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Abstract—This study was aimed to measure effective transverse 

relaxation rates (R2*) in the liver and muscle of normal New Zealand 
White (NZW) rabbits. R2* relaxation rate has been widely used in 
various hepatic diseases for iron overload by quantifying iron contents 
in liver. R2* relaxation rate is defined as the reciprocal of T2* 
relaxation time and mainly depends on the constituents of tissue. 
Different tissues would have different R2* relaxation rates. The signal 
intensity decay in Magnetic resonance imaging (MRI) may be 
characterized by R2* relaxation rates. In this study, a 1.5T GE Signa 
HDxt whole body MR scanner equipped with an 8-channel high 
resolution knee coil was used to observe R2* values in NZW rabbit’s 
liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were 
recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, 
the abdomen of rabbit was landmarked at the center of knee coil to 
perform 3-plane localizer scan using fast spoiled gradient echo 
(FSPGR) pulse sequence. Afterwards, multi-planar fast gradient echo 
(MFGR) scans were performed with 8 various echo times (TEs) to 
acquire images for R2* measurements. Regions of interest (ROIs) at 
liver and muscle were measured using Advantage workstation. 
Finally, the R2* was obtained by a linear regression of lnሺܵܫሻ on TE. 
The results showed that the longer the echo time, the smaller the signal 
intensity. The R2* values of liver and muscle were 44.8  10.9 s-1 and 
37.4  9.5 s-1, respectively. It implies that the iron concentration of 
liver is higher than that of muscle. In conclusion, the more the iron 
contents in tissue, the higher the R2*. The correlations between R2* 
and iron content in NZW rabbits might be valuable for further 
exploration.  
 

Keywords—Liver, MRI, multi-planar fast gradient echo, muscle, 
R2* relaxation rate. 

I. INTRODUCTION 

NCREASED iron deposition is known to be associated with 
other systemic disorders, including hepatitis, hepatic fibrosis, 

hepatic cirrhosis and tumor [1]–[3]. A non-invasive method to 
detect iron deposition would be appreciated. Magnetic 
resonance imaging (MRI) has no ionizing radiation and can 
provide images with high contrast among tissues. Therefore, 
MRI has become a very important modality in clinical 
diagnosis. Furthermore, the powerful part is that MRI provide 
multi-parameters for tissue characterization, e.g. proton density, 
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longitudinal relaxation time (T1), and transverse relaxation 
time (T2) etc. MRI was used in detecting hepatic iron overload 
in patients with cirrhosis of different origins. It suggested that 
MR imaging technique might play an important role in 
detection of hepatic iron overload in liver diseases [2]. 
Effective transverse relaxation rate (R2*) is defined as the 
reciprocal of effective transverse relaxation time (T2*). T2* is 
associated with T2 values and field inhomogeneity. T2* is 
usually lower than T2. R2* imaging techniques were used to 
study and compare iron burden between 3T and 1.5T MR 
scanners. It was found that R2* relaxation rates of patients who 
suffering systemic disorders were higher than those of normal 
volunteers [3]. The gold standard for hepatic iron quantification 
is core liver biopsy [4]; however, this procedure is relatively 
invasive, difficult to repeat, and limited by sampling error. MRI 
is noninvasive and good for iron overload detection. 

Noninvasive techniques for hepatic iron evaluation include 
superconducting quantum interference devices (SQUIDs) [5] 
and magnetic resonance imaging (MRI). SQUID is a kind of 
special equipment, which cannot be widely used in clinic [6]. 
Magnetic-susceptibility effects were studied for human iron 
stores [5]. Abnormal iron accumulation in tissues and organs 
can be found in numerous diseases. MRI R2* relaxation rates 
have been used in various hepatic diseases for iron overload by 
quantifying iron contents in liver [1]. MR R2* technique can be 
used to rapidly assess iron contents in the septum of heart as 
well. In addition, R2* imaging technique was used to perform 
for a longitudinal follow-up study to investigate the progression 
of Parkinson's disease. It was concluded that R2* relaxation 
rate might act as a biomarker for the progression of Parkinson’s 
disease [7]. Furthermore, MRI R2 and R2* mapping was used 
to evaluate the accuracy of hepatic iron concentration in 
transfusion-dependent thalassemia and sickle cell disease 
patients [8]. 

The R2* relaxation rate conveys the magnetic susceptibility 
effects due to reversible and irreversible contribution of iron [9]. 
Gradient-echo pulse sequence are commonly used to measure 
the R2* relaxation rates. There is strong correlation between 
R2* values and iron concentrations. R2* could be affected by 
both reversible and irreversible iron effects. Therefore, R2* can 
be characterized as an imaging biomarker because it has high 
sensitivity to iron contents [7]. The R2* relaxation rates of 
different tissues are various due to their different constituents, 
for example, R2* relaxation rate of liver is higher than that of 
heart [3]. The signal intensity decay in MRI may be 
characterized by R2* relaxation rates. Animal MRI models are 
known to be essential for translational researches. The aim of 
this study was to measure R2* relaxation rates of New Zealand 
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liver and spleen. The liver's stores of ferritin are the primary 
physiologic source of reserved iron in the body. Thus, it might 
be associated with iron contents in tissues. The experimental 
results imply the feasibility of quantifying liver iron by the use 
of MR R2* relaxometry. In conclusion, R2* values were 
positively correlated with iron concentration in tissue. The 
quantitative correlations between R2* and iron concentration of 
NZW rabbits might be valuable for further exploration. 

 

 

 Fig. 7 R2* values of liver and muscle 
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