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Abstract—In this work, we explore the capability of the mean 

shift algorithm as a powerful preprocessing tool for improving the 

quality of spatial data, acquired from airborne scanners, from densely 

built urban areas. On one hand, high resolution image data corrupted 

by noise caused by lossy compression techniques are appropriately 

smoothed while at the same time preserving the optical edges and, on 

the other, low resolution LiDAR data in the form of normalized 

Digital Surface Map (nDSM) is upsampled through the joint mean 

shift algorithm. Experiments on both the edge-preserving smoothing 

and upsampling capabilities using synthetic RGB-z data show that the 

mean shift algorithm is superior to bilateral filtering as well as to 

other classical smoothing and upsampling algorithms. Application of 

the proposed methodology for 3D reconstruction of buildings of a 

pilot region of Athens, Greece results in a significant visual 

improvement of the 3D building block model. 

 

Keywords—3D buildings reconstruction, data fusion, data 

upsampling, mean shift.  

I.INTRODUCTION 

N the recent years, methods like bilateral and mean shift 

filtering are becoming increasingly popular at least in the 

fields of image processing and computer vision due to their 

edge preserving smoothing capabilities [1]-[4]. Moreover, 

simple modifications in the above filtering methods leading to 

the so called joint bilateral and joint mean shift filtering permit 

fusion of spatial data from different sources and of different 

resolutions. The result of data fusion is to obtain improved 

interpolation weights on the low resolution data sources which 

is reflected to improved - qualitatively and quantitatively - 

upsampled data [5].  

Joint bilateral filtering has been used in various 

applications, such as, in digital flash photography whereby 

flash images are used to increase sharpness of non-flash 

ambient images [6], [7], in improving resolution of depth 

maps obtained from pairs of stereo images [5], and 3D-mesh 

smoothing [8], just to name a few. 

While bilateral filtering has become quite popular filtering 

method in the recent years, we have the feeling that mean shift 

has not yet found its place among the most powerful choices 

for image clustering, segmentation, edge preserving 

smoothing and upsampling. Few works have performed 
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comparative experiments with other popular methods in order 

to assess the qualities and competitiveness of the algorithm in 

the various application domains. In this respect, we mention 

[4] which provides qualitative comparisons on the clustering 

capabilities of the following algorithms: iterative bilateral 

filtering, nonlinear diffusion, restricted mean shift (i.e. with 

fixed spatial component) and the joint spatial/range mean shift 

algorithm. Even worse, there has not been any work that we 

are aware of, on the use of joint mean shift filtering for data 

upsampling. 

In this work, we first establish the power of the mean shift 

algorithm for image denoising and data upsampling through 

comparative experiments and then use it for improving the 3D 

models of buildings when the elevation data (e.g. the nDSM) 

are of much lower spatial resolution than the corresponding 

optical data.  

Section II provides the necessary background and presents 

our proposed version of the algorithm. Section III compares 

several smoothing trechniques in the field of JPEG artifact 

removal. Section IV compares popular upsampling methods. 

Section V employs the proposed mean shift-based 

preprocessing technique for 3D building modeling and, 

finally, Section VI presents the conclusions and future 

extensions of this work. 

II.JOINT MEAN SHIFT FILTERING 

In this Section we present a novel data preprocessing 

method appropriate for 3D building reconstruction in order to 

increase spatial resolution of elevation data. In the proposed 

method, low resolution elevation data (e.g. produced by 

airborne Light Detection and Ranging (LiDAR) sensors) are 

fused with high resolution RGB color aerial orthophotographs 

through the mean shift algorithm. The result is improved 

quality for both the optical and the upsampled elevation data. 

Following a short presentation of the mean shift algorithm, the 

section concludes with the presentation of the mean shift-

based data fusion and upsampling method.  

A.The Mean Shift Algorithm 

Mean shift is a non-parametric, iterative algorithm for 

finding the local maxima in a density function. Although it 

was first proposed by Fukunaga and Hostetler about 40 years 

ago [9], re-examined by Cheng [10] and, later, by Weijer and 

Boomgaard [11], only recently it has been introduced by 

Comaniciu and Meer [2] to low-level vision problems, such as 

edge preserving smoothing, segmentation and clustering.  

This method makes no prior assumptions about the form of 

the density function or, in case of clustering, about the number 
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of clusters. Using a kernel-based approximation of the 

underlying density, the algorithm employs fixed point iteration 

to solve the nonlinear maximization problem of locating the 

modes (i.e. the maxima) of the density. Specifically, the 

iterations are initialized with a point in feature space. Then 

each iteration consists of two steps: 

In the first step, it computes the point of highest density in a 

neighborhood of the current estimate by evaluating the 

weighted average of the feature values in this neighborhood. 

The weights for computing the average and the size of the 

neighborhood are chosen in advance. They are determined by 

the selection of the kernel function and its bandwidth, h. 

In the second step, the mode estimate is updated by moving 

towards the point of highest concentration.  

These two steps are repeated until there is no further 

modification in the values of the mode estimates. The speed of 

convergence and the accuracy of the final value depend on the 

kernel chosen and the size of the neighborhood. The algorithm 

uses one kernel for each different type of feature that 

constitutes the dimensions of the data (range) space. For one 

type of feature and one kernel of bandwidth h, the update 

formula for the mean shift is 
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where n is the iteration index, {zi | i = 1, …, N}  is the initial 

data set, k( ) is the interpolating kernel, often selected to be 

gaussian or box shaped and x(n) is the point trajectory in 

feature space. 

B.Joint Mean Shift for Data Fusion and Upsampling 

Because our LiDAR data are of low quality, improving their 

resolution and sharpness requires using additional information 

from other sources.  

For this purpose, in our approach, we fuse the elevation 

information with a high resolution orthophoto color image of 

the same region through the joint mean shift algorithm in a 

similar way to the joint (or cross) bilateral filtering as it has 

been used in the field of digital photography for denoising 

ambient images [6], [7] and for data upsampling [5]. The 

implicit assumption is that the optical data can provide the 

necessary information about the significant edges. The high 

detail content of the color image will be a guide for improving 

the quality of the elevation image. But the optical data also 

contain a great amount of unnecessary noisy edges. So, the 

problem is, generally, twofold:  

• to smooth small color variations in areas of small 

elevation variations and smooth out height variations, due 

to noise, in areas of relatively flat color content. 

• to preserve the significant optical edges. 

To achieve this we use a variant of the mean shift algorithm 

that operates jointly in the spatial and range domains whereby 

the range domain comprises of both optical (RGB) and 

elevation data. During the iterative process and through the 

coupling of the data the aim is to fuse the significant edges 

while smoothing the noise. 

The proposed methodology comprises the following two 

stages. First, an initial upsampling using the typical nearest 

neighbor interpolation technique is performed on the low 

resolution elevation data (nDSM) to increase its size to the 

size of the color image.  

Next, in order to improve the quality of the result and 

eliminate the staircase effects of nearest neighbor upsampling 

near elevation discontinuities, we perform a mean shift-based 

discontinuity preserving smoothing on the combined spatial, 

optical and elevation data. For this purpose, each pixel i is 

represented by a feature vector zi that includes the three color 

components, zi
c
, its elevation value zi

e
 and its spatial 

coordinates zi
s
. For simplicity, we have chosen all three 

kernels to be gaussian (although uniform kernels constitute, 

also, good alternatives) with the respective bandwidths, hs, hc 

and he, of the kernels being chosen through experimentation. 

In this case, the formula for the joint feature vector update 

becomes: 
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where n is the iteration index, i, j are data indices and the 

normalization constant Kj(n)  is computed as  
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The summations are over all pixels i in a spatial 

neighborhood of the current pixel j. Equation (2) is computed 

iteratively for every pixel. 

Equation (2) clearly indicates the interdependency, during 

the updating step, of the color and the elevation values. For 

example, if a pixel has color value xj
c
(n) that differs 

considerably from some of the neighbors zi
c
 then these 

neighbors will not contribute in the computation of either the 

color or the elevation mean update of the pixel nor in the new 

spatial coordinates. The same is true of the influence of the 

elevation differences in computing the updates. This has the 

effect that if for a pixel there is a large discrepancy in one 

space with some of its neighbors then this is mirrored in the 

other space.  

The results of the processing are, on one hand, an edge 

preserving smoothing of the RGB image, and on the other, 

hand; elevation image with much straighter height 

discontinuities. Color variations, due to noise, in flat surfaces 

of the RGB image become more homogeneous without losing 

the significant optical edges. At the same time, the elevation 
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image gains significantly in detail and sharpness with the 

different elevation surfaces becoming much better 

discriminated. It should be noted that edges due to shadows in 

the color image do not appear in the resulting elevation image 

if they do not correspond to significant elevation variations. 

III.COMPARISONS ON SMOOTHING TECHNIQUES 

In this section, mean shift is compared to other smoothing 

algorithms for the removal of JPEG artifacts in synthetic 

images. In particular, we generated 5 JPEG images at various 

compression rates that correspond to JPEG quality levels of 

90, 70, 50, 30 and 10 of a prototype RGB image of 120x120 

pixels, i.e. of size 43,200 bytes. Fig. 1 (a) shows the prototype 

image and Figs. 1 (b)-(f) show the above compressed JPEG 

images. The JPEG lossless compression file of the original 

prototype image is of 6704 bytes while the corresponding 

lossy compression sizes of Figs. 1 (b)-(f) are 5727, 3649, 

2884, 2289 and 1535 bytes, respectively. The lossless 

compression ratio of Fig. 1 (a) is 6.4:1 while the 

corresponding lossy compression ratios for Figs. 1 (b)-(f) are 

7.6:1, 11.8:1, 15.0:1, 18.9:1 and 28.1: 1. 
 

 

 (a)                              (b)                              (c) 

 

 

 (f)                                   (e)                               (d) 

Fig. 1 (a) The prototype image, (b)-(f) the compressed images that 

correspond to JPEG quality of 90, 70, 50, 30 and 10 respectively 

 

The severity of the JPEG artifacts of the above images is 

assessed through the root mean square error (RMSE) of the 

color deviations (in gray levels) from the ones of the original 

image. The RMSEs of the above 5 cases are 12.18, 14.81, 

17.28, 19.82 and 24.06 gray levels, respectively. 

The experiments have been performed in both the RGB and 

L*a*b color spaces and the resulting RMSEs for uniform 

kernels and optimal hs and hc parameter selection are shown in 

Table I. From Table I, it is evident that the RGB color space 

gave better noise removal than the L*a*b color space. 

Consequently, we decided to use the RGB color space in all 

subsequent experiments. 
 

 
 

TABLE I 

COMPARISON OF RGB AND L*A*B COLOR SPACES 

JPEG 

Quality 

Initial 

RMSE 

RGB: RMSE for 

hs =11, hc = 0.4 

L*a*b: RMSE for 

hs = 7, hc = 0.25 

90 12.18 3.79 5.47 

70 14.81 4.78 7.07 

50 17.28 6.59 8.92 

30 19.82 8.94 13.15 

10 24.06 15.29 17.88 

 

Next, we performed comparisons of mean shift smoothing 

with bilateral filtering, Gaussian smoothing and median 

filtering. Both mean shift and bilateral filtering used uniform 

kernels with hs = 11 and hc = 0.4. Two gaussian filters with 

3x3 and 5x5 templates and σ = 0.5 and 1.0 respectively have 

been used for comparisons along with 3x3 and 5x5 median 

filters. The results are tabulated in the form of RMSEs in 

Table II. It is apparent from these results that the edge 

preserving smoothing achieved by the first two algorithms is 

the reason for the significantly better JPEG artifact removal. 
 

TABLE II 

COMPARISON OF SMOOTHING ALGORITHMS FOR JPEG ARTIFACT REMOVAL 

JPEG 

Quality 

Mean 

shift 

Bilateral 

filtering 

Gaussian Filtering Median Filtering 

3x3  

σ = 0.5 

5x5 

σ = 1 
3x3 5x5 

90 3.79 6.17 14.79 23.06 10.76 14.08 

70 4.78 7.82 16.65 24.06 13.02 15.56 

50 6.59 9.62 18.54 24.95 15.56 17.29 

30 8.94 11.99 20.74 25.93 18.47 19.47 

10 15.29 17.45 24.39 28.08 22.87 23.16 

 

The smoothed images for the quality level of 50 for the 6 

methods used in the above comparisons are shown in Fig. 2. 

 

 

(a)                                 (b)                             (c) 

 

 

(d)                                (e)                               (f) 

Fig. 2 The smoothed result of Fig. 1 (d) using: (a) mean shift, (b) 

bilateral filtering, (c) Gaussian 3x3 filter with σ = 0.5, (d) Gaussian 

5x5 filter with σ = 1, (e) 3x3 median filter and (f) 5x5 median filter 

IV.COMPARISONS ON UPSAMPLING TECHNIQUES 

In the second set of comparative experiments, we fused the 

high resolution optical data with low resolution elevation data 
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to improve the corresponding 3D representation. In fact, the 

improved 3D model is achieved through a better interpolation 

method guided by the mean shift algorithm. At first, we used 

the joint spatial/optical/elevation update version of mean shift 

algorithm (the range corresponded to the RGB values and the 

elevation of each pixel) to improve the elevation (LiDAR) 

data shown in Fig. 3 (a) with the prototype (segmented) data 

of Fig. 1 (a). Also shown, in Fig. 3 (b), is the resulted 

elevation image for hs = 35, hc = 0.05 and he = 0.2. The initial 

and final 3D representations of the elevation data are shown in 

Figs. 4 (a) and (b) respectively. For qualitative comparisons, 

in Fig. 4 (c) the prototype 3D model is shown. 
 

           

(a)   (b) 

Fig. 3 (a) The original elevation data (with zoom-in 5x) and (b) the 

upsampled elevation data 

 

The average number of iterations for convergence of mean 

shift to a mode of the joint probability density was 5.57 and 

the maximum number of iterations was 13. 

By comparing Fig. 1 (a) with Fig. 3 (b) we conclude that the 

well segmented optical data (prototype data for this 

experiment) guided very well the upsampling of the elevation 

data. However, although most of the segments are placed in 

correct elevations, there is one segment (the one that 

corresponds to the small square to the right of the center of 

Fig. 1 (a)) that has been placed at a lower level of height 

(close to 12m) when the true one is at 16.60m. This is due to 

the parameters hs and he that have been selected constant 

throughout the whole image. Better results regarding the 

accuracy of the elevations are expected for the case of 

adaptive parameter selection, where both the hc and he 

bandwidths are estimated from local data. 

To further investigate the upsampling power of the mean 

shift algorithm, we first conducted experiments in order to 

choose the hs and he parameters of both the mean shift 

algorithm and the best – state of the art – method, namely the 

bilateral upsampling. In order to quantitatively assess the 

accuracy of data upsampling and compare the various 

methods, the prototype ground truth elevation image of Fig. 5 

(b) that corresponds to the original low resolution image of 

Fig. 5 (a) is used. As with the experiments on edge preserving 

smoothing of the previous section, the RMSE accuracy 

measure has been considered. Fig. 6 (a) shows the dependence 

of both algorithms on hs and Fig. 6 (b) shows the dependence 

on he. 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 4 The initial (a), the final (b) and the prototype (c) 3D building 

representations 
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(a)   (b) 

Fig. 5 (a) The original elevation data (same as in Fig. 3 (a) but 

without the 5x zoom-in) and (b) the prototype upsampled elevation 

image 

 

    

(a)                                              (b) 

Fig. 6 RMSE with respects to (a) spatial bandwidth hs, and (b) 

elevation bandwidth he. The bottom lines are for mean shift and the 

upper lines for the bilateral algorithm 

 

 

(a)                             (b)                                (c) 

 

 

(d)                                (e)                              (f) 

Fig. 7 (a) The prototype elevation image, (b) mean shift upsampling, 

(c) bilateral upsampling and, three upsampled elevation images with 

classic: (d) nearest neighbor, (e) bilinear, and (f) bicubic interpolation 

 
TABLE III 

COMPARISON OF FIVE UPSAMPLING INTERPOLATION METHODS 

Upsampling Method Accuracy (RMSE) 

Mean Shift Algorithm 1.64 

Bilateral Filtering 2.33 

Nearest Neighbor Interpolation 4.38 

Bilinear Interpolation 4.24 

Bicubic Interpolation 4.32 

 

Fig. 6 shows a typical instance of the various plots that can 

be obtained for appropriate selected values of the bandwidths. 

In particular, Fig. 6 (a) is obtained for hc = 0.1, he = 0.2 and 

Fig. 6 (b) for hc = 0.1, hs = 35. Such plots can be used to 

choose good hs and he parameter values. In the sequel, hs was 

chosen equal to 35 for both algorithms since it gives almost 

the same RMSE to the choice of 45 and at the same time it 

preserves locality as its neighborhood includes, 

approximately, 70
2
 = 4900 pixels in contrast to the larger area 

of about 8100 pixels for the best choice. The 70 x 70 

neighborhood corresponds to a 14m x 14m true square 

neighborhood that is more appropriate for the typical small 

plots of most of Athens’s suberban regions. As far as he is 

concerned, the optimal values for hs = 35 (see Fig. 6 (b)) were 

found to be 0.2 and 0.6, for the two algorithms.  

The upsampled elevation data obtained with the above two 

algorithms as well as with the typical nearest neighbor, 

bilinear and bicubic interpolation methods are shown in Fig. 7.  

Finally, the corresponding root mean square errors 

computed as deviations from the prototype elevation image 

are shown in Table III. It is apparent from this table that 

means shift gives supperior interpolation accuracy than 

bilateral filtering. Both the mean shift and bilateral algorithms 

are far more superior than other three classical interpolation 

methods as can also be qualitatively judged by comparing the 

results shown in Fig. 7. 

V.3D BUILDING BLOCK RECONSTRUCTION  

Sections III and IV established, through comparisons, the 

mean shift algorithm as the most appropriate preprocessing 

method for 3D building reconstruction regarding both optical 

data smoothing and elevation data upsampling. In this Section, 

we employ the proposed preprocessing method for the 3D 

reconstruction of the whole building block.  

Fig. 8 (c) shows the result of mean shift upsampling of the 

elevation data shown in Fig. 8 (b) for a whole building block 

fused with the perfectly segmented prototype image shown in 

Fig. 8 (a). The corresponding 3D model of the whole block is 

also shown in Fig. 9. 

VI.CONCLUSION AND FUTURE RESEARCH 

Comparative studies have been performed in this work to 

examine the edge preserving smoothing as well as the 

upsampling capabilities of several algorithms for the 3D 

building reconstruction application domain. Quantitative and 

qualitative results obtained using high resolution prototype 

segmented optical data and low resolution original elevation 

data show the overall superiority of the joint mean shift 

algorithm even against the state-of-art algorithm, namely, 

bilateral filtering.  

The use of the mean shift algorithm operating on the joint 

spatial and range (i.e. optical and elevation) domains as a 

preprocessing method for improving the resolution of the lidar 

data has been shown to constitute a promising tool towards 

generation of high quality 3D building models. 

Further improvements on the proposed preprocessing 

methodology are expected by enhancing the interpolating 

powers of mean shift through pixelwise adaptive estimation of 

kernel bandwidths from local information and by 
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incorporating a smoothing factor on the mean shift update 

equation to prevent large color changes produced by long 

trajectories towards the nearest mode in range space. 
 

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 8 (a) The prototype segmented optical image of a building block, 

(b) the original elevation data after nearest neighbor upsampling, and 

(c) the final mean shift-based upsampled elevation data 

 

 

Fig. 9 The final 3D model of the building block 
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