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Abstract—The paper deals with the maximum likelihood 

estimation of the parameters of the Burr type V distribution based on 
left censored samples. The maximum likelihood estimators (MLE) of 
the parameters have been derived and the Fisher information matrix 
for the parameters of the said distribution has been obtained 
explicitly. The confidence intervals for the parameters have also been 
discussed. A simulation study has been conducted to investigate the 
performance of the point and interval estimates. 

 
Keywords—Fisher information matrix, confidence intervals, 

censoring. 

I. INTRODUCTION 
URR family of distributions consists of a dozen of 
distributions these can be used to fit almost any given set 

of unimodal data. Burr [1] proposed these distributions. From 
these twelve distributions Burr type X and XII have received 
the maximum attention of the analysts. The authors 
considering the analysis of Burr type X and XII include: 
Surles and Padgett [2], Mousa and Jaheen [3], Soliman [4], 
Shao [5], Shao et al. [6], Soliman [7], Wu and Yu [8], Amjad 
and Ayman [9], Wahed [10], Wu et al. [11], Aludaat et al. 
[12], Silva et al. [13],  Yarmohammadi and Pazira [14], 
Dasgupta [15], Makhdoom  and Jafari [16],  Panahi and Asadi 
[17] and Feroze and Aslam [18]. The remaining types of the 
Burr family of distributions haven’t received a considerable 
interest of the analysts; same is the case with Burr type V 
distributions. The Burr Type V distribution can be used to 
model the lifetime data. The probability density function (pdf) 
of the distribution is: 
 

( ) ( ) 1tan 2 tansec 1y yf y e y e
θ

θλ λ
− −− −= +  , 

2 2
yπ π

− < <

, , 0λ θ >  
(1)

  
The cumulative distribution function of this distribution is:

 

( ) ( )tan1 yF y e
θ

λ
−−= +                  (2)

 
 
where  λ  and θ are the location parameters of the 
distribution.  

This distribution is still waiting for the attention of the 
researchers may be due to its complex pdf. Many properties of 
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the parameters of the distribution under different estimation 
procedures are still to be revealed. To deal with characteristics 
of such deprived distributions is always important for the 
researchers. The investigation of properties of such 
distributions can be beneficial to the professionals looking to 
use those distributions as models. The rare consideration of 
the Burr type V distribution in the literature is a motivation for 
the resent study. 

Censoring is useful procedure when the value of a 
measurement or observation is only partially known. That is, 
all information regarding a portion of the sample/population is 
omitted or do not exist. In practice, it occurs when an observed 
value is outside the range of a measuring instrument or the 
measure outside a range is not desired. Censoring has many 
types; however, we will concentrate on the left censored 
samples for the estimation of the said parameters. The left 
censored data is very likely to occur in survivor analysis. It 
can happen where and event of interest has already occurred at 
the observation time, but it is not known exactly when. For 
example, the situations including: the infection with a 
sexually-transmitted disease such as HIV/AIDS, onset of a 
pre-symptomatic illness such as cancer and time at which 
teenagers begin to drink alcohol can lead to left censored data. 
In case of left censored samples, we can only observe those 
individuals whose event time is greater than some truncation 
point. This truncation point may or may not be the same for all 
individuals. For example, in case of actuarial life studies, the 
individuals those died in the womb are often ignored. Another 
example: suppose you wish to study how long patients who 
have been hospitalized for a heart attack survive taking some 
treatment at home. In such situations, the starting time is often 
considered to be the time of the heart attack. Only those 
patients who survive their stay in hospital are able to be 
included in the study. The more illustrations on left censoring 
can be seen from Jerald and Lawless [19], Sinha [20], 
Asselineau et al. [21], Antweller and Taylor [22], Thompson 
et al. [23] and Feroze and Aslam [24].  

We have considered the maximum likelihood estimation 
(MLE) of the Burr type V distribution under left censored 
samples. As the explicit expressions for the maximum 
likelihood estimators of the parameters cannot be obtained, a 
fixed point iteration technique has been used to obtain the 
MLE of shape parameter λ . Once the MLE of λ  has been 
obtained the MLE of the second shape parameter θ  become 
possible to be solved explicitly. In addition, the Fisher 
information matrix has been derived explicitly and the 
variance covariance matrix has been obtained by inverting the 
information matrix. The approximate confidence intervals for 
both the parameters have also been constructed. A 
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comprehensive simulation study has been carried out to assess 
the behavior and performance of the estimates under different 
sample sizes, parametric space and various degrees of 
censoring rate. 

II. MAXIMUM LIKELIHOOD ESTIMATION 
Based on the left censored sample the maximum likelihood 

function along with maximum likelihood estimators of the 
parameters of the Burr type V distribution have been discussed 
in the following. Let ( ) ( )1 ...r nY Y+ be the last n r−  ordered 

statistics from the Burr type V distribution. Then, the 
likelihood function for the sample of  n r−  left censored 
sample is: 
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(4)
 The logarithmic of the likelihood function can be written as:  
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The normal equations for the derivation of the MLE of the
λ and θ parameters are: 
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From (6), the MLE of θ  can be derived as a function of λ

that can be denoted as 
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It is immediate from (7) that the MLE of λ cannot be 
obtained in an explicit form. So, we have to play some 
mathematical/numerical tricks to find out the approximate 
MLE of λ . Firstly, the parameterθ  in log-likelihood (5) has 

been replaced by its MLE given in (8) the resultant log-
likelihood becomes:  
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After some simplifications it can be presented as: 
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For MLE of λ , the normal equation can be given as: 
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(10) 
 
Again the explicit solution for MLE of λ  is not possible. 

We have used the fixed point iteration method to have the 
approximate solution MLE of λ  by considering the following 
function. 
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(11) 
 
The final result of the above function has been considered 

as an MLE of λ  and denoted by λ̂ . Now, the value of λ̂  
facilitated to find out the solution for MLE of θ  given in (8), 

that can be denoted by ( )ˆ ˆθ λ .
 

III.   APPROXIMATE FISHER INFORMATION MATRIX 
In this section, the elements of the Fisher information 

matrix for the parameters of the Burr type V distribution based 
on left censored samples have been derived explicitly. The 
variance covariance matrix for the parameters of the Burr type 
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V distribution can be obtained by inverting the Fisher 
information matrix which has been used construct the 
confidence intervals for the said parameters. The Fisher 
information matrix can be defined as: 
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The equations for the elements of the Fisher information 
matrix can be written as: 
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Now, the expected values of the (14) and (15) require the 

distribution of the thi order statistics from the Burr type V 
distribution which can be written as:  
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Here, the expectations necessary to derive the elements of 
the Fisher information matrix are: 
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After simplifications it becomes 
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Hence, the elements of the Fisher information matrix 

becomes 
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The variance covariance can be obtained by inverting the 

Fisher information matrix as:  
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where, the diagonal elements of the matrix are the variances of 
the MLEs ofθ  and λ respectively. The approximate 
confidence intervals forθ  and λ  as discussed by Wu and Kus 
[25] are: 

( )/2
ˆ ˆZ Vαθ θ±  and ( )/2

ˆ ˆZ Vαλ λ±  

IV. LIMITING FISHER INFORMATION MATRIX 
This section discusses the asymptotic efficiencies and 

limiting information matrix when r
n  converges to, say, p  

which lies in (0,1) . According to Gupta et al. [26], for the 
left censored observations at the time pointT , the limiting 
Fisher information matrix can be written as  
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function.  Zheng and Gastwirth [27] have shown that for 
location and scale family, the Fisher information matrix for 
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Type-I and Type-II (both for left and right censored data) are 
asymptotically equivalent.  They further described that for 
general case (not for location and scale family) the results for 
Type-II censored data (both for left and right) of the 
asymptotic Fisher information matrices are very difficult to 
obtain.  We cannot obtain the explicit expression for the 
limiting Fisher information matrix for Burr type V distribution 
under left censored samples as it does not belong to the 
location and scale family. Numerically, we have studied the 
limiting behavior of the Fisher information matrix by taking 

5000n =  (assuming it is very large) and compare them with 
the different small samples and different ‘p’ values.  The 
numerical results have been presented in Section (5).

 V. RESULTS AND DISCUSSIONS 
This section covers the discussions regarding the results of 

the simulation study for n = 30, 50, 70, 100 and 150 using 
parametric space 

( ) ( ) ( ){ }, 0.5,1.5,2,2.5,3 , 0.5,1.5,2,2.5,3θ λ = under 

10% and 20% left censored samples. The purpose of the 
simulation study is to assess the behavior of the MLEs and 
confidence intervals for the parameters of the Burr type V 
distribution. As the MLE of parameter λ cannot be obtained 
in the explicit form, a fixed point iteration scheme has been 
proposed to have the approximate MLE of the parameter λ . 
The performance of the MLEs have been evaluated in terms of 
their mean square errors (MSEs); while, the performance of 
the confidence intervals have been discussed on the basis of 
the widths of the intervals along with corresponding coverage 
probabilities. The inverse transformation method has been 
used to generate the random samples from the distribution. 
The function used for the generation of the random numbers 

is: ( ){ }1 1 1/tan ln 1Y U θλ− − −⎡ ⎤= − −⎣ ⎦  where U is the 

random variable following the uniform distribution. For the 
whole parametric space of theθ we have assumed 2λ =  and 
for the entire parametric space of λ we assumed 2θ = . The 
entries in the tables below are the average of the results under 
1000 replications. The average relative estimate (A.R.E) 
defined as the ratio of MLE to the true parametric value, MSE, 
lower confidence limits (LCL), upper confidence limits 
(UCL), width of the confidence limits and associated coverage 
probabilities (C.P) calculated by the proportion of the intervals 
containing the true parametric values to the total (1000) 
intervals, have been presented in the tables. 

 
TABLE I 

AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND 
COVERAGE PROBABILITY OF Θ WHEN N = 30 

θ 
A.R.E MSE LCL UCL Width C.P 

10% Censored Samples 

0.50 1.1987 0.0232 0.3733 0.8255 0.4522 0.9520 

1.00 1.2587 0.1256 0.7839 1.7335 0.9496 0.9540 

1.50 1.2713 0.3002 1.1876 2.6262 1.4386 0.9580 

2.00 1.2738 0.5403 1.5867 3.5086 1.9219 0.9560 

2.50 1.2776 0.8596 1.9893 4.3989 2.4096 0.9620 

3.00 1.2789 1.2453 2.3895 5.2840 2.8945 0.9610 

20% Censored Samples 

0.50 1.2280 0.0287 0.3684 0.8597 0.4913 0.9430 

1.00 1.2894 0.1531 0.7736 1.8053 1.0318 0.9470 

1.50 1.3023 0.3647 1.1719 2.7351 1.5631 0.9500 

2.00 1.3049 0.6558 1.5657 3.6540 2.0883 0.9460 

2.50 1.3089 1.0423 1.9630 4.5813 2.6183 0.9540 

3.00 1.3102 1.5095 2.3580 5.5030 3.1450 0.9550 
 

TABLE II 
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND 

COVERAGE PROBABILITY OF Θ WHEN N = 50 

θ 
A.R.E MSE LCL UCL Width C.P 

10% Censored Samples 
0.50 1.1250 0.0109 0.3981 0.7268 0.3287 0.9570 
1.00 1.1812 0.0638 0.8361 1.5263 0.6903 0.9590 
1.50 1.1930 0.1550 1.2667 2.3124 1.0457 0.9630 
2.00 1.1954 0.2798 1.6923 3.0894 1.3971 0.9610 
2.50 1.1990 0.4472 2.1217 3.8733 1.7516 0.9670 
3.00 1.2002 0.6488 2.5486 4.6526 2.1040 0.9680 

20% Censored Samples 
0.50 1.1525 0.0141 0.3977 0.7548 0.3571 0.9490 
1.00 1.2101 0.0807 0.8351 1.5851 0.7500 0.9510 
1.50 1.2222 0.1951 1.2651 2.4014 1.1363 0.9520 
2.00 1.2246 0.3518 1.6902 3.2083 1.5181 0.9550 
2.50 1.2283 0.5615 2.1191 4.0224 1.9033 0.9580 
3.00 1.2295 0.8143 2.5455 4.8317 2.2862 0.9600 

 
TABLE III 

AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND 
COVERAGE PROBABILITY OF Θ WHEN N = 70 

θ 
A.R.E MSE LCL UCL Width C.P 

10% Censored Samples 
0.50 1.0736 0.0059 0.4042 0.6693 0.2651 0.9470 
1.00 1.1272 0.0364 0.8489 1.4056 0.5567 0.9500 
1.50 1.1385 0.0895 1.2861 2.1295 0.8434 0.9540 
2.00 1.1408 0.1619 1.7182 2.8450 1.1268 0.9600 
2.50 1.1442 0.2599 2.1542 3.5669 1.4127 0.9660 
3.00 1.1454 0.3776 2.5876 4.2846 1.6970 0.9750 

20% Censored Samples 
0.50 1.0998 0.0079 0.4059 0.6939 0.2881 0.9380 
1.00 1.1548 0.0478 0.8523 1.4572 0.6049 0.9410 
1.50 1.1663 0.1169 1.2913 2.2077 0.9164 0.9420 
2.00 1.1687 0.2113 1.7251 2.9495 1.2244 0.9500 
2.50 1.1722 0.3386 2.1629 3.6979 1.5351 0.9580 
3.00 1.1733 0.4917 2.5981 4.4420 1.8439 0.9670 

 
TABLE IV 

AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND 
COVERAGE PROBABILITY OF Θ WHEN N = 100 

θ 
A.R.E MSE LCL UCL Width C.P 

10% Censored Samples 

0.50 1.0286 0.0031 0.4081 0.6206 0.2125 0.9570 

1.00 1.0801 0.0194 0.8569 1.3032 0.4463 0.9600 

1.50 1.0909 0.0483 1.2983 1.9744 0.6761 0.9720 
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2.00 1.0931 0.0877 1.7345 2.6378 0.9033 0.9690 

2.50 1.0963 0.1415 2.1746 3.3071 1.1325 0.9760 

3.00 1.0974 0.2059 2.6121 3.9725 1.3604 0.9850 

20% Censored Samples 

0.50 1.0538 0.0042 0.4114 0.6424 0.2309 0.9490 

1.00 1.1065 0.0266 0.8640 1.3489 0.4849 0.9520 

1.50 1.1175 0.0662 1.3090 2.0436 0.7347 0.9620 

2.00 1.1198 0.1201 1.7488 2.7303 0.9815 0.9610 

2.50 1.1231 0.1933 2.1925 3.4231 1.2306 0.9650 

3.00 1.1243 0.2811 2.6337 4.1119 1.4782 0.9770 
 

TABLE V 
AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND 

COVERAGE PROBABILITY OF Θ WHEN N = 150 

θ 
A.R.E MSE LCL UCL Width C.P 

10% Censored Samples 
0.50 1.0119 0.0019 0.4206 0.5913 0.1707 0.9590 
1.00 1.0624 0.0123 0.8832 1.2417 0.3584 0.9620 
1.50 1.0731 0.0312 1.3381 1.8811 0.5430 0.9650 
2.00 1.0752 0.0569 1.7877 2.5132 0.7255 0.9730 
2.50 1.0784 0.0923 2.2413 3.1509 0.9096 0.9780 
3.00 1.0795 0.1346 2.6922 3.7849 1.0926 0.9870 

20% Censored Samples 
0.50 1.0366 0.0026 0.4256 0.6110 0.1855 0.9480 
1.00 1.0884 0.0177 0.8937 1.2831 0.3895 0.9510 
1.50 1.0993 0.0448 1.3539 1.9440 0.5901 0.9540 
2.00 1.1015 0.0816 1.8088 2.5971 0.7883 0.9600 
2.50 1.1048 0.1322 2.2678 3.2562 0.9884 0.9670 
3.00 1.1059 0.1927 2.7241 3.9113 1.1872 0.9750 

 
TABLE VI 

AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND 
COVERAGE PROBABILITY OF Λ WHEN N = 30 

λ 
A.R.E MSE LCL UCL Width C.P 

10% Censored Samples 
0.50 0.9527 0.0090 0.2967 0.6561 0.3594 0.9470 
1.00 0.9481 0.0360 0.5905 1.3057 0.7153 0.9570 
1.50 0.9472 0.0810 0.8848 1.9567 1.0718 0.9550 
2.00 0.9491 0.1438 1.1821 2.6141 1.4320 0.9590 
2.50 0.9519 0.2242 1.4821 3.2774 1.7953 0.9660 
3.00 0.9529 0.3226 1.7803 3.9368 2.1565 0.9750 

20% Censored Samples 
0.50 0.9385 0.0101 0.2815 0.6570 0.3755 0.9370 
1.00 0.9339 0.0407 0.5603 1.3075 0.7473 0.9480 
1.50 0.9330 0.0917 0.8395 1.9593 1.1198 0.9430 
2.00 0.9348 0.1626 1.1216 2.6177 1.4960 0.9470 
2.50 0.9376 0.2533 1.4062 3.2819 1.8756 0.9590 
3.00 0.9386 0.3643 1.6892 3.9422 2.2530 0.9680 

 
TABLE VII 

AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND 
COVERAGE PROBABILITY OF Λ WHEN N = 50 

λ 
A.R.E MSE LCL UCL Width C.P 

10% Censored Samples 
0.50 0.9625 0.0055 0.3406 0.6219 0.2812 0.9510 
1.00 0.9578 0.0222 0.6780 1.2377 0.5597 0.9610 
1.50 0.9569 0.0500 1.0159 1.8547 0.8387 0.9590 

2.00 0.9588 0.0885 1.3573 2.4778 1.1205 0.9630 
2.50 0.9616 0.1376 1.7017 3.1066 1.4049 0.9700 
3.00 0.9626 0.1979 2.0441 3.7316 1.6875 0.9780 

20% Censored Samples 
0.50 0.9481 0.0063 0.3271 0.6209 0.2938 0.9430 
1.00 0.9435 0.0255 0.6511 1.2358 0.5848 0.9540 
1.50 0.9425 0.0574 0.9756 1.8519 0.8763 0.9480 
2.00 0.9444 0.1016 1.3034 2.4741 1.1707 0.9550 
2.50 0.9472 0.1576 1.6342 3.1019 1.4677 0.9600 
3.00 0.9482 0.2265 1.9630 3.7260 1.7630 0.9690 

 
TABLE VIII 

AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND 
COVERAGE PROBABILITY OF Λ WHEN N = 70 

λ 
A.R.E MSE LCL UCL Width C.P 

10% Censored Samples 
0.50 0.9694 0.0040 0.3650 0.6044 0.2394 0.9480 
1.00 0.9646 0.0160 0.7264 1.2028 0.4764 0.9510 
1.50 0.9637 0.0361 1.0886 1.8025 0.7139 0.9550 
2.00 0.9656 0.0639 1.4543 2.4081 0.9538 0.9600 
2.50 0.9685 0.0993 1.8234 3.0192 1.1958 0.9670 
3.00 0.9695 0.1427 2.1902 3.6266 1.4364 0.9760 

20% Censored Samples 
0.50 0.9548 0.0046 0.3524 0.6024 0.2501 0.9360 
1.00 0.9502 0.0186 0.7013 1.1990 0.4977 0.9430 
1.50 0.9492 0.0420 1.0509 1.7968 0.7459 0.9460 
2.00 0.9511 0.0742 1.4040 2.4005 0.9965 0.9510 
2.50 0.9540 0.1148 1.7603 3.0096 1.2493 0.9550 
3.00 0.9549 0.1648 2.1145 3.6151 1.5007 0.9660 

 
TABLE IX 

AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND 
COVERAGE PROBABILITY OF Λ WHEN N = 100 

λ 
A.R.E MSE LCL UCL Width C.P 

10% Censored Samples 
0.50 0.9829 0.0028 0.3899 0.5930 0.2031 0.9530 
1.00 0.9781 0.0111 0.7760 1.1802 0.4041 0.9560 
1.50 0.9771 0.0250 1.1629 1.7685 0.6056 0.9600 
2.00 0.9791 0.0444 1.5536 2.3627 0.8091 0.9660 
2.50 0.9820 0.0690 1.9478 2.9622 1.0144 0.9720 
3.00 0.9830 0.0992 2.3397 3.5582 1.2185 0.9810 

20% Censored Samples 
0.50 0.9681 0.0032 0.3780 0.5901 0.2121 0.9440 
1.00 0.9634 0.0129 0.7523 1.1745 0.4222 0.9470 
1.50 0.9625 0.0292 1.1273 1.7600 0.6327 0.9520 
2.00 0.9644 0.0516 1.5061 2.3514 0.8453 0.9590 
2.50 0.9673 0.0798 1.8883 2.9481 1.0598 0.9630 
3.00 0.9682 0.1145 2.2682 3.5412 1.2730 0.9740 

 
TABLE X 

AVERAGE RELATIVE ESTIMATES, MSES, CONFIDENCE LIMITS AND 
COVERAGE PROBABILITY OF Λ WHEN N = 150 

λ 
A.R.E MSE LCL UCL Width C.P 

10% Censored Samples 
0.50 0.9912 0.0018 0.4120 0.5792 0.1672 0.9610 
1.00 0.9864 0.0074 0.8200 1.1528 0.3328 0.9640 
1.50 0.9854 0.0167 1.2287 1.7274 0.4987 0.9680 
2.00 0.9874 0.0295 1.6416 2.3078 0.6662 0.9740 
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2.50 0.9903 0.0460 2.0581 2.8934 0.8353 0.9810 
3.00 0.9913 0.0662 2.4722 3.4756 1.0033 0.9900 

20% Censored Samples 
0.50 0.9763 0.0021 0.4008 0.5755 0.1747 0.9520 
1.00 0.9716 0.0087 0.7977 1.1454 0.3477 0.9550 
1.50 0.9706 0.0196 1.1954 1.7164 0.5210 0.9590 
2.00 0.9725 0.0345 1.5971 2.2931 0.6960 0.9660 
2.50 0.9755 0.0533 2.0023 2.8750 0.8727 0.9730 
3.00 0.9764 0.0765 2.4052 3.4534 1.0482 0.9860 

 
It is immediate from the above analysis that the shape 

parameter θ  has been over estimated; while the parameter λ
has been under estimated for all sample sizes and under each 
censoring rate. The degree of over/under estimation is 
inversely proportional to sample size, while it is directly 
proportional to the true parametric value and the censoring 
rate. It has also been assessed that the estimates of parameter 
λ are comparatively closer to the actual values. However, the 
magnitudes of the mean square error (MSE) associated with 
the estimates of both the parameters tend to decrease by 
increasing the sample size. Again, greater sample sizes lead to 
the smaller widths of the confidence intervals and larger 
coverage probabilities. This simply indicates that the 
estimators of the parameters are consistent. It is interesting to 
note that for higher true parametric values, the coverage 
probabilities are relatively bigger due to the larger widths of 
the concerned confidence intervals. On the other hand, larger 
levels of the censoring rate result in the slower convergence 
(towards the true parametric values) of the estimates with 
inflated amounts of MSEs, hence providing wider confidence 
intervals. So, the performance of the estimators has been 
negatively affected by the increased censoring rates. It is a 
natural consequence of the censoring. However, it has been 
observed that the affects of the left censored observations are 
not that much severe in case of bigger sample sizes. Further 
for fixed sample size and censoring rate, the higher actual 
values of the parameters impose a negative impact on the 
performance (in terms of MSEs, convergence rate and widths 
of confidence intervals) of the estimates. It leads to the 
conclusion that the estimation of extremely large values of the 
parameters of the Burr type V distribution may become 
difficult and the Fisher information matrix may be the 
decreasing function of the parameters. But the moderate to 
huge sample sizes can face off this problem. 

In the tables 11-14, we have discussed the limiting behavior 
of the variance covariance matrix obtained by inverting the 
fisher information matrix given in (12). As the analytical 
results of the Fisher information matrix for n → ∞ cannot be 
obtained, we have calculated the entries of the Fisher 
information/variance covariance matrix by taking n = 5000 
(extremely large). Different levels of the censoring rate have 
been employed for the analysis. Each table contains the 
variance of the concerned estimator along with their 
covariance. The covariance terms have been presented in the 
parenthesis. 

 

TABLE XI 

ELEMENTS OF VARIANCE-COVARIANCE MATRIX INCLUDING ( )ˆV θ  AND

( )ˆ ˆ,Cov λ θ  FOR 10% CENSORED DATA (Λ = 2) 

θ 
 

Sample Size 
30 50 70 100 150 5000 

0.50 
0.0133 0.0070 0.0045 0.0029 0.0018 0.0015 

(0.0157) (0.0164) (0.0107) (0.0068) (0.0044) (0.0035) 

1.00 
0.0586 0.0310 0.0201 0.0129 0.0083 0.0066 

(0.0692) (0.0780) (0.0507) (0.0326) (0.0210) (0.0168) 

1.50 
0.1346 0.0711 0.0462 0.0297 0.0191 0.0153 

(0.1590) (0.1741) (0.1132) (0.0727) (0.0469) (0.0375) 

2.00 
0.2403 0.1270 0.0826 0.0531 0.0342 0.0274 

(0.2838) (0.3488) (0.2269) (0.1458) (0.0940) (0.0752) 

2.50 
0.3778 0.1996 0.1298 0.0834 0.0538 0.0430 

(0.4461) (0.5683) (0.3697) (0.2376) (0.1532) (0.1226) 

3.00 
0.5452 0.2880 0.1874 0.1204 0.0776 0.0621 

(0.6436) (0.8488) (0.5521) (0.3548) (0.2289) (0.1831) 
 

TABLE XII 

ELEMENTS OF VARIANCE-COVARIANCE MATRIX INCLUDING ( )ˆV θ  AND

( )ˆ ˆ,Cov λ θ FOR 20% CENSORED DATA (Λ = 2) 

θ 
Sample Size 

30 50 70 100 150 5000 

0.50 
0.0157 0.0083 0.0054 0.0034 0.0022 0.0017 

(0.0368) (0.0194) (0.0126) (0.0081) (0.0052) (0.0042) 

1.00 
0.0692 0.0366 0.0238 0.0153 0.0098 0.0078 

(0.1743) (0.0921) (0.0599) (0.0385) (0.0248) (0.0198) 

1.50 
0.1590 0.0840 0.0546 0.0351 0.0226 0.0181 

(0.3890) (0.2055) (0.1337) (0.0859) (0.0554) (0.0443) 

2.00 
0.2838 0.1499 0.0975 0.0626 0.0404 0.0323 

(0.4000) (0.2449) (0.1774) (0.1277) (0.0865) (0.0692) 

2.50 
0.4461 0.2357 0.1533 0.0985 0.0635 0.0508 

(1.2698) (0.6710) (0.4365) (0.2805) (0.1809) (0.1447) 

3.00 
0.6436 0.3401 0.2212 0.1421 0.0917 0.0733 

(1.8966) (1.0022) (0.6519) (0.4189) (0.2702) (0.2162) 
 

TABLE XII 

ELEMENTS OF VARIANCE-COVARIANCE MATRIX INCLUDING ( )ˆV λ  AND 

( )ˆ ˆ,Cov λ θ FOR 10% CENSORED DATA (Θ = 2) 

λ 
Sample Size 

30 50 70 100 150 5000 

0.50 
0.0084 0.0051 0.0037 0.0026 0.0018 0.0014 

(0.0197) (0.0120) (0.0087) (0.0062) (0.0042) (0.0034) 

1.00 
0.0332 0.0203 0.0147 0.0106 0.0072 0.0057 

(0.0837) (0.0513) (0.0371) (0.0267) (0.0181) (0.0145) 

1.50 
0.0747 0.0457 0.0331 0.0238 0.0161 0.0129 

(0.1829) (0.1120) (0.0811) (0.0583) (0.0395) (0.0316) 

2.00 
0.1334 0.0817 0.0592 0.0426 0.0288 0.0231 

(0.2838) (0.3488) (0.2269) (0.14584) (0.0940) (0.0752) 
2.50 0.2097 0.1284 0.0930 0.0669 0.0454 0.0363 
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(0.5970) (0.3656) (0.2648) (0.1906) (0.1292) (0.1033) 

3.00 
0.3026 0.1853 0.1342 0.0966 0.0655 0.0524 

(0.8917) (0.5460) (0.3956) (0.2847) (0.1930) (0.1544) 
 

TABLE XIV 

ELEMENTS OF VARIANCE-COVARIANCE MATRIX INCLUDING ( )ˆV λ  AND 

( )ˆ ˆ,Cov λ θ FOR 20% CENSORED DATA (Θ = 2) 

λ  
Sample Size 

30 50 70 100 150 5000 

0.50 
0.0091 0.0056 0.0040 0.0029 0.0019 0.0015 

(0.0215) (0.0131) (0.0095) (0.0068) (0.0046) (0.0037) 

1.00 
0.0363 0.0222 0.0161 0.0116 0.0078 0.0062 

(0.0914) (0.0559) (0.0405) (0.0291) (0.0197) (0.0158) 

1.50 
0.0816 0.0499 0.0362 0.0260 0.0176 0.0141 

(0.1996) (0.1222) (0.0885) (0.0637) (0.0432) (0.0345) 

2.00 
0.1456 0.0891 0.0646 0.0465 0.0315 0.0252 

(0.4000) (0.2449) (0.1774) (0.1277) (0.0865) (0.0692) 

2.50 
0.2289 0.1401 0.1015 0.0730 0.0495 0.0396 

(0.6517) (0.3990) (0.2891) (0.2080) (0.1410) (0.1128) 

3.00 
0.3303 0.2022 0.1465 0.1054 0.0715 0.0572 

(0.9733) (0.5960) (0.4318) (0.3107) (0.2106) (0.1685) 

VI. CONCLUSIONS AND RECOMMENDATIONS 
It is evident from the above tables that even the small 

samples sizes with higher censoring rates are closely related to 
the limiting figures of the variance covariance matrix. It 
implies that the approximate variance covariance matrix can 
be used for the analysis of the unknown parameters of the Burr 
type V distribution. It further indicates that the proposed 
maximum likelihood point and interval estimates can 
effectively be applied to the real life situations using moderate 
sample sizes. The findings are useful for researchers dealing 
with left censored data especially in the field of medical 
sciences.  

REFERENCES 

[1] W. I. Burr, “Cumulative frequency distribution,” Annals of 
Mathematical Statistics, vol. 13, pp. 215–232, 1942. 

[2] J. G. Surles, and W.J. Padgett, “Inference for reliability and stress-length 
for a scaled burr type x distribution,” Lifetime Data analysis, vol. 7, pp. 
187–202, 2001. 

[3] M. A. M. Mousa, and Z. F. Jaheen, “Statistical inference for the burr 
model based on progressively censored data,” Computers & 
Mathematics with Applications, vol. 10-11, pp. 1441–1449, 2002. 

[4] A. A. Soliman, “Reliability estimation in a generalized life model with 
application to the burr-xii,” IEEE Tran. on Reliability, Vol. 51, pp. 337–
343, 2002. 

[5] Q. Shao, “Notes on maximum likelihood estimation for the three-
parameter burr xii distribution,” Computational Statistics and Data 
Analysis, vol. 45, pp. 675–687, 2004a. 

[6] Q. Shao, H. Wong, and J. Xia, “Models for extremes using the extended 
three parameter burr xii system with application to flood frequency 
analysis,” Hydrological Sciences Journal des Sciences Hydrologiques, 
vol. 49, pp. 685–702, 2004b. 

[7] A. A. Soliman, “Estimation of parameters of life from progressively 
censored data using burr-xii model,” IEEE Transactions on Reliability, 
vol. 54, pp. 34–42, 2005. 

[8] J. W. Wu, and H. Y. Yu, “Statistical inference about the shape parameter 
of the burr type xii distribution under the failure-censored sampling 

plan,” Applied Mathematics and Computation, vol. 163, no. 1, pp. 443–
482, 2005. 

[9] A. Amjad, and B. Ayman, “Interval estimation for the scale parameter of 
burr type x distribution based on grouped data,” Journal of Modern 
Applied Statistical Methods, vol. 3, pp.  386–398, 2006. 

[10] A. S. Wahed, “Bayesian inference using burr model under asymmetric 
loss function: an application to carcinoma survival data,” Journal of 
Statistical Research, vol. 40, no. 1, pp. 45–57, 2006. 

[11] S. J. Wu, Y. J. Chen, and C. T. Chang, “Statistical inference based on 
progressively censored samples with random removals from the burr 
type xii distribution,” Journal of Statistical Computation and 
Simulation, vol. 77, pp. 19–27, 2007. 

[12] K. M. Aludaat, M. T. Alodat, and T. T. Alodat, “Parameter estimation of 
burr type x distribution for grouped data,” Journal of Applied 
Mathematical Sciences, vol. 2, no. 9, pp. 415–423, 2008. 

[13] G. O. Silva, E. M. M. Ortega, V. C. Garibay et al., “Log-burr xii 
regression models with censored data,” Computational Statistics and 
Data Analysis, vol. 52, pp. 3820–3842, 2008. 

[14] M. Yarmohammadi, and H. Pazira, “Minimax estimation of the 
parameter of the burr type xii distribution,” Australian Journal of Basic 
and Applied Sciences, vol. 4, no. 12, pp. 6611–6622, 2010. 

[15] R. Dasgupta, “On the distribution of burr with applications,”  Sankhya B, 
vol. 73, pp. 1–19, 2011. 

[16] I. Makhdoom, and A. Jafari, “Bayesian estimations on the burr type xii 
distribution using grouped and un-grouped data,” Australian Journal of 
Basic and Applied Sciences, vol. 5, no. 6, pp. 1525–1531, 2011. 

[17] H. Panahi, and S. Asadi, “Analysis of the type-ii hybrid censored burr 
type xii distribution under linex loss function,” Applied Mathematical 
Sciences, vol. 5, no. 79, pp. 3929–3942, 2011. 

[18] N. Feroze, and M. Aslam, “Bayesian analysis of burr type x distribution 
under complete and censored samples,” International Journal of Pure 
and Applied Sciences and Technology, vol. 11, no. 2, pp. 16–28, 2012.   

[19] F. Jerald, and J. F. Lawless, “Statistical models and methods for lifetime 
data,” Second Edition, University of Waterloo, 2003. 

[20] P. Sinha, M. B. Lambert, and V. L. Trumbull, “Evaluation of statistical 
methods for left-censored environmental data with nonuniform detection 
limits,” Environ Toxicol Chem., vol. 25, no. 9, pp. 2533–40, 2006. 

[21] J. Asselineau,  R. Thiebaut,  P. Perez, et al., “Analysis of left-censored 
quantitative outcome: example of procalcitonin level,” Rev Epidemiol 
Sante Publique, vol. 55, no. 3, pp. 213–20, 2007. 

[22] R. C. Antweller, and H. E. Taylor, “Evaluation of statistical treatments 
of left-censored environmental data using coincident uncensored data 
sets: I. Summary statistics,” Environ. Sci. Technol., vol. 42, pp. 3732–
3738, 2008. 

[23] E. M. Thompson, J. B. Hewlett, and L. G. Baise, “The Gumbel 
hypothesis test for left censored observations using regional earthquake 
records as an example,” Nat. Hazards Earth Syst. Sci., vol. 11, pp. 115–
126, 2011. 

[24] N. Feroze and M. Aslam, “On Bayesian analysis of burr type vii 
distribution under different censoring schemes,” International Journal of 
Quality, Statistics, and Reliability, vol. 3, pp. 1–5, 2012. 

[25] S. Wu, and C. Kus, “On estimation based on progressive first-failure-
censored sampling,” Computational Statistics and Data Analysis, vol. 
53, pp. 3659–3670. 2009. 

[26] G. Zheng, and J. L. Gastwirth, “Where is the Fisher information in an 
ordered sample?,” Statistica Sinica, vol. 10, pp. 1267–1280, 2000. 

[27] R. D. Gupta, R. C. Gupta, and P. G. Sankaran, “Fisher information in 
terms of the (reversed) hazard rate function,” Communication in 
Statistics: Theory and Methods, vol. 33, pp. 3095–3102, 2004. 


