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Abstract—This paper presents the elastic buckling of 

homogeneous beams with a pair of piezoelectric layers surface 
bonded on both sides of the beams. The displacement field of beam is 
assumed based on  the Engesser-Timoshenko beam theory. 
Applying the Hamilton's principle, the equilibrium equation is 
established. The influences of applied voltage, dimensionless 
geometrical parameter and piezoelectric thickness on the critical 
buckling load of beam are presented. To investigate the accuracy of 
the present analysis, a compression study is carried out with a known 
data. 
 

Keywords—Mechanical Buckling, Engesser-Timoshenko 
beam theory - Piezoelectric layer.  
 

I. INTRODUCTION 
 

HE applications of the smart materials have drawn 
attention in aerospace engineering, civil engineering, 

mechanical and even bio-engineering. The analysis of a 
coupled piezoelectric structure has recently been keenly 
researched because piezoelectric materials are more 
extensively used either as actuators or sensors. Examples 
include the analytical modelling and behaviour of a beam with 
surface-bonded or embedded piezoelectric sensors and 
actuators [1–3], and the use of piezoelectric materials in 
composite laminates and for vibration control [4]. The use of 
finite element method in the analysis of piezoelectric coupled 
structures has been studied [5–8]. Crawley and de Luis [9] 
developed the analytical model for the static and dynamic 
response of a beam structure with segmented piezoelectric 
actuators either bonded or embedded in a laminated 
composite. Owing to their good  characteristics of lightweight 
and  electromechanical coupling effects, piezoelectric 
materials have been studied in other application fields, such as 
the shape control of structures, acoustic wave excitation, 
health monitoring of structures, etc. [10–12]. 

Loughlan et al. [13] carried out experimental tests which 
illustrate the feasibility of buckling control in composite 
structural elements using induced strain actuation by using 
shape memory actuators. Shen [14] presented a post-buckling 
analysis for cross-ply laminated cylindrical shells with 
piezoelectric actuators subjected to the combined action of 
external pressure and heating and under different electric 
voltage situations. LaPeter and Cudney [15] proposed an 
analytic model for the segmented piezoelectric actuators 
bonded on a beam or a plate, and found the equivalent forcing 
functions of the actuators. The piezoelectric bimorph column 
structures were used as sensing elements.  
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Dobrucki and Pruchnicki [16] presented an analysis theory 
of an axisymmetric piezoelectric bimorph. They also described 
a sensing theory for using the axisymmetric piezoelectric 
bimorph. Chandrashekhara and Bhatia [17] developed a finite 
element model for the active buckling control of laminated 
composite plates with surface bonded or embedded 
piezoelectric sensors that are either continuous or segmented. 
The dynamic buckling behavior of the laminated plate 
subjected to a linearly increasing compression load is 
investigated in their work. Chase and Bhashyam [18] derived 
optimal design equations to actively stabilize laminated plates 
loaded in excess of the critical buckling load using a large 
number of sensors and actuators. Such work finds application 
in aircraft wing skins.  

In this analysis, the mechanical buckling of a homogeneous 
Engesser-Timoshenko beam with piezoelectric actuators 
subjected to axial compressive loads is studied. Appling the 
Hamilton's principle, the equilibrium equations of beam are 
derived and solved. The effects of the applied voltage and 
dimensionless geometrical parameter on the critical buckling 
load of beam are presented. To investigate the accuracy of the 
present analysis, a compression study is carried out with a 
known data. 

 
II. FORMULATION 

Displacements of a beam can be written as a function of its 
mid-plane displacements on the basis of the Engesser-
Timoshenko beam theory in the following forms [19]: 
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In view of the displacement field given in Eqs. (1), the 

strain displacement relations are given by [19]:  
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Consider a homogeneous beam with piezoelectric actuators 

and rectangular cross-section as shown in   Fig. 1. The 
thickness, length, and width of the beam are denoted, 
respectively, by , , Lh and .b  Also, Th  and Bh  are the 
thickness of top and bottom of piezoelectric actuators, 
respectively. The yx −  plane coincides with the midplane of 
the beam and the −z axis located along the thickness 
direction.  
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Fig. 1 Schematic of the problem studied. 
 

The Young's modulus E  and the Poisson's ratio ν  are 
assumed to be constant. The constitutive relations for 
homogeneous Engesser-Timoshenko beam with piezoelectric 
layers are given by [20]: 
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where 11Q, , xzxx σσ  and 55Q are the normal ,shear stresses 

and plane stress-reduced stiffnesses and  1531 ,ee  are 
piezoelectric elastic stiffnesses respectively. Also, u and w  
are the displacement components in the −x  and −z directions, 
respectively. 
The potential energy can be expressed as [19]:  
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Substituting Eqs. (2)-(4) into Eq. (6) and neglecting the 
higher-order terms, we obtain 
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The width of beam is assumed to be constant, which is 

obtained by integrating along y over .v Then Eq. (7) becomes 
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where A and D  are the shear rigidity and  flexural rigidity 
respectively. Note that, no residual stresses due to the 
piezoelectric actuator are considered in the present study and 
the extensional displacement is neglected. Thus, the potential 
energy can be written as 
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where TV  and BV  are the applied voltages on the top and 

bottom actuators respectively. The beam is subjected to the 
axial compressive loads, P as shown in Fig. 2. 
 
 

 
 

Fig. 2 Simply supported beam under periodic loads. 
 

The work done by the axial compressive load can be expressed 
as [19]: 
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We apply the Hamilton's principle to derive the equilibrium 
equations of beam, that is [20]: 
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Substitution from Eqs. (10) and (11) into Eq. (12) leads to 

the following equilibrium equations of the homogeneous 
Engesser-Timoshenko beam with piezoelectric layers.  
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The boundary conditions for the pin-ended Timoshenko 
column are given by: 
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Substituting Eq. (14) into (13) and by neglecting the 
piezoelectric effect, the critical Engesser-Timoshenko 
buckling load of a homogeneous beam will be derived, that is:  
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The above equation has been reported by Wang and Reddy 
[19]. 

 
III.  NUMERICAL RESULTS 

This paper presents the mechanical buckling behaviors of 
simply supported homogeneous Engesser-Timoshenko beams 
with piezoelectric actuators. It is assumed that both the top and 
bottom piezoelectric layers have the same thickness; BT hh =  
and the same voltages are applied to both actuators. The 
material properties of the beam are listed in Table 1. The 
critical buckling loads for Bernoulli-Euler homogeneous beam 
and Engesser-Timoshenko homogeneous beam evaluated 
considering of 1.0/ =hha , 1/ =hb , 1=L , are shown in Fig. 
3. 

 
 

                    
 TABLE I MATERIAL PROPERTIES 

Mid layer Piezoelectric 
layer Property 

223.95 63 
Young's modulus 

(GPa)  E  

0.3 0.3 Poisson's ratio ν  

0.3 0.3 Length (m)  L  

0.01 0.00005 Thickness (m)  h  

8900 7600 Density  )(Kgm  -3ρ  

- 17.6 
Piezoelectric constant  

)(Cm    , -2
1531 ee 

 
It is seen that the critical buckling loads for Engesser-

Timoshenko beam are generally lower than corresponding 
values of Bernoulli-Euler[21] beam.   Fig. 4. demonstrates the 
critical buckling loads of homogeneous Engesser-Timoshenko 
beam for different applied voltage. It is seen that the critical 
buckling loads for homogeneous Engesser-Timoshenko beam 
increased with an increase of the applied voltage.  

 
 

Fig. 3. Comparison of the Critical Buckling Load of Homogeneous 
Beam with Piezoelectric Actuators Versus Lh / . 

 
 

Fig. 5. Effect of Applied Voltage on the Critical Buckling Load of 
Homogeneous Beam with Piezoelectric Actuators. 
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IV.  CONCLUSION 

The mechanical buckling of a homogeneous Engesser-
Timoshenko beam with piezoelectric actuators subjected to 
axial compressive loads is studied. we concluded that the 
piezoelectric actuators induce tensile piezoelectric force 
produced by applying negative voltages that significantly 
affect the stability of the homogeneous Engesser-Timoshenko 
beam with piezoelectric actuators. The critical buckling loads 
of homogeneous Engesser-Timoshenko beam under axial 
compressive load generally increases with the increase of 
relative thickness Lh / .The accuracy of Engesser-
Timoshenko beam theory is more than Bernoulli-Euler beam 
theory. 
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