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Maximum Likelihood Estimation of Burr Type
V Distribution under Left Censored Samples
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Abstract—The paper deals with the maximum likelihood
estimation of the parameters of the Burr type V distribution based on
left censored samples. The maximum likelihood estimators (MLE) of
the parameters have been derived and the Fisher information matrix
for the parameters of the said distribution has been obtained
explicitly. The confidence intervals for the parameters have also been
discussed. A simulation study has been conducted to investigate the
performance of the point and interval estimates.
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I. INTRODUCTION

URR family of distributions consists of a dozen of

distributions these can be used to fit almost any given set
of unimodal data. Burr [1] proposed these distributions. From
these twelve distributions Burr type X and XII have received
the maximum attention of the analysts. The authors
considering the analysis of Burr type X and XII include:
Surles and Padgett [2], Mousa and Jaheen [3], Soliman [4],
Shao [5], Shao et al. [6], Soliman [7], Wu and Yu [8], Amjad
and Ayman [9], Wahed [10], Wu et al. [11], Aludaat et al.
[12], Silva et al. [13], Yarmohammadi and Pazira [14],
Dasgupta [15], Makhdoom and Jafari [16], Panahi and Asadi
[17] and Feroze and Aslam [18]. The remaining types of the
Burr family of distributions haven’t received a considerable
interest of the analysts; same is the case with Burr type V
distributions. The Burr Type V distribution can be used to
model the lifetime data. The probability density function (pdf)
of the distribution is:

f 29/1 —tany 2 1 /1 —tany —6-1 ; _z 1
(y) =046 sec’ y(1+ e <Y<
,A1,0>0
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The cumulative distribution function of this distribution is:

F(y)= (1 + /le“a“y)fg )

where A
distribution.

This distribution is still waiting for the attention of the
researchers may be due to its complex pdf. Many properties of

and @are the location parameters of the
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the parameters of the distribution under different estimation
procedures are still to be revealed. To deal with characteristics
of such deprived distributions is always important for the
researchers. The investigation of properties of such
distributions can be beneficial to the professionals looking to
use those distributions as models. The rare consideration of
the Burr type V distribution in the literature is a motivation for
the resent study.

Censoring is useful procedure when the value of a
measurement or observation is only partially known. That is,
all information regarding a portion of the sample/population is
omitted or do not exist. In practice, it occurs when an observed
value is outside the range of a measuring instrument or the
measure outside a range is not desired. Censoring has many
types; however, we will concentrate on the left censored
samples for the estimation of the said parameters. The left
censored data is very likely to occur in survivor analysis. It
can happen where and event of interest has already occurred at
the observation time, but it is not known exactly when. For
example, the situations including: the infection with a
sexually-transmitted disease such as HIV/AIDS, onset of a
pre-symptomatic illness such as cancer and time at which
teenagers begin to drink alcohol can lead to left censored data.
In case of left censored samples, we can only observe those
individuals whose event time is greater than some truncation
point. This truncation point may or may not be the same for all
individuals. For example, in case of actuarial life studies, the
individuals those died in the womb are often ignored. Another
example: suppose you wish to study how long patients who
have been hospitalized for a heart attack survive taking some
treatment at home. In such situations, the starting time is often
considered to be the time of the heart attack. Only those
patients who survive their stay in hospital are able to be
included in the study. The more illustrations on left censoring
can be seen from Jerald and Lawless [19], Sinha [20],
Asselineau et al. [21], Antweller and Taylor [22], Thompson
et al. [23] and Feroze and Aslam [24].

We have considered the maximum likelihood estimation
(MLE) of the Burr type V distribution under left censored
samples. As the explicit expressions for the maximum
likelihood estimators of the parameters cannot be obtained, a
fixed point iteration technique has been used to obtain the
MLE of shape parameter A . Once the MLE of A has been

obtained the MLE of the second shape parameter & become
possible to be solved explicitly. In addition, the Fisher
information matrix has been derived explicitly and the
variance covariance matrix has been obtained by inverting the
information matrix. The approximate confidence intervals for
both the parameters have also been constructed. A
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comprehensive simulation study has been carried out to assess
the behavior and performance of the estimates under different
sample sizes, parametric space and various degrees of
censoring rate.

II. MAXIMUM LIKELIHOOD ESTIMATION

Based on the left censored sample the maximum likelihood
function along with maximum likelihood estimators of the
parameters of the Burr type V distribution have been discussed

in the following. Let Y(r +1)...Y(n)be the last N—T ordered
statistics from the Burr type V distribution. Then, the

likelihood function for the sample of N—1T left censored
sample is:
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The logarithmic of the likelihood function can be written as:
1(0,4) o< —0r ln(l +2e e )+ (n—r)In(62)

~(6+1) Y In(1+2¢™" )

i=r+l

®)

The normal equations for the derivation of the MLE of the
A and 6 parameters are:
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From (6), the MLE of & can be derived as a function of A4
that can be denoted as

A n-r
0(2)= —
rin(1+2e " |+ 3 In(14 26

i=r+l
®

It is immediate from (7) that the MLE of A cannot be
obtained in an explicit form. So, we have to play some
mathematical/numerical tricks to find out the approximate
MLE of A . Firstly, the parameter @ in log-likelihood (5) has

been replaced by its MLE given in (8) the resultant log-
likelihood becomes:
—r(n—r)ln(l+/1e7m"y""’)
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After some simplifications it can be presented as:
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For MLE of 4 , the normal equation can be given as:
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Again the explicit solution for MLE of A is not possible.
We have used the fixed point iteration method to have the
approximate solution MLE of A by considering the following
function.
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The final result of the above function has been considered

as an MLE of A and denoted by/{. Now, the value of j,
facilitated to find out the solution for MLE of & given in (8),

that can be denoted by é (ﬂt) .

III.  APPROXIMATE FISHER INFORMATION MATRIX

In this section, the elements of the Fisher information
matrix for the parameters of the Burr type V distribution based
on left censored samples have been derived explicitly. The
variance covariance matrix for the parameters of the Burr type
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V distribution can be obtained by inverting the Fisher
information matrix which has been used construct the
confidence intervals for the said parameters. The Fisher
information matrix can be defined as:

Al ol
2
1(6,4)=-E ‘Zfl ag'fli
0200 A%
(12)

The equations for the elements of the Fisher information
matrix can be written as:
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Now, the expected values of the (14) and (15) require the

distribution of the 1™ order statistics from the Burr type V
distribution which can be written as:
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Here, the expectations necessary to derive the elements of
the Fisher information matrix are:
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B(x,y) W is a Beta function.
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Hence, the elements of the Fisher information matrix
becomes
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The variance covariance can be obtained by inverting the
Fisher information matrix as:

v (9)

cov(2.6) V(i)

- (9,/1): Cov(/l,H)

where, the diagonal elements of the matrix are the variances of
the MLEs off andA respectively. The approximate
confidence intervals for @ and A as discussed by Wu and Kus
[25] are:

A

042, N (0) md i22,, V(1)

IV. LIMITING FISHER INFORMATION MATRIX

This section discusses the asymptotic efficiencies and
limiting information matrix when % converges to, say, P

which lies in (0,1). According to Gupta et al. [26], for the

left censored observations at the time pointT ,
Fisher information matrix can be written as

b, b
b21 bzz
where

By =[G Ty ) ()
T J

the limiting

-0

function. Zheng and Gastwirth [27] have shown that for
location and scale family, the Fisher information matrix for

the reversed hazard

and = (6,4),
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Type-I and Type-II (both for left and right censored data) are
asymptotically equivalent. They further described that for
general case (not for location and scale family) the results for
Type-Il censored data (both for left and right) of the
asymptotic Fisher information matrices are very difficult to
obtain. We cannot obtain the explicit expression for the
limiting Fisher information matrix for Burr type V distribution
under left censored samples as it does not belong to the
location and scale family. Numerically, we have studied the
limiting behavior of the Fisher information matrix by taking
N =5000 (assuming it is very large) and compare them with
the different small samples and different ‘p’ values. The
numerical results have been presented in Section (5).

V.RESULTS AND DISCUSSIONS

This section covers the discussions regarding the results of
the simulation study for n = 30, 50, 70, 100 and 150 using
parametric space

(6.4)={(0.5,15,2,2.5,3),(0.5,1.5,2,2.5,3)} under

10% and 20% left censored samples. The purpose of the
simulation study is to assess the behavior of the MLEs and
confidence intervals for the parameters of the Burr type V
distribution. As the MLE of parameter A cannot be obtained
in the explicit form, a fixed point iteration scheme has been

proposed to have the approximate MLE of the parameter A .
The performance of the MLEs have been evaluated in terms of
their mean square errors (MSEs); while, the performance of
the confidence intervals have been discussed on the basis of
the widths of the intervals along with corresponding coverage
probabilities. The inverse transformation method has been
used to generate the random samples from the distribution.
The function used for the generation of the random numbers

is: Y =tan™' [—ln{ﬂ’l (U e —1)}} where U is the

random variable following the uniform distribution. For the
whole parametric space of the @ we have assumed A =2 and

for the entire parametric space of A we assumed @ = 2. The
entries in the tables below are the average of the results under
1000 replications. The average relative estimate (A.R.E)
defined as the ratio of MLE to the true parametric value, MSE,
lower confidence limits (LCL), upper confidence limits
(UCL), width of the confidence limits and associated coverage
probabilities (C.P) calculated by the proportion of the intervals
containing the true parametric values to the total (1000)
intervals, have been presented in the tables.

TABLEIT
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND
COVERAGE PROBABILITY OF ® WHEN N = 30

2.00 1.2738  0.5403  1.5867 3.5086  1.9219 0.9560
250 1.2776  0.8596  1.9893  4.3989  2.4096 0.9620
3.00 1.2789  1.2453 23895 52840  2.8945 0.9610

20% Censored Samples

0.50 1.2280  0.0287  0.3684  0.8597  0.4913 0.9430
1.00  1.2894  0.1531  0.7736  1.8053  1.0318 0.9470
1.50  1.3023 03647 1.1719  2.7351 1.5631 0.9500
2.00 1.3049  0.6558  1.5657  3.6540  2.0883 0.9460
250 1.3089  1.0423  1.9630  4.5813  2.6183 0.9540
3.00 13102 1.5095 23580  5.5030  3.1450 0.9550

TABLEII
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND
COVERAGE PROBABILITY OF ® WHEN N = 50

AR.E MSE LCL UCL Width C.Pp
10% Censored Samples

0.50  1.1250  0.0109  0.3981 0.7268 03287  0.9570
100 11812  0.0638  0.8361  1.5263  0.6903  0.9590
L50 1.1930  0.1550 12667 23124  1.0457  0.9630
200 11954 02798  1.6923  3.0894 1.3971  0.9610
250 11990 04472 21217 3.8733 17516  0.9670
3.00 12002 0.6488  2.5486 4.6526  2.1040  0.9680

20% Censored Samples

0.50  1.1525  0.0141 03977 0.7548 03571  0.9490
100 12101  0.0807  0.8351 1.5851  0.7500  0.9510
150 12222 0.1951 1.2651 24014  1.1363  0.9520
200 12246 03518  1.6902 3.2083 15181  0.9550
250 12283 0.5615 21191 4.0224  1.9033  0.9580
3.00 12295  0.8143  2.5455 4.8317 22862  0.9600

TABLE III
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND
COVERAGE PROBABILITY OF ® WHEN N =70

ARE MSE LCL UCL Width C.P
10% Censored Samples

0.50  1.0736  0.0059 04042  0.6693 02651  0.9470
100 1.1272  0.0364 0.8489  1.4056  0.5567  0.9500
150 11385  0.0895  1.2861  2.1295  0.8434  0.9540
2.00  1.1408 0.1619  1.7182  2.8450  1.1268  0.9600
250 11442 02599 21542 3.5669 14127  0.9660
3.00 11454 03776 25876 42846  1.6970  0.9750

20% Censored Samples

0.50  1.0998  0.0079 04059  0.6939  0.2881  0.9380
100 1.1548  0.0478  0.8523 14572  0.6049  0.9410
150 11663  0.1169 12913 22077 09164  0.9420
200 11687 02113  1.7251 29495  1.2244  0.9500
250 11722 03386 21629  3.6979 15351  0.9580
300 1.1733  0.4917 25981  4.4420  1.8439  0.9670

TABLE IV
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND
COVERAGE PROBABILITY OF ® WHEN N = 100

ARE MSE LCL UCL Width C.p
10% Censored Samples

ARE MSE LCL UCL Width C.P
10% Censored Samples

0.50  1.1987  0.0232  0.3733  0.8255  0.4522 0.9520
1.00  1.2587  0.1256  0.7839  1.7335  0.9496 0.9540
1.50  1.2713  0.3002  1.1876  2.6262  1.4386 0.9580

0.50 1.0286  0.0031 0.4081 0.6206 02125  0.9570
1.00 1.0801 0.0194  0.8569 1.3032  0.4463  0.9600
1.50 1.0909  0.0483 1.2983 1.9744  0.6761  0.9720
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2.00 1.0931 0.0877 1.7345 2.6378 0.9033  0.9690
2.50 1.0963 0.1415 2.1746 3.3071 1.1325  0.9760
3.00 1.0974 0.2059  2.6121 3.9725 1.3604  0.9850

2.00 0.9588 0.0885 1.3573  2.4778  1.1205  0.9630
2.50 0.9616 0.1376 ~ 1.7017  3.1066  1.4049  0.9700
3.00 0.9626 0.1979  2.0441 3.7316  1.6875  0.9780

20% Censored Samples

20% Censored Samples

0.50 1.0538 0.0042 0.4114  0.6424  0.2309  0.9490
1.00 1.1065 0.0266 0.8640 1.3489 0.4849  0.9520
1.50 1.1175 0.0662 1.3090  2.0436 0.7347  0.9620
2.00 1.1198 0.1201 1.7488 2.7303 0.9815  0.9610
2.50 1.1231 0.1933 2.1925 3.4231 1.2306  0.9650
3.00 1.1243 0.2811 2.6337 4.1119 1.4782  0.9770

0.50 0.9481 0.0063  0.3271  0.6209  0.2938  0.9430
1.00 0.9435 0.0255  0.6511 1.2358  0.5848  0.9540
1.50 0.9425 0.0574 09756  1.8519  0.8763  0.9480
2.00 0.9444 0.1016  1.3034  2.4741 1.1707  0.9550
2.50 0.9472 0.1576 ~ 1.6342  3.1019  1.4677  0.9600
3.00 0.9482 0.2265  1.9630  3.7260  1.7630  0.9690

TABLEV
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND
COVERAGE PROBABILITY OF ® WHEN N = 150

TABLE VIII
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND
COVERAGE PROBABILITY OF A WHEN N = 70

ARE MSE LCL UCL Width C.p
10% Censored Samples

ARE MSE LCL UCL Width C.Pp
10% Censored Samples

0.50  1.0119 0.0019 0.4206 0.5913 0.1707  0.9590
1.00  1.0624 0.0123 0.8832 1.2417 0.3584  0.9620
1.50  1.0731 0.0312 1.3381 1.8811 0.5430  0.9650
2.00 1.0752 0.0569 1.7877 25132 0.7255 09730
250  1.0784 0.0923 2.2413 3.1509 0.9096  0.9780
3.00 1.0795 0.1346 2.6922 3.7849 1.0926  0.9870

0.50  0.9694 0.0040  0.3650  0.6044  0.2394  0.9480
1.00  0.9646 0.0160  0.7264 1.2028  0.4764  0.9510
1.50  0.9637 0.0361 1.0886 1.8025  0.7139  0.9550
2.00  0.9656 0.0639 1.4543  2.4081 0.9538  0.9600
250  0.9685 0.0993 1.8234  3.0192 1.1958  0.9670
3.00  0.9695 0.1427  2.1902  3.6266 1.4364  0.9760

20% Censored Samples

20% Censored Samples

0.50  1.0366 0.0026 0.4256 0.6110 0.1855  0.9480
1.00  1.0884 0.0177 0.8937 1.2831 0.3895  0.9510
1.50  1.0993 0.0448 1.3539 1.9440 0.5901  0.9540
2.00 1.1015 0.0816 1.8088 2.5971 0.7883  0.9600
250  1.1048 0.1322 2.2678 3.2562 0.9884  0.9670
3.00 1.1059 0.1927 2.7241 3.9113 1.1872  0.9750

0.50  0.9548 0.0046  0.3524  0.6024  0.2501 0.9360
1.00  0.9502 0.0186  0.7013 1.1990  0.4977  0.9430
1.50  0.9492 0.0420 1.0509 1.7968  0.7459  0.9460
2.00  0.9511 0.0742 1.4040  2.4005  0.9965  0.9510
250  0.9540 0.1148 1.7603  3.0096 1.2493  0.9550
3.00  0.9549 0.1648  2.1145  3.6151 1.5007  0.9660

TABLE VI
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND
COVERAGE PROBABILITY OF A WHEN N = 30

TABLE IX
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND
COVERAGE PROBABILITY OF A WHEN N = 100

ARE MSE LCL UCL Width C.Pp
10% Censored Samples

ARE MSE LCL UCL Width C.p
10% Censored Samples

0.50  0.9527 0.0090 0.2967 0.6561 0.3594  0.9470
1.00  0.9481 0.0360 0.5905 1.3057 0.7153  0.9570
1.50  0.9472 0.0810 0.8848 1.9567 1.0718  0.9550
2.00  0.9491 0.1438 1.1821 2.6141 1.4320  0.9590
250  0.9519 0.2242 1.4821 3.2774 1.7953  0.9660
3.00 0.9529 0.3226 1.7803 3.9368 2.1565 09750

0.50 09829  0.0028 0.3899 0.5930 0.2031  0.9530
1.00 09781 0.0111 0.7760 1.1802 0.4041  0.9560
1.50 09771 0.0250 1.1629 1.7685 0.6056  0.9600
2.00 0.9791 0.0444 1.5536 2.3627 0.8091  0.9660
250 09820  0.0690 1.9478 2.9622 1.0144  0.9720
3.00 09830  0.0992 2.3397 3.5582 1.2185  0.9810

20% Censored Samples

20% Censored Samples

0.50  0.9385 0.0101 0.2815 0.6570 0.3755  0.9370
1.00  0.9339 0.0407 0.5603 1.3075 0.7473  0.9480
1.50  0.9330 0.0917 0.8395 1.9593 1.1198  0.9430
2.00 0.9348 0.1626 1.1216 2.6177 1.4960  0.9470
250  0.9376 0.2533 1.4062 3.2819 1.8756  0.9590
3.00 0.9386 0.3643 1.6892 3.9422 22530 0.9680

0.50  0.9681 0.0032 0.3780 0.5901 0.2121  0.9440
1.00 09634  0.0129 0.7523 1.1745 0.4222  0.9470
1.50  0.9625 0.0292 1.1273 1.7600 0.6327  0.9520
2.00 09644  0.0516 1.5061 23514 0.8453  0.9590
2.50  0.9673 0.0798 1.8883 2.9481 1.0598  0.9630
3.00 09682  0.1145 2.2682 3.5412 12730 0.9740

TABLE VII
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND
COVERAGE PROBABILITY OF A WHEN N = 50

TABLE X
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND
COVERAGE PROBABILITY OF A WHEN N = 150

ARE MSE LCL UCL Width C.P

A
10% Censored Samples

ARE MSE LCL UCL Width C.Pp
10% Censored Samples

0.50 0.9625 0.0055  0.3406  0.6219  0.2812  0.9510
1.00 0.9578 0.0222  0.6780  1.2377  0.5597  0.9610
1.50 0.9569 0.0500  1.0159  1.8547  0.8387  0.9590

0.50  0.9912 0.0018 0.4120 0.5792 0.1672  0.9610
1.00  0.9864 0.0074 0.8200 1.1528 0.3328  0.9640
1.50  0.9854 0.0167 1.2287 1.7274 0.4987  0.9680
2.00 0.9874 0.0295 1.6416 2.3078 0.6662  0.9740
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2.50  0.9903 0.0460  2.0581 2.8934  0.8353  0.9810
3.00 0.9913 0.0662 24722  3.4756 1.0033  0.9900
20% Censored Samples
0.50  0.9763 0.0021 0.4008 0.5755 0.1747  0.9520
1.00 09716  0.0087  0.7977 1.1454  0.3477  0.9550
1.50 09706  0.0196 1.1954 1.7164  0.5210  0.9590
2.00 0.9725 0.0345 1.5971 2.2931 0.6960  0.9660
250 09755 0.0533 2.0023 2.8750  0.8727  0.9730
3.00 09764  0.0765 24052  3.4534 1.0482  0.9860

It is immediate from the above analysis that the shape
parameter & has been over estimated; while the parameter A
has been under estimated for all sample sizes and under each
censoring rate. The degree of over/under estimation is
inversely proportional to sample size, while it is directly
proportional to the true parametric value and the censoring
rate. It has also been assessed that the estimates of parameter
A are comparatively closer to the actual values. However, the
magnitudes of the mean square error (MSE) associated with
the estimates of both the parameters tend to decrease by
increasing the sample size. Again, greater sample sizes lead to
the smaller widths of the confidence intervals and larger
coverage probabilities. This simply indicates that the
estimators of the parameters are consistent. It is interesting to
note that for higher true parametric values, the coverage
probabilities are relatively bigger due to the larger widths of
the concerned confidence intervals. On the other hand, larger
levels of the censoring rate result in the slower convergence
(towards the true parametric values) of the estimates with
inflated amounts of MSEs, hence providing wider confidence
intervals. So, the performance of the estimators has been
negatively affected by the increased censoring rates. It is a
natural consequence of the censoring. However, it has been
observed that the affects of the left censored observations are
not that much severe in case of bigger sample sizes. Further
for fixed sample size and censoring rate, the higher actual
values of the parameters impose a negative impact on the
performance (in terms of MSEs, convergence rate and widths
of confidence intervals) of the estimates. It leads to the
conclusion that the estimation of extremely large values of the
parameters of the Burr type V distribution may become
difficult and the Fisher information matrix may be the
decreasing function of the parameters. But the moderate to
huge sample sizes can face off this problem.

In the tables 11-14, we have discussed the limiting behavior
of the variance covariance matrix obtained by inverting the
fisher information matrix given in (12). As the analytical
results of the Fisher information matrix for N —> o0 cannot be
obtained, we have calculated the entries of the Fisher
information/variance covariance matrix by taking n = 5000
(extremely large). Different levels of the censoring rate have
been employed for the analysis. Each table contains the
variance of the concerned estimator along with their
covariance. The covariance terms have been presented in the
parenthesis.

TABLE XI

A
ELEMENTS OF VARIANCE-COVARIANCE MATRIX INCLUDING V (0) AND

Cov ( /1, 9) FOR 10% CENSORED DATA (A =2)

0 Sample Size
30 50 70 100 150 5000
0.0133 0.0070 0.0045 0.0029 0.0018 0.0015
030 (0.0157)  (0.0164) (0.0107) (0.0068) (0.0044) (0.0035)
0.0586 0.0310 0.0201 0.0129 0.0083 0.0066
100 (0.0692) (0.0780) (0.0507) (0.0326) (0.0210) (0.0168)
1.50 0.1346 0.0711 0.0462 0.0297 0.0191 0.0153
(0.1590)  (0.1741)  (0.1132)  (0.0727) (0.0469) (0.0375)
500 0.2403 0.1270 0.0826 0.0531 0.0342 0.0274
(0.2838)  (0.3488)  (0.2269) (0.1458)  (0.0940) (0.0752)
250 0.3778 0.1996 0.1298 0.0834 0.0538 0.0430
(0.4461)  (0.5683) (0.3697) (0.2376) (0.1532)  (0.1226)
300 0.5452 0.2880 0.1874 0.1204 0.0776 0.0621
(0.6436)  (0.8488)  (0.5521) (0.3548) (0.2289) (0.1831)

TABLE XII

A
ELEMENTS OF VARIANCE-COVARIANCE MATRIX INCLUDING V (H) AND

Cov ( ﬂy, 9) FOR 20% CENSORED DATA (A =2)

Sample Size

0 30 50 70 100 150 5000
0.0157  0.0083  0.0054  0.0034  0.0022  0.0017
050 (0.0368)  (0.0194) (0.0126)  (0.0081)  (0.0052)  (0.0042)
oo 00692 00366 00238 00153 00098  0.0078
(0.1743)  (0.0921)  (0.0599)  (0.0385) (0.0248)  (0.0198)
5o 01590 00840 00546 00351 00226 00181
(0.3890)  (0.2055) (0.1337)  (0.0859) (0.0554)  (0.0443)
00 02838 01499 00975 00626 00404 00323
(0.4000)  (0.2449) (0.1774) (0.1277)  (0.0865)  (0.0692)
L5 O0M61 02357 01533 00985 00635 0.0508
(1.2698)  (0.6710) (0.4365) (0.2805) (0.1809)  (0.1447)
g0 0646 03401 02212 01421 00917 00733
(1.8966)  (1.0022) (0.6519) (0.4189) (0.2702) (0.2162)
TABLE XII

ELEMENTS OF VARIANCE-COVARIANCE MATRIX INCLUDING V (/I) AND

Cov ( /1, 9) FOR 10% CENSORED DATA (© =2)

Sample Size

A 30 50 70 100 150 5000
0.0084  0.0051  0.0037  0.0026 00018  0.0014
0-50 (0.0197)  (0.0120) (0.0087)  (0.0062)  (0.0042)  (0.0034)
oo 00332 00203 00147 00106 00072 0.0057
(0.0837)  (0.0513) (0.0371)  (0.0267)  (0.0181) (0.0145)

so 00747 00457 00331 00238 00161 00129
(0.1829)  (0.1120) (0.0811)  (0.0583)  (0.0395) (0.0316)

o0 01334 00817 00592 00426 00288 00231
(0.2838)  (0.3488)  (0.2269) (0.14584)  (0.0940) (0.0752)

250 02097  0.1284  0.0930  0.0669  0.0454  0.0363
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(0.5970)  (0.3656) (0.2648)  (0.1906)  (0.1292)  (0.1033)
03026  0.1853  0.1342  0.0966  0.0655  0.0524
(0.8917)  (0.5460) (0.3956)  (0.2847)  (0.1930) (0.1544)

TABLE XIV

ELEMENTS OF VARIANCE-COVARIANCE MATRIX INCLUDING V (/1) AND

Cov (ﬁ, (9) FOR 20% CENSORED DATA (© = 2)

Sample Size

r 30 50 70 100 150 5000
0.0091  0.0056  0.0040  0.0029  0.019  0.0015
050 (0.0215)  (0.0131)  (0.0095) (0.0068) (0.0046) (0.0037)
oo 00363 00222 00161 00116 00078  0.0062
(0.0914)  (0.0559)  (0.0405) (0.0291) (0.0197) (0.0158)
00816  0.0499  0.0362  0.0260 00176  0.0141
150 (0.1996)  (0.1222)  (0.0885) (0.0637) (0.0432)  (0.0345)
oo 01456 00891 00646 00465 00315 00252
(0.4000)  (0.2449)  (0.1774) (0.1277)  (0.0865)  (0.0692)
5o 02289 01401 01015 00730 0.0495 0039
(0.6517)  (0.3990) (0.2891) (0.2080) (0.1410)  (0.1128)
03303 02022  0.1465  0.1054  0.0715  0.0572
300 (0.9733)  (0.5960) (0.4318) (0.3107) (0.2106) (0.1685)

VI. CONCLUSIONS AND RECOMMENDATIONS

It is evident from the above tables that even the small
samples sizes with higher censoring rates are closely related to
the limiting figures of the variance covariance matrix. It
implies that the approximate variance covariance matrix can
be used for the analysis of the unknown parameters of the Burr
type V distribution. It further indicates that the proposed
maximum likelihood point and interval estimates can
effectively be applied to the real life situations using moderate
sample sizes. The findings are useful for researchers dealing
with left censored data especially in the field of medical
sciences.
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