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Abstract—This paper addresses the mathematical model of wind 

energy system useful for designing fault tolerant control. To serve the 
demand of power, large capacity wind energy systems are vital. 
These systems are installed offshore where non planned service is 
very costly. Whenever there is a fault in between two planned 
services, the system may stop working abruptly. This might even lead 
to the complete failure of the system. To enhance the reliability, the 
availability and reduce the cost of maintenance of wind turbines, the 
fault tolerant control systems are very essential. For designing any 
control system, an appropriate mathematical model is always needed. 
In this paper, the two-mass model is modified by considering the 
frequent mechanical faults like misalignments in the drive train, gears 
and bearings faults. These faults are subject to a wear process and 
cause frictional losses. This paper addresses these faults in the 
mathematics of the wind energy system. Further, the work is 
extended to study the variations of the parameters namely generator 
inertia constant, spring constant, viscous friction coefficient and gear 
ratio; on the pole-zero plot which is related with the physical design 
of the wind turbine. Behavior of the wind turbine during drive train 
faults are simulated and briefly discussed.  
 

Keywords—Mathematical model of wind energy system, stability 
analysis, shaft stiffness, viscous friction coefficient, gear ratio, 
generator inertia, fault tolerant control. 

I. INTRODUCTION 

HE wind power is considerably cheap, clean and non-
polluting source of energy. The conventional power 

generation sources use fossil fuels leading to environmental 
pollution. These fossil fuels are reducing day by day. To meet 
the demand of power, the considerable growth has been seen 
in wind energy conversion systems. The growth is mainly 
focused on large capacity wind energy systems. These are 
remotely located. The stochastic nature of the wind causes 
power fluctuations and frequent faults. The faults may lead to 
the major failure, if not treated in time. To study the impact of 
these faults and design a fault tolerant control system, an 
appropriate mathematical model needs to be developed.  

In recent literature, the techniques of mathematical 
modeling for wind energy systems are researched well. The 
detailed nonlinear mathematical model of wind energy system 
is discussed in [1]. The aerodynamic model of wind energy 
system is simulated in [2] shows that the wind shear and tower 
shadow causes 3p pulses in the aerodynamic torque and affect 
the power quality. In literature, the wind energy system is 
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modeled as six mass, three mass, two mass and one mass 
model and the transient response of it is studied in [3]-[5]. The 
research shows that the two-mass model can be effectively 
used with sufficient accuracy. The effects of the parameters 
such as inertia constants of rotor and generator, spring 
constant, damping constant and gear ratio on transient stability 
is studied in [6]-[8]. 

The goal of this paper is to develop the mathematical model 
of wind energy system which can be used for designing fault 
tolerant control system. The wind energy system is divided in 
sub-models which can be suitably modeled separately. The 
drive train represents the set of components necessary to 
transmit the power from rotor to generator. The structure of 
the large capacity wind energy systems is heavier and the 
components used are more flexible. Due to the stochastic 
nature of the wind and complex assembly of the drive train, 
the varying stresses and significant vibrations are created. The 
mechanical faults due to misalignment or the bearing faults are 
very common. It causes the frictional losses which are 
considered in mathematical modeling. The mathematical 
model derived in literature does not consider these losses.  

In wind energy plant, the advance control systems are used. 
In the close loop control system the input variables used are 
pitch angle, rotor speed, generator speed, generator torque and 
output power which are measured by the sensors. In the 
presented wind energy system model, these parameters are 
used as the input states which can be estimated using derived 
model. The developed model is suitable for designing fault 
tolerant control. 

II. WIND ENERGY SYSTEM MODELING  

The wind energy system is divided into small sub-models 
represented by Fig. 1. It includes the wind model, 
aerodynamics, pitch actuator, tower, drive train and generator. 
The wind model includes the effects of wind shadow, shear 
and turbulence. The aerodynamic model calculates the 
aerodynamic torque and thrust with the rotor effective wind. 
The pitch actuator adjusts the pitch angle to maintain the rated 
speed in high wind region. The drive train increases the speed 
of the rotor necessary for the generator to yield the maximum 
power. In figure,  is the rotor effective wind speed in [m/s], 

 is pitch angle in [o],  is reference pitch angle in 
[o],  is the aerodynamic torque which is input to the drive 
train in [N],  is generator torque in [N],  and  are rotor 
and generator speed in [rad/s],  is displacement of nacelle 
from its equilibrium position in [m]. 
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stability analysis by considering the sensitivity of the 
parameters-generator inertia constant, spring constant, viscous 
friction coefficient and gear ratio. This study further is related 
with the physical design of the wind turbine. From the stability 
analysis, it has been concluded that the spring constant has 
less effect on stability. The increased viscous friction 
coefficient, gear ratio and decreased generator inertia can 
make the system unstable. Increased generator inertia constant 
improves the transient response. The considered  in the 
mathematical model is useful in designing fault tolerant 
control system. It will help the controller to remove the offset 
in the final output generator speed. The perfect generator 
torque control facilitates in good tracking of reference torque 
which minimizes the fatigue stresses. 
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