
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:7, 2007

324

Abstract—In this paper, mathematical models for permutation

flow shop scheduling and job shop scheduling problems are
proposed. The first problem is based on a mixed integer
programming model. As the problem is NP-complete, this model can
only be used for smaller instances where an optimal solution can be
computed. For large instances, another model is proposed which is
suitable for solving the problem by stochastic heuristic methods. For
the job shop scheduling problem, a mathematical model and its main
representation schemes are presented.

Keywords—Flow shop, job shop, mixed integer model,

representation scheme.

I. INTRODUCTION
RACTICAL machine scheduling problems are numerous
and varied. They arise in diverse areas such as flexible

manufacturing systems, production planning, computer
design, logistics, communication, etc. A scheduling problem is
to find sequences of jobs on given machines with the
objective of minimising some function of the job completion
times. In a simpler version of this problem, flow shop
scheduling [12], all jobs pass through all machines in the same
order. A more complex case is represented by a job shop
scheduling problem where machine orderings can be different
for each job. Job shop scheduling problem (abbreviated to
JSSP or JSS) is one of the hardest combinatorial optimization
problems. It belongs to the class of NP-hard problems,
consequently there are no known algorithms guaranteed to
give an optimal solution and run in polynomial time. That
means, classical optimization methods (branch and bound
method, dynamic programming) can be used only for small-
scale tasks. Therefore, more complex tasks must be solved by
heuristic methods [15], [21]. Successful heuristic methods
include approaches based on simulated annealing [7], tabu
search [19], [25], and genetic algorithms [17], [27]. A very
efficient method combines a variable depth search procedure
with a shifting bottleneck framework [1], [26]. The papers
[13], [24] provide a survey and a comparison of various job
shop scheduling methods. Deterministic algorithms as well as

Manuscript received August 31, 2007. This work was supported in part by
the Ministry of Education, Youth and Sports of the Czech Republic under
research plan MSM 0021630518 "Simulation Modelling of Mechatronic
Systems".

Miloš Šeda works in the Institute of Automation and Computer Science,
Faculty of Mechanical Engineering, Brno University of Technology,
Technická 2896/2, CZ 616 69 Brno, Czech Republic (phone: +420-54114
3332; fax: +420-54114 2330; e-mail: seda@fme.vutbr.cz).

approximation and heuristic approaches (including tabu
search, simulated annealing, genetic algorithms, and ejection
chains) to scheduling manufacturing processes are presented
and discussed in [3].

In [11], a case with uncertain processing times is studied
and an approach based on fuzzy set theory is proposed. The
problem has some other modifications, e.g. a "no-wait"
version in which the start of job processing is delayed on the
first machine so that the job need not wait for processing on
subsequent machines. In this paper, we deal with another
special version of the problem called a permutation flow shop
scheduling problem (PFSSP) where each machine processes
the jobs in the same order.

II. FLOW SHOP SCHEDULING
Flow shop scheduling is one of the most important

problems in the area of production management [3]. It can be
briefly described as follows: There are a set of m machines
(processors) and a set of n jobs. Each job comprises a set of m
operations which must be done on different machines. All jobs
have the same processing operation order when passing
through the machines. There are no precedence constraints
among operations of different jobs. Operations cannot be
interrupted and each machine can process only one operation
at a time. The problem is to find the job sequences on the
machines which minimise the makespan, i.e. the maximum of
the completion times of all operations. As the objective
function, mean flowtime, completion time variance [9] and
total tardiness [20] can also be used. The flow shop
scheduling problem is NP-complete and thus it is usually
solved by approximation or heuristic methods. The use of
simulated annealing is presented, e.g., in [12], [28], tabu
search in [23] and genetic algorithms in [17], [27]. In [14] a
deterministic heuristic is proposed that determines the order of
any two jobs in the final schedule based on their order in all
two-machine problems embedded in the problem.

Consider three finite sets J, M, O where
J is a set of jobs 1, … , n,
M is a set of machines 1, … , m, and
O is a set of operations 1, … , m.

Denote
Ji … the i-th job in the permutation of jobs
pik … processing time of the job Ji ∈J on machine k.

(∀i∈J) (∀k∈M): vik = waiting time (idle time) on machine k
 before the start of the job Ji

Mathematical Models of Flow Shop and Job
Shop Scheduling Problems

Miloš Šeda

P

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:7, 2007

325

(∀i∈J) (∀k∈M): wik = waiting time (idle time) of the job Ji
 after finishing processing on machine
 k, while waiting for machine k+1 to
 become free

Define the following decision variables

1, if job is assigned to the th
position in the permutation,

, :
i.e.

0, otherwise

i j
i

j i

i j J x
J j

⎧
⎪
⎪∀ ∈ = ⎨ =⎪
⎪⎩

 (1)

The following mathematical formulation of the permutation
flow shop scheduling can be derived.

1

: 1
n

ij
j

i J x
=

∀ ∈ =∑ (2)

1

: 1
n

ij
i

j J x
=

∀ ∈ =∑ (3)

 1{ }: 0kk M m w∀ ∈ − = (4)

1

1 1
1 1

{1}:
k n

k i r i
r i

k M v p x
−

= =
∀ ∈ − = ∑∑ (5)

1, 1, 1, , 1 1, 1

1 1

({ }) ({ }) :
n n

i k jk i j i k ik j k ij i k
j j

i J n k M m

v p x w w p x v+ + + + + +
= =

∀ ∈ − ∀ ∈ −

+ + = + +∑ ∑

 (6)

 max
1 1

()
n n

i m jm ij
i j

C v p x
= =

= +∑ ∑ (7)

This mixed integer programming model can be easily
transformed into the form necessary for the optimisation
package GAMS (General Algebraic Modelling System) [4].

The ability of computing optimal solutions was checked
using standard benchmarks from OR-Library (OR =
Operations Research) accessible from London Imperial
College Management School [2].

All computations leading to optimum were performed in a
few seconds, but for larger instances 20 × 10 (20 × 10
corresponds to 20 jobs and 10 machines), 20 × 15, 30 × 10,
etc., they ended with a run time error with GAMS indicating
”insufficient space to update U-factor …”.

Therefore, for these cases, we must choose another
approach. One way seems to be straightforward – to search
the optimum in the space of permutations of jobs.
Unfortunately, this approach is useable again only for not very
high number of jobs, because its time complexity for n jobs is
equal to O(n!).

The mathematical formulation given by equations (2)-(7) is
not suitable for searching in the space of permutations because
it contains no explicitly expressed permutation. Therefore it is
necessary to formulate another model. If we have processing
times p(i,j) for job i on machine j, and a job permutation
π = J1, J2, ... , Jn, then we can calculate the completion times
C(Ji, j) as follows:

 C(J1, 1) = p(J1 ,1) (8)
 C(Ji , 1) = C(Ji –1 , 1) + p(Ji , 1), i = 2 , … , n (9)
 C(J1 , j) = C(J1 , j −1) + p(J1 , j), j = 2 , … , m (10)
 C(Ji , j) = max {C(J i –1 , j), C(Ji , j −1)} + p(Ji , j),
 i = 2 , … , n ; j = 2 , … , m (11)
 Cmax(π) = C(Jn , m) (12)

There are many various methods for an approximation of
the optimal solution by searching only a part of the space of
feasible solutions (represented here by all permutations). For
complex combinatorial problems, stochastic heuristic
techniques [15], [21] are frequently used. We present an
approach based on genetic algorithms. As the genetic
algorithms are well known, see e.g. [16], we only concentrate
on problem specific details.

As to the crossover operation, we cannot use the traditional
two-point crossover, because it would lead to infeasible
solutions. If we change the middle parts of the parent
chromosomes P1=(1,10,7,2,8,9,4,6,5,3) and
P2=(5,8,2,9,7,4,1,10,3,6) between the 4th and 7th position,
then we would obtain offspring (1,10,7,9,7,4,1,6,5,3) and
(5,8,2,2,8,9,4,10,3,6) that correspond to no permutations,
because some jobs are duplicated or omitted. We used the so
called crossover in a partially mapped representation where
the genes in the middle part of one chromosome are ordered in
its offspring by their occurrence in the second parent
chromosome.

For mutation we considered three operators:
• exchange mutation (it exchanges two randomly selected

positions in a permutation),
• shift mutation (it removes a value at one position and

puts it at another position), and
• mutation inspired by well-known Lin-2-Opt change

operator usually used for solving the travelling salesman
problem [10]. Here first two elements are added to the
permutation (into positions 0 and |n|+1) and then the
same values are assigned to them to simulate a cyclic
tour. Two 'edges' (pairs of neighbour elements in
permutation) are randomly chosen ((p1, p2) and (q1, q2)
say), the inner elements p2, q1 are swapped and the
elements between p2 and q1 are reversed.

In the literature, slight modifications of these shift
operations can be found, e.g. 1stSwap, FullSwap, DoubleCut,
DoublePointShift and RightDoublePoint [8], [15], [16].

Best results were achieved with the shift mutation. In
Fig. 1, a skeleton of proposed genetic algorithm is shown.
Operators that have not been yet discussed are clear from their
denotations in the algorithms. Number of individuals Npop in
the population was set to 50 and the number of iterations to
10 × n2.

P(0) : = {P1, P2, … , PNpop};
Pmin : = Permutation_minimizing_makespan ∈ P(0);
t : = 0 ;
while t < number_of_iterations do
 begin repeat BinaryTournamentSelection(P(t), parent1,
 parent2);

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:7, 2007

326

 offspring : = ModifiedTwoPointCrossover(
 parent1, parent2);
 offspring : = ShiftMutation(offspring)
 until not (offspring in population P(t));
 Pmax : = Permutation_maximizing_makespan ;
 { the worst permutation }
 P(t +1) : = P(t) − {Pmax} ∪ {offspring};
 { SteadyStateReplacement (Pmax , offspring) }
 if Makespan(offspring) < Makespan(Pmin)
 then Pmin : = offspring;
 { update the best permutation }
 t : = t +1
 end;

Fig. 1 Genetic algorithm skeleton for permutation flow shop
scheduling problem

III. FLOW SHOP SCHEDULING WITH FUZZY PROCESSING TIMES
Let us suppose now that processing times of the jobs on

machines are not deterministic, but they are given by fuzzy
numbers [22].

A fuzzy number} A is a fuzzy set represented by 4-tuple
(a1,a2,a3,a4) and a piecewise continuous membership function
with the following properties [18]:

• a1 ≤ a2 ≤ a3 ≤ a4
• μA(x) = 0 for x ≤ a1, x ≥ a4
• μA(x) = 1 for a2 ≤ x ≤ a3
• μA is increasing on [a1, a2] and decreasing on [a3, a4].

The fuzzy set defined by the membership function is an
example of fuzzy number. In this paragraph we consider
trapezoidal fuzzy numbers.

In the next text we will denote fuzzy numbers by the type F
in the upper index. The completion times of the jobs are
calculated as follows:

CF(J1, 1) = pF(J1 ,1) (13)
(Ji , 1) = CF(Ji –1 , 1) ⊕ pF(Ji , 1), i = 2 , … , n (14)

 CF(J1 , j) = CF(J1 , j −1) ⊕ pF(J1 , j), j = 2 , … , m (15)

 CF(Ji , j) = max {CF(J i –1 , j), CF(Ji , j −1)} ⊕ pF(Ji , j),
 i = 2 , … , n ; j = 2 , … , m (16)
 CF

max (π) = CF(Jn , m) (17)
where ⊕ and max are operations over fuzzy numbers.

The addition of fuzzy numbers can be derived using the
extension principle and it is determined as follows [6]:
 XF ⊕ YF = (x1, x2, x3, x4) ⊕ (y1, y2, y3, y4) =
 = (x1+ y1, x2+ y2, x3+ y3, x4+ y4) (18)

When the maximum operation would be derived in the
same way, then its results may not be trapezoidal fuzzy
numbers. Therefore we approximate this operation as follows
[6].
 max(XF,YF)=(max(x1, y1), max(x2, y2),
 max(x3, y3), max(x4, y4)) (19)

To find a job permutation π which minimises the fuzzy
makespan, we must compare fuzzy numbers in some way,

which is a difficult problem. An ordering relation ≤ can be
defined e.g. as follows:
 XF ≤ YF ⇔ (x1≤ y1) ∧ (x2≤ y2) ∧ (x3≤ y3) ∧ (x4≤ y4) (20)

However, this relation is not a complete ordering relation,
as fuzzy numbers XF, YF satisfying
 (∃ i,j ∈{1,2,3,4}): (xi<yi) ∧ (xj >yj) (21)
are not comparable by ≤.

It is evident that, for noncomparable fuzzy numbers XF, YF,
this fuzzy max operation results in a fuzzy number different
from both of them. For example, for XF =(4,9,12,16) and
YF =(6,8,13,15), we get from equation (19) a fuzzy max
(6,9,13,16) which differs from XF and YF.

If Cmax(π1) and Cmax(π2) are not in the ≤ relation then we say
that the solutions π1, π2 of our scheduling problem are non-
dominated.

It is straightforward that studied problem of the
minimisation of CF

max(π) can be replaced by the four-criterial
problem as follows:
 Minimise Cmax,1(π) and Cmax,2(π) and
 Cmax,3(π) and Cmax,4(π) (22)
where objective functions Cmax, i(π) are deterministic.

There are various techniques of the multi-criterial
optimization. It is possible to get a compromise solution of
this problem on the basis of its transformation into a single-
criterial problem where an objective function can be designed
as a weighted sum of criteria:

4

max max,
1

() ()i i
i

C w Cπ π
=

= ∑ (23)

IV. JOB SHOP SCHEDULING
The classical JSS problem can be described as follows [24]:

There are a set of m machines and a set of n jobs. Each job
consists of a sequence of operations, each of which needs to
be processed during an uninterrupted time period of a given
length on a given machine. Each machine can process at most
one operation at a time. We assume that any successive
operations of the same job are processed on different
machines. A schedule is an assignment of the operations to
time intervals on the machines.

The problem is to find a schedule which optimises a given
objective. Assume that three finite sets J, M, O are given
where J is a set of jobs 1, … , n, M is a set of machines 1, … ,
m, and O is a set of operations 1, … , N.

Consider the following denotations: Ji = the job to which
operation i belongs, Mi = the machine on which operation i is
to be processed, ti = the start time for operation i, pi = the
processing time for operation i, Cmax = the makespan.

On O, a binary relation → is defined that represents
precedence constraints between operations of the same job.

If i→j, then Ji=Jj and there is no k∈{i,j}satisfying i→k or
k→j. (Operation i is the predecessor of operation j). Thus, if
i→j, then Mi ≠ Mj by the JSSP specifications.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:7, 2007

327

The problem of optimal job shop scheduling is to find a
starting ti time for each operation i∈O such that

 ()max i i
i O

t p
∈

+ (24)

is minimised subject to:
 ∀i∈O : ti ≥ 0 (25)
 ∀i, j∈O, i→j : tj ≥ ti + pi (26)
 ∀i, j∈O, i≠j, Mi =Mj : (tj ≥ ti + pi) ∨ (tj ≥ ti + pj) (27)

The conditions (3) express precedence constraints which
represent technological link-up of operations within the same
task. The conditions (4) express machine capacity constraints,
i.e. each machine can process at most one operation at a time.

The described equations cannot be directly used for
determining a schedule. We need to eliminate symbols of
binary relation → and disjunction ∨ and try to get a
formulation of integer programming.

The binary relation can be eliminated easily so that O will
be decomposed into subsets of operations that correspond to
tasks. Then we will assign to operations in each task numbers
creating a sequence of consecutive integers by the operation
order.

Denote nj = the number of operations in job j, and Nj = the
total number of operations of the first j jobs.

Evidently:

 0
1 1

0, , .
j n

j k k
k k

N N n N n
= =

= = =∑ ∑ (28)

Using the denotation for total number of operations of the
first j−1 jobs, we assign to nj operations of task j numbers Nj−1

+ 1, … , N j−1 + nj where N j−1 + nj = Nj.
Now we can express equation (26) as follows:

()()1 11 1 :j j i i ij J N i N t t p− +∀ ∈ + ≤ ≤ − ≥ + (29)

The makespan is then determined as the maximum of the
completion times of the last operations in jobs. Hence, we get:
 max:

j jN Nj J C t p∀ ∈ ≥ + (30)

Let us define capacity constraints using binary variables xij
∈{0,1} as follows:

, , , :

1, , operation precedes operation

0, , operation precedes operation

i j

j i i
ij

i j j

i j O i j M M

t t p i j
x

t t p j i

∀ ∈ ≠ =

≥ +⎧⎪= ⎨ ≥ +⎪⎩

 (31)

If T is an upper bound of the makespan, then, using xij, we
can replace equation (27) by pairs of inequalities (32) as
follows:

()
()

1
, , , :

1

j i i ij ij
i j

i j j ij ij

t t p x T x
i j O i j M M

t t p x Tx

⎧ ≥ + − −⎪∀ ∈ ≠ = ⎨
≥ + − −⎪⎩

 (32)

Hence, the job shop scheduling problem with makespan
objective can be formulated as follows:

Minimise
 Cmax (33)
subject to

 ∀i∈O : ti ≥ 0 (34)
 ()()1 11 1 :j j i i ij J N i N t t p− +∀ ∈ + ≤ ≤ − ≥ + (35)

 max:
j jN Nj J C t p∀ ∈ ≥ + (36)

 ()
()

{0,1}

, , , : 1

1

ij

i j j i i ij ij

i j j ij ij

x

i j O i j M M t t p x T x

t t p x Tx

⎧ ∈
⎪
⎪∀ ∈ ≠ = ≥ + − −⎨
⎪

≥ + − −⎪⎩

 (37)

An important feature of heuristic methods is problem
representation. In [5], a review of frequently used
representations is presented. Here, we briefly describe three
representations (one based on jobs, one on operations, and one
on disjunctive graphs).

The job-based representation consists of a list of n jobs and
a schedule is constructed according to the sequence of jobs.
For a given sequence of jobs, all operations of the first job in
the list are scheduled first, and then all operations of the
second job in the list are considered. The first operation of the
job under treatment is allocated in the best available
processing time to the machine the operation requires, and
then the second operation, and so on until all operations of the
job are scheduled. The process is repeated with each of the
jobs in the list considered in the appropriate sequence. Any
permutation of jobs corresponds to a feasible schedule.

The operation-based representation encodes a schedule as
a sequence of operations and each element of this sequence
stands for one operation. All operations for a job are named
by the same symbol in the sequence and they are interpreted
according to the order of occurrence in the given sequence.
For an n-job and m-machine problem, a sequence contains n ×
m elements.

Each job appears in the chromosome exactly m times and
each repeating refers to a unique operation which is context-
dependent rather than indicating a concrete operation of a job.
It is straightforward that any permutation of elements in a
sequence always yields a feasible schedule.

The disjunctive graph-based representation: A disjunctive
graph is defined as follows:

 (),G V C D= ∪ (38)
where

V is a set of vertices representing operations. This set
contains also two special vertices numbered 0 and N+1
representing the fictitious start and end operations,
respectively. The processing time of each operation is denoted
as the weight of the vertex. The two fictitious operations 0 and
N+1 have operation times of zero.

C is a set of directed conjunctive edges. These edges
represent pairs of consecutive operations of the same job, as
well as edges from the start vertex 0 to the first operation of
each job and edges from the last operations of each job to the
end vertex N+1.

D is a set of undirected disjunctive edges representing pairs
of operations to be processed by the same machine.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:7, 2007

328

Fig. 2 Disjunctive graph for the JSSP instance and a feasible

schedule represented as an acyclic directed graph

To determine a schedule we must define an ordering of all

operations processed on the same machine. It can be done by
turning all undirected (disjunctive) edges into directed ones. A
set S of all directed edges selected from disjunctive edges is
called a complete selection. A complete selection S defines a
feasible schedule if and only if the resulting directed graph is
acyclic which guarantees there are no precedence conflicts
between operations, see Fig. 2. Obviously, the time required
to complete all jobs (makespan) is given by the length of the
longest weighted path from the start vertex to the end vertex
in a directed graph G(S)=(V,C∪S), where S is an acyclic
complete selection. This path is called the critical path and is
composed of a sequence of critical operations.

Using Critical Path Method (CPM), we easily get the
earliest possible start times of operations and the
corresponding schedule by the Gantt chart.

The key operator of the tabu search and simulating
annealing methods is one used to construct a neighbourhood
of the current solution in which these algorithms search foe a
solution to be used in the next iteration. In the literature, many
sophisticated strategies can be found. For lack of space, we
only mention the neighbourhood search strategy of Nowicki
and Smutnicki [19], [25]. It is based on modifications of
critical blocks that create a critical path evaluated by the CPM.
These blocks are given by maximal sequences of consecutive
critical operations on the same machine.
 For a single (arbitrarily selected) critical path u and critical
blocks B1, … , Br defined for u, it swaps the first (and the last)
two operations in blocks B2, …, Br−1. In the first block B1 it
swaps only the last two operations, and, via symmetry in the
last block Br, it swaps only the first two operations. These
swaps define the set of moves from the processing order pi.
This set of moves is not empty only if the number of blocks is
greater than one (r >1) and if there exists at least one block
with the number of elements greater than one. The
neighbourhood of pi is then defined as all the processing
orders obtained by applying moves from pi. This strategy
implemented within the framework of a tabu search led to the

best known results for benchmarks from the OR-Library.

V. CONCLUSION
In this paper, we presented mathematical models of

manufacturing processes and their representation schemes.
Based on mixed integer programming formulations, they
could be used for computation in such optimization tools as
GAMS and LINDO. Unfortunately, because of NP-
completeness of the models, they can only get an optimal
solution for small FSSP/JSSP instances. Therefore, other
representation schemes, more suitable for computations by
approximation or heuristic methods, must be searched. As
frameworks of these methods are known enough, we focused
on the key operators such as proposed by Nowicki and
Smutnicki to disjunctive graph-based representation of JSSP.

Further investigation will include fuzzy versions of these
problems where two cases of uncertainties can be obtained -
uncertain due dates and uncertain processing times.

VI. REFERENCES
[1] E. Balas and A. Vazacopoulos, “Guided Local Search with Shifting

Bottleneck for Job Shop Scheduling,” Management Science, vol. 44, pp.
262-275, 1998

[2] J.E. Beasley, “OR-Library,” Report, The Management School Imperial
College, London, http://mscmga.ms.ic.ac.uk/pub/flowshop1.txt.

[3] J. Blazewicz, K.H. Ecker, G. Schmidt and J. Weglarz, Scheduling
Computer and Manufacturing Processes. Berlin: Springer-Verlag, 1996.

[4] A. Brooke, D. Kendrick and A. Meeraus, GAMS Release 2.25. A User’s
Guide. Massachussets: The Scientific Press, Boyd & Fraser Publishing
Company, 1992.

[5] R. Cheng, M. Gen and Y. Tsujimura, “A Tutorial Survey of Job-Shop
Scheduling Problems Using Genetic Algorithms - {I}. Representation,”
Computers & Industrial Engineering, vol. 30, pp. 983-997, 1996.

[6] Dubois and H. Prade, Theorie des possibilites. Applications a la
representation des connaissances en informatique. Paris: MASSON,
1988.

[7] A. El-Bouri, N. Azizi and S. Zolfaghari, “A Comparative Study of a
New Heuristic Based on Adaptive Memory Programming and Simulated
Annealing: The Case of Job Shop Scheduling,” European Journal of
Operational Research, 2007, 17 pp., in press.

[8] D.E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. New York: Addison-Wesley, 1989.

[9] K. Gowrishankar, C. Rajendran and G. Srinivasan, “Flow Shop
Scheduling Algorithms for Minimizing the Completion Time Variance
and the Sum of Squares of Completion Time Deviations from a Common
Due Date,” European Journal of Operational Research, vol. 132,
pp. 643-665, 2001.

[10] G. Gutin and A.P. Punnen (eds.), The Traveling Salesman Problem and
Its Variations. Dordrecht: Kluwer Academic Publishers, 2002.

[11] H. Ishibuchi, N. Yamamoto, T. Murata and H. Tanaka, “Genetic
Algorithms and Neighborhood Search Algorithms for Fuzzy Flowshop
Scheduling Problems,” Fuzzy Sets and Systems, vol. 67, pp. 81-100,
1994.

[12] H. Ishibuchi, S. Misaki and H. Tanaka, “Modified Simulated Annealing
Algorithms for Flow Shop Sequencing Problem,” European Journal of
Operational Research, vol. 81, pp. 388-398, 1995.

[13] A. Jain and S. Meeran, “Deterministic Job-Shop Scheduling: Past,
Present and Future,” European Journal of Operational Research, vol.
113, pp. 390-434, 1999.

[14] C. Koulamas, “A New Constructive Heuristic for the Flowshop
Scheduling Problem” European Journal of Operational Research, vol.
105, pp. 66-71, 1998.

[15] Z. Michalewicz and D.B. Fogel, How to Solve It: Modern Heuristics.
Berlin: Springer-Verlag, 2000.

[16] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Berlin: Springer-Verlag, 1996.

8 9 10 11

start

1 2 3 4

5 6 7 0 12
finish

8 9 10 11

start

1 2 3 4

5 6 7 0 12
finish

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:7, 2007

329

[17] T. Murata, H. Ishibuchi and H. Tanaka, “Genetic Algorithms for
Flowshop Scheduling Problems,” Computers & Industrial Engineering,
vol. 30, No. 4, pp. 1061-1071, 1996.

[18] V. Novák, Fuzzy Sets and their Applications, Bristol: Adam Hilger,
1989.

[19] E. Nowicki and C. Smutnicki, “A Fast Taboo Search Algorithm for the
Job Shop Problem,” Management Science, vol. 42, pp. 797-813, 1996.

[20] J.C.-H. Pan, J.-S. Chen and C.-M. Chao, “Minimizing Tardiness in a
Two-Machine Flow-Shop,” Computers & Operations Research, vol. 29,
pp. 869-885, 2002.

[21] C.R. Reeves, Modern Heuristic Techniques for Combinatorial
Problems. Oxford: Blackwell Scientific Publications, 1993.

[22] M. Šeda, J. Dvořák and P. Majer, “Scheduling with Fuzzy Processing
Times in a Flow Shop,” in Proc. of the 7th European Congress on Fuzzy
and Intelligent Techniques & Soft Computing EUFIT '99, Aachen, 1999,
6 pp.

[23] U.A. Turki, C. Fedjki and A. Andijani, “Tabu Search for a Class of
Single-Machine Scheduling Problems,” Computers & Operations
Research, vol. 28, pp. 1223-1230, 2001.

[24] R. Vaessens, E. Aarts and J. Lenstra, “Job Shop Scheduling by Local
Search,” INFORMS Journal on Computing, vol. 8, pp. 302-317, 1996.

[25] J.P. Watson, A. Howe and L. Whitley, “Deconstructing Nowicki and
Smutnicki's i-TSAB Tabu Search Algorithm for the Job-Shop
Scheduling Problem,” Computers & Operations Research, vol. 33, pp.
2623-2644, 2006.

[26] H. Wenqi and Y. Aihua, “An Improved Shifting Bottleneck Procedure
for the Job Shop Scheduling Problem,” Computers & Operations
Research, vol. 31, pp. 2093-2110, 2004.

[27] T. Yamada and C.R. Reeves, “Permutation Flowshop Scheduling by
Genetic Local Search,” in Proc. of the International Conference Genetic
Algorithms in Engineering Systems: Innovations and Applications
GALESIA 97, Glasgow, 1997, pp. 232-238.

[28] S.H. Zegordi, K. Itoh and T. Enkawa, “Minimizing Makespan for Flow
Shop Sequencing by Combining Simulated Annealing with Sequencing
Knowledge,” European Journal of Operational Research, vol. 85, pp.
515-531, 1995.

