends lies on a continuous elastic foundation, 
whose reaction at every point is proportional to the deflection 
(Winkler foundation). The equilibrium equation of the 
functionally graded beam based on first order shear 
deformation theory located on a continuous elastic foundation 
subjected to a axial compressive load is obtained from 
equilibrium equations by the addition of wη  for the 
foundation reaction as 
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where η  is the foundation coefficient. 

 
III. STABILITY ANALYSIS 

The boundary conditions for the pin-ended Engesser-
Timoshenko beam are given by: 
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Substituting Eq. (14) into (13) and by equating power-law 

index to zero and neglecting the foundation coefficient, the 
critical buckling load of a functionally graded Engesser-
Timoshenko beam will be derived, that is:  
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The above equation has been reported by Wang and Reddy 

[20]. 
 

 
IV. NUMERICAL RESULTS 

The mechanical buckling behaviors of simply supported 
functionally graded Engesser-Timoshenko beams lies on a 
continuous elastic foundation are studied in this paper. The 
material properties of the beam are listed in Table 1. 

 
  TABLE I 

MATERIAL PROPERTIES 
FGM layer Property 

Nickel Stainless 
steel  

  
223.95 

        
221.04 

Young's modulus 
(GPa)  E  

0.3             
0.3 Poisson's ratio ν  

0.3             
0.3 Length (m)  L  

  0.01             
0.01 Thickness (m)  h  

8900       8166 Density  )(Kgm  -3ρ  

 
The Poisson’s ratio is chosen to be 0.3 for both materials. 

The variation of the critical buckling loads for functionally 
graded Engesser-Timoshenko evaluated considering of 

1/ =hb , 1=L  and several values of foundation coefficient 
are shown in Table 2. It is seen that the critical buckling loads 
for FG Engesser-Timoshenko beam increased with an increase 
of the foundation coefficient η . Fig. 2. demonstrates the 
critical buckling loads for functionally graded Engesser-
Timoshenko beam. It is seen that the critical buckling loads 
for Engesser-Timoshenko beam increased with an increase of 
the ratio Lh /  and decreased with an increase of power-law 
index of constituent volume fraction.  
 

TABLE II 
VARIATION OF THE CRITICAL BUCKLING LOAD OF FG BEAM WITH 

PIEZOELECTRIC ACTUATORS VERSUS η  

Critical Buckling 

Load ( crP ) 

Foundation 
Coefficient  

(η ) 
43000N 1000 
48620N 2000 
50872N 3000 
55468N 4000 

 
Fig. 2 Critical Buckling Load of FG Beam Versus Lh /  

 
V.  CONCLUSION 

The mechanical buckling of a functionally graded Engesser-
Timoshenko beam located on a continuous elastic foundation 
subjected to axial compressive loads is studied. It is conclude 
that: 

1- The critical buckling loads of FG Engesser-
Timoshenko beam are generally lower than 
corresponding values for the homogeneous Engesser-
Timoshenko beam. 

2- The critical buckling loads of FG Engesser-
Timoshenko beam under axial compressive load 
generally increases with the increase of relative 
thickness Lh / . 

3- The critical buckling loads of FG Engesser-
Timoshenko beam under axial compressive load 
generally increase with the increase of foundation 
coefficientη .  

4- The accuracy of Engesser-Timoshenko beam theory 
is more than Bernoulli-Euler beam theory. 
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