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Abstract—In this paper, mathematical models for permutation 

flow shop scheduling and job shop scheduling problems are 
proposed. The first problem is based on a mixed integer 
programming model. As the problem is NP-complete, this model can 
only be used for smaller instances where an optimal solution can be 
computed. For large instances, another model is proposed which is 
suitable for solving the problem by stochastic heuristic methods. For 
the job shop scheduling problem, a mathematical model and its main 
representation schemes are presented. 

 
Keywords—Flow shop, job shop, mixed integer model, 

representation scheme.  

I. INTRODUCTION 
RACTICAL machine scheduling problems are numerous 
and varied. They arise in diverse areas such as flexible 

manufacturing systems, production planning, computer 
design, logistics, communication, etc. A scheduling problem is 
to find sequences of jobs on given machines with the 
objective of minimising some function of the job completion 
times. In a simpler version of this problem, flow shop 
scheduling [12], all jobs pass through all machines in the same 
order. A more complex case is represented by a job shop 
scheduling problem where machine orderings can be different 
for each job. Job shop scheduling problem (abbreviated to 
JSSP or JSS) is one of the hardest combinatorial optimization 
problems. It belongs to the class of NP-hard problems, 
consequently there are no known algorithms guaranteed to 
give an optimal solution and run in polynomial time. That 
means, classical optimization methods (branch and bound 
method, dynamic programming) can be used only for small-
scale tasks. Therefore, more complex tasks must be solved by 
heuristic methods [15], [21]. Successful heuristic methods 
include approaches based on simulated annealing [7], tabu 
search [19], [25], and genetic algorithms [17], [27]. A very 
efficient method combines a variable depth search procedure 
with a shifting bottleneck framework [1], [26]. The papers 
[13], [24] provide a survey and a comparison of various job 
shop scheduling methods. Deterministic algorithms as well as 
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approximation and heuristic approaches (including tabu 
search, simulated annealing, genetic algorithms, and ejection 
chains) to scheduling manufacturing processes are presented 
and discussed in [3].  

In [11], a case with uncertain processing times is studied 
and an approach based on fuzzy set theory is proposed. The 
problem has some other modifications, e.g. a "no-wait" 
version in which the start of job processing is delayed on the 
first machine so that the job need not wait for processing on 
subsequent machines. In this paper, we deal with another 
special version of the problem called a permutation flow shop 
scheduling problem (PFSSP) where each machine processes 
the jobs in the same order. 

II. FLOW SHOP SCHEDULING 
Flow shop scheduling is one of the most important 

problems in the area of production management [3]. It can be 
briefly described as follows: There are a set of m machines 
(processors) and a set of n jobs. Each job comprises a set of m 
operations which must be done on different machines. All jobs 
have the same processing operation order when passing 
through the machines. There are no precedence constraints 
among operations of different jobs. Operations cannot be 
interrupted and each machine can process only one operation 
at a time. The problem is to find the job sequences on the 
machines which minimise the makespan, i.e. the maximum of 
the completion times of all operations. As the objective 
function, mean flowtime, completion time variance [9] and 
total tardiness [20] can also be used. The flow shop 
scheduling problem is NP-complete and thus it is usually 
solved by approximation or heuristic methods. The use of 
simulated annealing is presented, e.g., in [12], [28], tabu 
search in [23] and genetic algorithms in [17], [27]. In [14] a 
deterministic heuristic is proposed that determines the order of 
any two jobs in the final schedule based on their order in all 
two-machine problems embedded in the problem. 

Consider three finite sets J, M, O where  
J is a set of jobs 1, … , n,  
M is a set of machines 1, … , m, and  
O is a set of operations 1, … , m. 

Denote 
Ji … the i-th job in the permutation of jobs 
pik  … processing time of the job Ji ∈J on machine k. 

(∀i∈J) (∀k∈M): vik = waiting time (idle time) on machine k  
 before the start of the job Ji 
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(∀i∈J) (∀k∈M): wik = waiting time (idle time) of the job Ji  
 after finishing processing on machine 
 k, while waiting for machine k+1 to 
 become free 

Define the following decision variables 

1, if job is assigned to the th 
position in the permutation,

, :
i.e.

0, otherwise

i j
i

j i

i j J x
J j

⎧
⎪
⎪∀ ∈ = ⎨ =⎪
⎪⎩

 (1) 

The following mathematical formulation of the permutation 
flow shop scheduling can be derived. 
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This mixed integer programming model can be easily 
transformed into the form necessary for the optimisation 
package GAMS (General Algebraic Modelling System) [4]. 

The ability of computing optimal solutions was checked 
using standard benchmarks from OR-Library (OR = 
Operations Research) accessible from London Imperial 
College Management School [2].  

All computations leading to optimum were performed in a 
few seconds, but for larger instances 20 × 10 (20 × 10 
corresponds to 20 jobs and 10 machines), 20 × 15, 30 × 10, 
etc., they ended with a run time error with GAMS indicating 
”insufficient space to update U-factor …”. 

Therefore, for these cases, we must choose another 
approach. One way seems to be straightforward – to search 
the optimum in the space of permutations of jobs. 
Unfortunately, this approach is useable again only for not very 
high number of jobs, because its time complexity for n jobs is 
equal to O(n!). 

The mathematical formulation given by equations (2)-(7) is 
not suitable for searching in the space of permutations because 
it contains no explicitly expressed permutation. Therefore it is 
necessary to formulate another model. If we have processing 
times p(i,j) for job i on machine j, and a job permutation 
π = J1, J2, ... , Jn, then we can calculate the completion times 
C(Ji, j) as follows: 

 C(J1, 1)  =  p(J1 ,1)  (8) 
 C(Ji , 1)  =  C(Ji –1 , 1) + p(Ji , 1),   i = 2 , … , n (9) 
 C(J1 , j)  =  C(J1 , j −1) + p(J1 , j),   j = 2 , … , m (10) 
 C(Ji , j)  =  max {C(J i –1 ,  j), C(Ji , j −1)} + p(Ji , j), 
 i = 2 , … , n ;  j = 2 , … , m (11) 
 Cmax(π)  =  C(Jn , m)  (12) 

There are many various methods for an approximation of 
the optimal solution by searching only a part of the space of 
feasible solutions (represented here by all permutations). For 
complex combinatorial problems, stochastic heuristic 
techniques [15], [21] are frequently used.  We present an 
approach based on genetic algorithms. As the genetic 
algorithms are well known, see e.g. [16], we only concentrate 
on problem specific details.  

As to the crossover operation, we cannot use the traditional 
two-point crossover, because it would lead to infeasible 
solutions. If we change the middle parts of the parent 
chromosomes P1=(1,10,7,2,8,9,4,6,5,3) and 
P2=(5,8,2,9,7,4,1,10,3,6) between the 4th and 7th position, 
then we would obtain offspring (1,10,7,9,7,4,1,6,5,3) and 
(5,8,2,2,8,9,4,10,3,6) that correspond to no permutations, 
because some jobs are duplicated or omitted. We used the so 
called crossover in a partially mapped representation where 
the genes in the middle part of one chromosome are ordered in 
its offspring by their occurrence in the second parent 
chromosome.  

For mutation we considered three operators: 
• exchange mutation (it exchanges two randomly selected 

positions in a permutation), 
• shift mutation (it removes a value at one position and 

puts it at another position), and 
• mutation inspired by well-known Lin-2-Opt change 

operator usually used for solving the travelling salesman 
problem [10]. Here first two elements are added to the 
permutation (into positions 0 and |n|+1) and then the 
same values are assigned to them to simulate a cyclic 
tour. Two 'edges' (pairs of neighbour elements in 
permutation) are randomly chosen ((p1, p2) and (q1, q2) 
say), the inner elements p2, q1 are swapped and the 
elements between p2 and q1 are reversed. 

In the literature, slight modifications of these shift 
operations can be found, e.g. 1stSwap, FullSwap, DoubleCut, 
DoublePointShift and RightDoublePoint [8], [15], [16]. 

Best results were achieved with the shift mutation. In 
Fig. 1, a skeleton of proposed genetic algorithm is shown. 
Operators that have not been yet discussed are clear from their 
denotations in the algorithms. Number of individuals Npop in 
the population was set to 50 and the number of iterations to 
10 × n2. 

P(0) : = {P1, P2, … , PNpop};
Pmin : = Permutation_minimizing_makespan ∈ P(0); 
t : = 0 ; 
while t < number_of_iterations  do 
   begin repeat BinaryTournamentSelection(P(t), parent1, 
                                                                              parent2); 
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            offspring : = ModifiedTwoPointCrossover( 
                                                     parent1, parent2);  
            offspring : = ShiftMutation(offspring) 
               until not (offspring in population P(t)); 
               Pmax : = Permutation_maximizing_makespan ; 
                                { the worst permutation } 
               P(t +1) : = P(t) − {Pmax} ∪ {offspring};   
                    { SteadyStateReplacement (Pmax , offspring) } 
               if  Makespan(offspring) < Makespan(Pmin) 
                    then Pmin : = offspring; 
               { update the best permutation } 
               t : = t +1 
    end; 

Fig. 1 Genetic algorithm skeleton for permutation flow shop 
scheduling problem 

III. FLOW SHOP SCHEDULING WITH FUZZY PROCESSING TIMES 
Let us suppose now that processing times of the jobs on 

machines are not deterministic, but they are given by fuzzy 
numbers [22].  

A fuzzy number} A is a fuzzy set represented by 4-tuple  
(a1,a2,a3,a4) and a piecewise continuous membership function 
with the following properties [18]: 

• a1 ≤ a2 ≤ a3 ≤ a4  
• μA(x) = 0 for x ≤ a1, x ≥ a4 
• μA(x) = 1 for a2 ≤ x ≤ a3  
• μA is increasing on [a1, a2] and decreasing on [ a3, a4]. 

The fuzzy set defined by the membership function is an 
example of fuzzy number. In this paragraph we consider 
trapezoidal fuzzy numbers. 

In the next text we will denote fuzzy numbers by the type F 
in the upper index. The completion times of the jobs are 
calculated as follows: 

CF(J1, 1)  =  pF(J1 ,1)                              (13) 
(Ji , 1)  =  CF(Ji –1 , 1) ⊕  pF(Ji , 1),   i = 2 , … , n         (14) 

 CF(J1 , j)  =  CF(J1 , j −1) ⊕  pF(J1 , j),   j = 2 , … , m      (15) 

   CF(Ji , j)  =  max {CF(J i –1 ,  j), CF(Ji , j −1)} ⊕ pF(Ji , j), 
 i = 2 , … , n ;  j = 2 , … , m (16) 
 CF

max (π) =  CF(Jn , m)  (17) 
where ⊕ and max are operations over fuzzy numbers. 

The addition of fuzzy numbers can be derived using the 
extension principle and it is determined as follows [6]: 
 XF ⊕ YF = (x1, x2, x3, x4) ⊕ (y1, y2, y3, y4) = 
             = (x1+ y1, x2+ y2, x3+ y3, x4+ y4) (18) 

When the maximum operation would be derived in the 
same way, then its results may not be trapezoidal fuzzy 
numbers. Therefore we approximate this operation as follows 
[6]. 
 max(XF,YF)=(max(x1, y1), max(x2, y2),  
 max(x3, y3), max(x4, y4)) (19) 

To find a job permutation π which minimises the fuzzy 
makespan, we must compare fuzzy numbers in some way, 

which is a difficult problem. An ordering relation ≤ can be 
defined e.g. as follows: 
 XF ≤ YF ⇔  (x1≤ y1) ∧ (x2≤ y2) ∧ (x3≤ y3) ∧ (x4≤ y4)  (20) 

However, this relation is not a complete ordering relation, 
as fuzzy numbers XF, YF satisfying   
 (∃ i,j ∈{1,2,3,4}): (xi<yi) ∧ (xj >yj) (21)   
are not comparable by ≤. 

It is evident that, for noncomparable fuzzy numbers XF, YF, 
this fuzzy max operation results in a fuzzy number different 
from both of them. For example, for XF =(4,9,12,16) and 
YF =(6,8,13,15), we get from equation (19) a fuzzy max 
(6,9,13,16) which differs from XF and YF. 

If Cmax(π1) and Cmax(π2) are not in the ≤ relation then we say 
that the solutions π1, π2 of our scheduling problem are non-
dominated. 

It is straightforward that studied problem of the 
minimisation of CF

max(π) can be replaced by the four-criterial 
problem as follows: 
 Minimise Cmax,1(π) and Cmax,2(π) and 
  Cmax,3(π) and Cmax,4(π)  (22) 
where objective functions Cmax, i(π) are deterministic. 

There are various techniques of the multi-criterial 
optimization. It is possible to get a compromise solution of 
this problem on the basis of its transformation into a single-
criterial problem where an objective function can be designed 
as a weighted sum of criteria: 

 
4

max max,
1

( ) ( )i i
i

C w Cπ π
=

= ∑  (23) 

IV. JOB SHOP SCHEDULING 
The classical JSS problem can be described as follows [24]: 

There are a set of m machines and a set of n jobs. Each job 
consists of a sequence of operations, each of which needs to 
be processed during an uninterrupted time period of a given 
length on a given machine. Each machine can process at most 
one operation at a time. We assume that any successive 
operations of the same job are processed on different 
machines. A schedule is an assignment of the operations to 
time intervals on the machines. 

The problem is to find a schedule which optimises a given 
objective. Assume that three finite sets J, M, O are given 
where J is a set of jobs 1, … , n, M is a set of machines 1, … , 
m, and O is a set of operations 1, … , N. 

Consider the following denotations: Ji = the job to which 
operation i belongs, Mi = the machine on which operation i is 
to be processed, ti = the start time for operation i, pi = the 
processing time for operation i, Cmax = the makespan. 

On O, a binary relation → is defined that represents 
precedence constraints between operations of the same job. 

If i→j, then Ji=Jj and there is no k∈{i,j}satisfying i→k or 
k→j. (Operation i is the predecessor of operation j). Thus, if 
i→j, then Mi ≠ Mj by the JSSP specifications. 
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The problem of optimal job shop scheduling is to find a 
starting ti time for each operation i∈O such that 

 ( )max i i
i O

t p
∈

+  (24) 

is minimised subject to: 
 ∀i∈O :  ti ≥ 0 (25) 
 ∀i, j∈O, i→j :  tj ≥ ti + pi  (26)  
 ∀i, j∈O, i≠j, Mi =Mj  :  (tj ≥ ti + pi) ∨ (tj ≥ ti + pj) (27) 

The conditions (3) express precedence constraints which 
represent technological link-up of operations within the same 
task. The conditions (4) express machine capacity constraints, 
i.e. each machine can process at most one operation at a time. 

The described equations cannot be directly used for 
determining a schedule. We need to eliminate symbols of 
binary relation → and disjunction ∨ and try to get a 
formulation of integer programming. 

The binary relation can be eliminated easily so that O will 
be decomposed into subsets of operations that correspond to 
tasks. Then we will assign to operations in each task numbers 
creating a sequence of consecutive integers by the operation 
order. 

Denote nj = the number of operations in job j, and Nj = the 
total number of operations of the first j jobs. 

Evidently: 

 0
1 1

0, , .
j n

j k k
k k

N N n N n
= =

= = =∑ ∑  (28) 

Using the denotation for total number of operations of the 
first j−1 jobs, we assign to nj operations of task j numbers Nj−1 

+ 1, … , N j−1 + nj where N j−1 + nj = Nj. 
Now we can express equation (26) as follows: 

( )( )1 11 1 :j j i i ij J N i N t t p− +∀ ∈ + ≤ ≤ − ≥ +  (29) 

The makespan is then determined as the maximum of the 
completion times of the last operations in jobs. Hence, we get: 
 max:

j jN Nj J C t p∀ ∈ ≥ +  (30) 

Let us define capacity constraints using binary variables xij 
∈{0,1} as follows: 

 

, , , :

1, ,  operation  precedes operation 

0, ,  operation  precedes operation 

i j

j i i
ij

i j j

i j O i j M M

t t p i j
x

t t p j i

∀ ∈ ≠ =

≥ +⎧⎪= ⎨ ≥ +⎪⎩

 (31) 

If T is an upper bound of the makespan, then, using xij, we 
can replace equation (27) by pairs of inequalities (32) as 
follows: 

( )
( )

1
, , , :

1

j i i ij ij
i j

i j j ij ij

t t p x T x
i j O i j M M

t t p x Tx

⎧ ≥ + − −⎪∀ ∈ ≠ = ⎨
≥ + − −⎪⎩

 (32) 

Hence, the job shop scheduling problem with makespan 
objective can be formulated as follows: 

Minimise 
 Cmax (33) 
subject to 

 ∀i∈O :  ti ≥ 0 (34)  
 ( )( )1 11 1 :j j i i ij J N i N t t p− +∀ ∈ + ≤ ≤ − ≥ +  (35)  

 max:
j jN Nj J C t p∀ ∈ ≥ +  (36)  

 ( )
( )

{0,1}

, , , : 1

1

ij

i j j i i ij ij

i j j ij ij

x

i j O i j M M t t p x T x

t t p x Tx

⎧ ∈
⎪
⎪∀ ∈ ≠ = ≥ + − −⎨
⎪

≥ + − −⎪⎩

 (37) 

An important feature of heuristic methods is problem 
representation. In [5], a review of frequently used 
representations is presented. Here, we briefly describe three 
representations (one based on jobs, one on operations, and one 
on disjunctive graphs). 

The job-based representation consists of a list of n jobs and 
a schedule is constructed according to the sequence of jobs. 
For a given sequence of jobs, all operations of the first job in 
the list are scheduled first, and then all operations of the 
second job in the list are considered. The first operation of the 
job under treatment is allocated in the best available 
processing time to the machine the operation requires, and 
then the second operation, and so on until all operations of the 
job are scheduled. The process is repeated with each of the 
jobs in the list considered in the appropriate sequence. Any 
permutation of jobs corresponds to a feasible schedule. 

The operation-based representation encodes a schedule as 
a sequence of operations and each element of this sequence 
stands for one operation. All operations for a job are named 
by the same symbol in the sequence and they are interpreted 
according to the order of occurrence in the given sequence. 
For an n-job and m-machine problem, a sequence contains n × 
m elements. 

Each job appears in the chromosome exactly m times and 
each repeating refers to a unique operation which is context-
dependent rather than indicating a concrete operation of a job. 
It is straightforward that any permutation of elements in a 
sequence always yields a feasible schedule. 

The disjunctive graph-based representation: A disjunctive 
graph is defined as follows: 

 ( ),G V C D= ∪  (38) 
where 

V is a set of vertices representing operations. This set 
contains also two special vertices numbered 0 and N+1 
representing the fictitious start and end operations, 
respectively. The processing time of each operation is denoted 
as the weight of the vertex. The two fictitious operations 0 and 
N+1 have operation times of zero. 

C is a set of directed conjunctive edges. These edges 
represent pairs of consecutive operations of the same job, as 
well as edges from the start vertex 0 to the first operation of 
each job and edges from the last operations of each job to the 
end vertex N+1. 

D is a set of undirected disjunctive edges representing pairs 
of operations to be processed by the same machine. 
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Fig. 2 Disjunctive graph for the JSSP instance and a feasible 

schedule represented as an acyclic directed graph 
 
To determine a schedule we must define an ordering of all 

operations processed on the same machine. It can be done by 
turning all undirected (disjunctive) edges into directed ones. A 
set S of all directed edges selected from disjunctive edges is 
called a complete selection. A complete selection S defines a 
feasible schedule if and only if the resulting directed graph is 
acyclic which guarantees there are no precedence conflicts 
between operations, see Fig. 2. Obviously, the time required 
to complete all jobs (makespan) is given by the length of the 
longest weighted path from the start vertex to the end vertex 
in a directed graph G(S)=(V,C∪S), where S is an acyclic 
complete selection. This path is called the critical path and is 
composed of a sequence of critical operations. 

Using Critical Path Method (CPM), we easily get the 
earliest possible start times of operations and the 
corresponding schedule by the Gantt chart. 

The key operator of the tabu search and simulating 
annealing methods is one used to construct a neighbourhood 
of the current solution in which these algorithms search foe a 
solution to be used in the next iteration. In the literature, many 
sophisticated strategies can be found. For lack of space, we 
only mention the neighbourhood search strategy of Nowicki 
and Smutnicki [19], [25]. It is based on modifications of 
critical blocks that create a critical path evaluated by the CPM. 
These blocks are given by maximal sequences of consecutive 
critical operations on the same machine.  
 For a single (arbitrarily selected) critical path u and critical 
blocks B1, … , Br defined for u, it swaps the first (and the last) 
two operations in blocks B2, …, Br−1. In the first block B1 it 
swaps only the last two operations, and, via symmetry in the 
last block Br, it swaps only the first two operations. These 
swaps define the set of moves from the processing order pi. 
This set of moves is not empty only if the number of blocks is 
greater than one (r >1) and if there exists at least one block 
with the number of elements greater than one. The 
neighbourhood of pi is then defined as all the processing 
orders obtained by applying moves from pi. This strategy 
implemented within the framework of a tabu search led to the 

best known results for benchmarks from the OR-Library. 

V. CONCLUSION 
In this paper, we presented mathematical models of 

manufacturing processes and their representation schemes. 
Based on mixed integer programming formulations, they 
could be used for computation in such optimization tools as 
GAMS and LINDO. Unfortunately, because of NP-
completeness of the models, they can only get an optimal 
solution for small FSSP/JSSP instances. Therefore, other 
representation schemes, more suitable for computations by 
approximation or heuristic methods, must be searched. As 
frameworks of these methods are known enough, we focused 
on the key operators such as proposed by Nowicki and 
Smutnicki to disjunctive graph-based representation of JSSP. 

Further investigation will include fuzzy versions of these 
problems where two cases of uncertainties can be obtained - 
uncertain due dates and uncertain processing times. 
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