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Abstract—This paper features the mathematical modeling of a 

single input single output based Timoshenko smart beam. Further, 
this mathematical model is used to design a multirate output 
feedback based discrete sliding mode controller using Bartoszewicz 
law to suppress the flexural vibrations.  The first 2 dominant 
vibratory modes is retained.  Here, an application of the discrete 
sliding mode control in smart systems is presented.  The algorithm 
uses a fast output sampling based sliding mode control strategy that 
would avoid the use of switching in the control input and hence 
avoids chattering. This method does not need the measurement of the 
system states for feedback as it makes use of only the output samples 
for designing the controller. Thus, this methodology is more practical 
and easy to implement.   

Keywords—Smart structure, Timoshenko beam theory, Discrete 
sliding mode control, Bartoszewicz law, Finite Element Method, 
State space model, Vibration control, Mathematical model, SISO.

I. INTRODUCTION

ATHEMATICAL modeling of any system is the art and 
craft of building a system of equations that is both 

sufficiently complex and simple to give real insight into the 
situation.  It brings together mathematicians and specialists in 
other fields to improve existing system, develop better ones, 
or predict the behavior of a certain system and how the things 
will be in the future.  With the advent of more powerful 
computers, modeling teams have been able to tackle more 
complex problems, develop more accurate models, get 
answers in less time, and reduce research and development 
costs. Finally, it is the process of creating a mathematical 
representation of some phenomenon in order to gain a better 
understanding of that phenomenon. 

It is a process that attempts to match observation with 
symbolic statement. During the process of building a 
mathematical model, the modeler will decide what factors are 
relevant to the problem and what factors can be de-
emphasized. Once a model has been developed and used to 
answer questions, it should be critically examined and often 
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modified to obtain a more accurate reflection of the observed 
reality of that phenomenon.  Mathematical models of time 
dependent processes (dynamical systems) can be split into 2 
categories depending on how the time variable is to be treated. 
A continuous-in-time mathematical model is based on a set of 
equations that are valid for any value of the time variable. A 
discrete-in-time mathematical model is designed to provide 
information about the state of the physical system only at a 
selected set of distinct times. 

The solution of a continuous-in-time mathematical model 
provides information about the physical phenomenon at every 
time value. The solution of a discrete-in-time mathematical 
model provides information about the physical system at only 
a finite number of time values. Continuous-in-time models 
have 2 advantages over discrete-in-time models - they provide 
information at all times and more clearly show the qualitative 
effects that can be expected when a parameter or an input 
variable is changed. On the other hand, discrete in time 
models have 2 advantages over continuous in time models - 
they are less demanding with respect to skill level in algebra, 
trigonometry, calculus, differential equations, etc. and are 
better suited for digital implementation on a computer.   

The main advantage of mathematical modeling of systems 
(say, a structure) is simulating the system off-line, observing 
its behavioral response and then using it to control in real 
time. For the control of these structures, a precise 
mathematical model is required to start with. These 
mathematical models are further used to design a controller 
and put it in the feedback loop with the plant for its overall 
satisfactory performance.  It is common to assume the 
availability of a model of the plant to be controlled, especially 
in the form of a differential equation or a system of 
differential equations (i.e., an input-output relation or the state 
space model).  The number of inputs and outputs or the 
number of states of a system can be regarded as parameters 
that are used to control the system.  This approach work well 
for mechanical systems with a few DOF, keeping in mind that 
each DOF gives rise to 2 state variables, viz., displacement 
and velocity. A structural dynamic model or a finite element 
model is obtained by the finite element discretization of a 
structure and then using the modern control theory, a state-
space model of the structural system can be obtained. 

 Many researchers have developed mathematical models of 
flexible structures and used them for controlling various 
parameters, say the transverse vibrations of the system when 
the structure is subjected to external disturbances. The 
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following paragraphs give a brief insight into such 
mathematical models and its control designs for damping out 
the vibrations.  

Culshaw [15] discussed the concept of smart structure, its 
benefits and applications.  Rao and Sunar [35] explained the 
use of piezo materials as sensors and actuators in sensing 
vibrations in a survey paper.  Baily and Hubbard [7] have 
studied the application of piezoelectric materials as sensor / 
actuator for flexible structures. Hanagud et.al. [26] developed 
a Finite Element Model (FEM) for a beam with many 
distributed piezoceramic sensors / actuators. Fanson et.al. [21]
performed some experiments on a beam with piezoelectrics 
using positive position feedback. Balas [8] did extensive work 
on the feedback control of flexible structures. Experimental 
evaluation of piezoelectric actuation for the control of 
vibrations in a cantilever beam was presented by Burdess 
et.al. [9].  Brenan et al. [10] performed some experiments on 
the beam for different actuator technologies.  Yang and Lee 
[49] studied the optimization of feedback gain in control 
system design for structures. Crawley and Luis [13]  presented 
the development of piezoelectric sensor / actuator as elements 
of intelligent structures.  

Hwang and Park [27] presented a new finite element (FE) 
modeling technique for flexible beams.  Continuous time and 
discrete time algorithms were proposed to control a thin 
piezoelectric structure by Bona, et.al. [11].  Schiehlen and 
Schonerstedt [38] reported the optimal control designs for the 
first few vibration modes of a cantilever beam using 
piezoelectric sensors / actuators.  S.B. Choi et.al. [17] have 
shown a design of position tracking sliding mode control for a 
smart structure.  Distributed controllers for flexible structures 
can be seen in Forouza Pourki [22].  Shiang Lee [40] devised 
a new form of control strategy for vibration control of smart 
structures using neural networks.  A passivity-based control 
for smart structures was designed by Gosavi and Kelkar [24].  
A self tuning active vibration control scheme in flexible beam 
structures was carried out by Tokhi [42].  Active control of 
adaptive laminated structures with bonded piezoelectric 
sensors and actuators was investigated by Moita et.al. [32].
Ulrich et.al. [44] devised a optimal LQG control scheme to 
suppress the vibrations of a cantilever beam.  Finite element 
simulation of smart structures using an optimal output 
feedback controller for vibration and noise control was 
performed by Young et.al. [48]. Work on vibration 
suppression of flexible beams with bonded piezo-transducers 
using wave-absorbing controllers was done by Vukowich and 
Koma [45].   

Aldraihem et.al. [2] have developed a laminated beam 
model using two theories; namely, Euler-Bernoulli beam 
theory and Timoshenko Beam theory.  Abramovich [3] has 
presented analytical formulation and closed form solutions of 
composite beams with piezoelectric actuators, which was 
based on Timoshenko beam theory.  He also studied the 
effects of actuator location and number of patches on the 
actuator’s performance for various configurations of the piezo 
patches and boundary conditions under mechanical and / or 

electric loads. Using a higher-order shear deformation theory, 
Chandrashekhara and Varadarajan [14] presented a finite 
element model of a composite beam to produce a desired 
deflection in beams with clamped-free, clamped-clamped and 
simply supported ends.  

Sun and Zhang [36] suggested the idea of exploiting the 
shear mode to create transverse deflection in sandwich 
structures. Here, he proved that embedded shear actuators 
offer many advantages over surface mounted extension 
actuators. Aldraihem and Khdeir [4] proposed analytical 
models and exact solutions for beams with shear and 
extension piezoelectric actuators and the models were based 
on Timoshenko beam theory and higher-order beam theory. 
Exact solutions were obtained by using the state-space 
approach. Doschner and Enzmann [19] designed a model-
based controller for smart structures. Robust multivariable 
control of a double beam cantilever smart structure was 
implemented by Robin Scott et.al. [33].   

In a more recent work, Zhang and Sun [51] formulated an 
analytical model of a sandwich beam with shear piezoelectric 
actuator that occupies the entire core. The model derivation 
was simplified by assuming that the face layers follow Euler-
Bernoulli beam theory, whereas the core layer obeys 
Timoshenko beam theory. Furthermore, a closed form solution 
of the static deflection was presented for a cantilever beam. A 
new method of modeling and shape control of composite 
beams with embedded piezoelectric actuators was proposed by 
Donthireddy and Chandrashekara [20].  

A model reference method of controlling the vibrations in 
flexible smart structures was shown by Murali et.al. [31]. 
Thomas and Abbas [41] explained some techniques of 
performing finite element methods for dynamic analysis of 
Timoshenko beams.  A FEM approach was used by 
Benjeddou et.al. [12] to model a sandwich beam with shear 
and extension piezoelectric elements. The finite element 
model employed the displacement field of Zhang and Sun 
[51]. It was shown that the finite element results agree quite 
well with the analytical results. Deflection analysis of beams 
with extension and shear PZT patches using discontinuity 
functions was proposed by Ahmed and Osama in [5].  Raja 
et.al. [34] extended the finite element model of Benjeddou’s 
research team to include a vibration control scheme. An 
improved 2-node Timoshenko beam model was presented by 
Kosmataka and Friedman [28].  Azulay and Abramovich [6] 
have presented analytical formulation and closed form 
solutions of composite beams with piezoelectric actuators.  
Abramovich and Lishvits [1] did extensive work on cross-ply 
beams to control the free vibrations.  The work done by 
Kosmataka and Friedman [28], Azulay and Abramovich [6], 
Abramovich and Lishvits [1] is used in this paper for 
developing the control technique for the vibration suppression 
of the flexible structures. 

The outline of the paper is as follows. A brief review of 
related literature about the mathematical models of beams and 
their control strategies was given in the introductory section.  
Section 2 gives a overview into the mathematical modeling 
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(sensor  / actuator model, finite element model, state space 
model) of the smart cantilever beam. Controller design for the 
developed 4 SISO state space models of the smart plant in 
Section 2 is given in Section 3 with a deep insight into the 
design of the multirate output feedback based discrete sliding 
mode control algorithm using Bartoszewicz law. The 
simulation results are presented in Section 4. Conclusions are 
drawn in Section 5 followed by the references. 

II. MATHEMATICAL MODELING OF THE SMART BEAM

(a)   A regular flexible beam

(b) A aluminum Timoshenko cantilever beam bonded 
 with surface mounted piezoelectrics 

Fig. 1   A regular flexible beam and a smart aluminum Timoshenko 
cantilever beam bonded with surface mounted piezoelectrics 

Few researchers have well established a mathematical finite 
element E-B model. These models do not consider the shear 
effects, axial effects, etc.,.. Modeling of smart structures by 
shear deformable (Timoshenko) theory is limited.  In our 
work, the effect of shear has been considered in modeling. 
Consider a aluminum cantilever beam as shown in Fig. 1(a) 
divided into 4 finite elements as shown in Fig. 2. The 
piezoelectric element is bonded on one discrete section (one 
finite element) of the surface of the beam as surface mounted 
sensor / actuator pair.  The piezoelectric beam element is 
obtained by sandwiching the regular beam element between 
two thin piezoelectric layers at discrete sections. The bottom 
layer is acting as a sensor and the top layer is acting as an 
actuator as shown in the Fig. 2. 

The element is assumed to have two structural DOF’s 
),( θw  at each nodal point and an electrical DOF : a 

transverse deflection and an angle of rotation or slope. Since 
the voltage is constant over the electrode, the number of DOF 
is one for each element.  The electrical DOF is used as a 
sensor voltage or actuator voltage.  Corresponding to the two 
DOF’s, a bending moment acts at each nodal point, i.e., 
counteracting moments are induced by the piezoelectric 
patches.  The bending moment resulting from the voltage 
applied to the actuator adds a positive finite element bending 
moment, which is the moment at node 1, while subtracting it 
at node 2.  In the mathematical modeling of the smart beam, 
the following assumptions are made. The mass and stiffness of 

the adhesive used to bond the sensor / actuator pair to the 
master structure is being neglected. The smart cantilever beam 
model is developed using 1 piezoelectric beam element, which 
includes sensor and actuator dynamics and remaining beam 
elements as regular beam elements based on Timoshenko 
beam theory assumptions. The cable capacitance between the 
piezo patches and the signal-conditioning device is considered 
negligible and the temperature effects are neglected.  The 
signal conditioning device gain is assumed as 100.  

An external force input extf  (impulse) is applied at the free 
end of the smart beam.  The beam is subjected to vibrations 
and takes a lot of time for the vibrations to dampen out.  These 
vibrations are suppressed quickly in no time by the closed 
loop action of the controller, sensor and actuator. Thus, there 
are two inputs to the plant. One is the external force input extf
(impulse disturbance), which is taken as a load matrix of 1 
unit in the simulation and the other input is the control input u
to the actuator from the DSM controller. The dimensions and 
properties of the aluminum cantilever beam and piezoelectric 
sensor / actuator used are given in Tables I and II respectively.  

TABLE I
PROPERTIES OF THE FLEXIBLE CANTILEVER BEAM ELEMENT

Parameter  (with units) Symbol Numerical values 

Length (m) 
bl 0.5

Width (m) b 0.024
Thickness (mm)

bt 1

Young’s modulus (GPa)
bE 193.06

Density (kg/m3)
bρ 8030

Damping constants βα , 0.001. 0.0001 

TABLE II 
PROPERTIES OF THE PIEZO - SENSOR / ACTUATOR ELEMENT

Parameter  (with units) Symbol Numerical values 

Length (m) 
pl 0.125

Width (m) b 0.024
Thickness (mm)

sa tt , 0.5

Young’s modulus (GPa)
pE 68

Density (kg/m3)
pρ 7700

Piezo strain constant (m /V)
31d 1210125 −×

A. Finite Element Modeling of the Regular Beam Element 
A regular beam element is shown in Fig. 1(a). The 

longitudinal axis of the regular beam element lies along the X-
axis. The element has constant moment of inertia, modulus of 
elasticity, mass density and length [1], [6], [28], [30]. The 
displacement relations in the zyx and, directions of the beam 
can be written as  
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∂
∂== x
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wztxztzyxu βθ     (1)          

,0),,,( =tzyxv    (2) 
),,(),,,( txwtzyxw =  (3) 

where w is the time dependent transverse displacement of the 
centroidal axis (along z axis),θ is the time dependent 
rotation of the cross-section about y  axis, u is the axial 
displacement along the x  axis, v is the lateral displacement 
along the y axis which is equal to zero.  The total slope of the 
beam consists of two parts, one due to bending, which is 
( )dxdw / and the other due to shear, which is )(xβ . The axial 
displacement of a point at a distance z from the centre line is 
only due to the bending slope and the shear slope has no 
contribution to this.  

(a)   Model 1 ( PZT placed at FE position 1, fixed end) 

(b)   Model 2                                        (c)  Model 3 
( PZT placed at FE position 2)            ( PZT placed at FE position 3) 

(d)  Model 4 ( PZT placed at FE position 4, free end) 

Fig. 2  A SISO smart Timoshenko beam divided into 4 finite 
elements and the sensor / actuator pair moved from fixed end to free 

end  (Four SISO models of the same plant) 

∴, the strain components of the beam are given as 
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where , ,xx yy zzε ε ε are the longitudinal strains or the tensile 

strains in the 3 directions, i.e., in the , ,x y z directions. The 
shear strains γ induced in the beam along the 3 directions 
(viz., along , ,x y z directions) are given by  
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The effect of shear strains along y and z directions is equal 
to zero. Thus, the stresses in the beam element are given as 
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where bE  is the young’s modulus of the beam material, G  is 
shear modulus (or modulus of rigidity) of the beam material, 

xzσ is the shear stress, xxσ is the tensile stress and  is the 
shear coefficient [16] which depends on the material 
definition and on the cross sectional geometry, usually taken 
equal to 6/5 .  The strain energy of the beam element depends 
upon the linear strain , the shear strain γ  and is given by  
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and the total strain energy is finally written as  
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where bI  is the mass moment of inertia of the beam element, 

bA  is the area of cross section of the beam element and bl  is 
the length of the beam. The kinetic energy T  of the beam 
element depends on the sum of the kinetic energy due to the 
linear velocity w and due to angular twist θ  and is given by 

22

2
1

2
1

∂
∂+

∂
∂=

t
I

t
wAT bbbb

θρρ  (14) 

and the total kinetic energy is finally written as                              

,
0

0
2
1

0

dx

t

t
w

I
A

t

t
w

T
bb

bb

T

bl

∂
∂

∂
∂

∂
∂

∂
∂

=
θρ

ρ

θ
 (15) 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:1, No:1, 2007

5

where bρ  is the mass density of the beam material. The total 
work done due to the external forces in the system is given by 

,
0

dx
m
qw

W d
TL

e =
θ

   (16) 

where dq represents distributed force along the length of the 
beam and m represents the moment along the length of the 
beam.  

The equation of motion is derived using the concept of the 
total strain energy being equal to the sum of the change in the 
kinetic energy and the work done due to the external forces 
and is given by the Hamilton’s principle as 

( ) =−−=∏
2

1

.0
t

t
dtWTU eδδδδ    (17) 

Here, TU δδ , and eWδ are the variations of the strain 
energy, the kinetic energy, work done due to the external 
forces and T is kinetic energy, U is strain energy, W is the 
external work done and t  is the time.   

Substituting the values of strain energy from Eq. (13), 
kinetic energy from Eq. (15) and external work done from Eq. 
(16) in Eq. (17) and integrating by parts, we get the governing 
equation of motion (Timoshenko beam equations) of a general 
shaped beam modeled with Timoshenko beam theory as 

2
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The R.H.S. of Eq. (18) is the time derivative of the linear 
momentum, whereas the R.H.S. of Eq. (19) is the time 
derivative of the moment of momentum.  

For the static case with no external force acting on the 
beam, the governing equation of motion (Timoshenko beam 
equations) reduces to   

0=
∂
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  (20) 
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∂
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x
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.   (21) 

From Eq. (21), it can be seen that this governing equation 
of the beam based on Timoshenko beam theory can only be 
satisfied if the polynomial order for w  is selected one order 
higher than the polynomial order for θ . Let w  be 
approximated by a cubic polynomial and θ  be approximated 
by a quadratic polynomial as 

,4
4

2
321 xaxaxaaw +++=  (22) 

2
321 xbxbb ++=θ .  (23) 

Here, in (22) and (23), x  is the distance of the finite 
element node from the fixed end of the beam, ia  and jb

)( 4,3,2,1=i and )( 3,2,1=j are the unknown coefficients 
and are found out using the boundary conditions at the beam  
element ends ),0( blx = as
at 0,,0 1 === θwwx  (24) 

and at 22 ,, θθ −=== wwlx b . (25) 
After applying boundary conditions from Eqs. (24), (25) on 

(22), (23), the unknown coefficients ia  and jb can be solved.

Substituting the obtained unknown coefficients ia  and jb
in Eqs. (22), (23) and writing them in matrix form, we get, the 
transverse displacement, the first spatial derivative of the 
transverse displacement, the second spatial derivative of the 
transverse displacement and the time derivative of Eq. (22) as

[ ] [ ][ ]qwNtxw =),( , (26) 
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where q is the vector of displacements and slopes, q is the 

time derivative of the modal coordinate vector, [ ]TwN ,

[ ]TNθ , [ ]T
aN are the shape functions (for displacement, 

rotations and accelerations) taking the shear φ  into 
consideration and are given as 
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where [ ] [ ]′= wNNθ , [ ] [ ]″= wa NN  and φ  is the ratio of the 
beam bending stiffness to shear stiffness and is given by 

=
b

bb

b AG
IE

l 2

12φ . (33) 

The mass matrix of the regular beam element (also called as 
the local mass matrix) is the sum of the translational mass and 
the rotational mass and is given in matrix form as  
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Substituting the mode shape functions [ ]wN , [ ]θN  into  
(34) and integrating, we get the mass matrix of the regular 
beam element as  
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where [ ]
bb AM ρ and [ ]
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M ρ in Eq. (35) is associated 

with the translational inertia and rotary inertia (with shear) as   
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, (36) 
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( ) ( )

( ) ( )
( ) ( )
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( ) ( )

.
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φ
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φφφ
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ρ

ρ

(37)

The stiffness matrix [ ]bK of the regular beam element (local 
stiffness matrix) is the sum of the bending stiffness and the 
shear stiffness and is written in matrix form as 

[ ]
[ ]

[ ] [ ]

[ ]

[ ] [ ]
.

0
0

0

dx

N
x

N

N
x

GA
IE

N
x

N

N
x

K

w

b

bb

T

w

bl
b

∂
∂+

∂
∂

∂
∂+

∂
∂

=

θ

θ

θ

θ

 (38) 

Substituting the mode shape functions [ ]wN , [ ]θN  into (38) 
and integrating, we get the stiffness matrix of the regular beam 
element as [ ]bK  which is given by  

[ ]
( )

( ) ( )

( ) ( )+−−
−−−
−−+

−

+
=

22

22

4626
612612

2646
612612

1 3

bbb

bb

bbb

bb

b

bb

lllL
ll
lllL

ll

l
IEK b

φφ

φφ
φ

   (39)     

B. Finite Element Modeling of Piezoelectric Beam Element 
The finite element modeling of the piezoelectric element is 

done as follows.  The regular beam and the piezoelectric beam 
(beam + piezo-patch) are shown in Figs. 1(a) and 1(b) 
respectively. The piezoelectric beam element is obtained by 
bonding the regular beam element with a layer of two 
piezoelectric patches or layers, one above and the other below 
at two finite element positions as a collocated pair as shown in 
the Figs. 2(a) - (d).  Collocated piezoelectric sensor / actuators 
are used because they are supposed to be more robust (against 
parameter uncertainty) under feedback control action.  

The bottom layer acts as the sensor and the top layer acts as 
an actuator. The element is assumed to have two structural 
degrees of freedom (DOF) at each nodal point, which are, 
transverse deflection w , an angle of rotation or slope θ  and 
an electrical degree of freedom, i.e., the sensor voltage.  The 
piezo sensor-actuator pair is also modeled using the 
Timoshenko beam theory.  Employing the same procedure 
similar to the regular beam element, which was modeled using 
the Timoshenko beam theory, we obtain the mass matrix of 
the piezoelectric element as  

[ ] [ ]
pppp

p
IA MMM ρρ += , (40) 

where

pρ   is the mass density of piezoelectric element, 

pA   is the area of the piezoelectric patch = bta2 , i.e., the 

area of the sensor as well as actuator, 
b   being the width of the beam / width of the sensor / 

actuator,

pl      is the length of the piezoelectric patch. 

Here, in Eqn. (40), [ ]
pp AM ρ and [ ]

pp IM ρ is

associated with the translational inertia and the rotary inertia 
of the piezoelectric element as   
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  (41) 

and

[ ]
( )

( ) ( )
( ) ( )

( ) ( )−−−−
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−−

+
=
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2
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 (42) 

Similarly, we obtain the stiffness matrix [ ]piezoK of the 
piezoelectric element as 

[ ]
( )

( ) ( )

( ) ( )+−−
−−−
−−+

−

+
=

22

22

3

4626
612612

2646
612612

1
pppp

pp

pppp

pp

p

ppp

llll
ll
llll

ll

l

IE
K

φφ

φφ

φ
.   

 (43) 
where

ppbb IEIEIE 2+= ,  (44) 

( )apbb ttbA ρρρ 2+= , (45) 

( ) 2
3

212
1 +

+= ba
aap

tt
tbtbI . (46) 

Here, pE is the modulus of elasticity of the piezoelectric 

material, pA is the area of the piezoelectric patch pρ is the 

mass density of the piezoelectric material, pI is the moment 
of inertia of the piezoelectric layer with respect to the neutral 
axis of the beam, pt  is the thickness of the beam and at  is 

the thickness of the actuator, which is also equal to the 
thickness of the sensor st  and b  is the width of the piezo-
patch and also that of the host beam.     

C. Mass and Stiffness of Beam Element with Piezo Patch 
The mass and stiffness matrix for the piezoelectric beam 

element (regular beam element with piezoelectric patches 
placed at the top and bottom surfaces) as a collocated pair 
(element 1 in Fig. 2(a)) is given by  

[ ] [ ] [ ]pb MMM +=  (47) 

and [ ] [ ] [ ]pb KKK += . (48) 
Assembly of the regular beam element and the piezoelectric 

element is done by adding the two matrices. It is assumed that 
the rotations and displacements are the same in all the layers 
of the structure.

D. Piezoelectric Sensors and Actuators 
The linear piezoelectric coupling between the elastic field 

and the electric field of a PZT material is expressed by the 
direct and converse piezoelectric constitutive equations as 

,f
T EedD += σ   (49) 

,f
E Eds += σε  (50) 

where  is the stress,  is the strain, fE  is the electric field, 

D  is the dielectric displacement, e is the permittivity of the 
medium, Es is the compliance of the medium, and d  is the 
piezoelectric constant [35]. 

1) Sensor Equation 
The direct piezoelectric equation is used to calculate the 

output charge produced by the strain in the structure. The total 
charge )(tQ developed on the sensor surface (due to the 
strain) is the spatial summation of all point charges developed 
on the sensor layer and the corresponding current generated is 
given by  

dxNcezti
pl

T
a q=

0
31)( , (51) 

where a
b t

t
z +=

2
, 31e  is the piezoelectric stress / charge 

constant, q  is the time derivative of the modal coordinate 

vector and T
aN is the second spatial derivative of the mode 

shape function of the beam. This current is converted into the 
open circuit sensor voltage sV using a signal-conditioning 
device with gain cG and applied to an actuator with the 
controller gain 

cK .  The sensor output voltage obtained is as 

dxNczeGV
pl

T
ac

s q=
0

31  (52) 

or can be expressed as
qpTtV s =)(  , (53) 

where Tp is a constant vector. The input voltage to the 

actuator is )(tV a and is given by 
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=
pl

dxNczeGKtV T
acc

a

0

31)( q . (54) 

Note that the sensor output is a function of the second 
spatial derivative of the mode shape. 

2) Actuator  equation 
The actuator strain is derived from the converse 

piezoelectric equation. The strain developed by the applied 
electric field Ef on the actuator layer is given by 

a

a

fA t
tVdEd )(

3131 ==ε . (55) 

When the input to the actuator )(tV a is applied in the 
thickness direction, the stress developed is 

.)(
31

a

a

pA t
tVdE=σ  (56) 

The resultant moment AM  acting on the beam due to the 
stress is determined by integrating the stress through the 
structure thickness as 

)(31 tVzdEM a
pA = ,  (57) 

where z , is the distance between the neutral axis of the beam 
and the piezoelectric layer. The bending moment results in 
the generation of the control force.  Finally, the control force 
applied by the actuator is obtained as  

)(31 tVdxNzcdE a

l

pctrl

p

= θf  (58) 

or can be expressed as

)(tV a
ctrl hf = ,   (59) 

where [ ]TNθ  is the first spatial derivative of mode shape 

function of the beam and Th is a constant vector which 

depends on the piezo characteristics and its location on the 
beam. If an external force extf (impulse disturbance) acts on 
the beam, then, the total force vector becomes 

ctrlext
t fff += .   (60) 

E. Dynamic Equation of the Smart Structure 
The dynamic equation of the smart structure is obtained by 

using both the regular and piezoelectric beam elements (local 
matrices) given by (35), (39), (40), (41)-(43) and (47), (48).  
The mass and stiffness of the bonding or the adhesive between 
the master structure and the sensor / actuator pair is neglected.  
The mass and stiffness of the entire beam, which is divided 
into 4 finite elements with the piezo-patches placed at only 
one discrete location at a time is assembled using the FEM 
technique [39] and the assembled matrices (global matrices), 
M and K are obtained.  The equation of motion of the 
smart structure is finally given by 

t
ctrlext fffKqqM =+=+ ,  (61) 

where fffKM ,, t
ctrlext ,, are the global mass matrix, 

global stiffness matrix of the smart beam, the external force 
applied to the beam, the controlling force from the actuator  
and  the  total  force  coefficient  vector  respectively. The 
generalized coordinates are introduced into Eq. (61) using a 
transformation gTq =  in order to reduce it further such that 
the resultant equation represents the dynamics of the first 2 
vibratory modes of the smart flexible cantilever beam. T  is 
the modal matrix containing the eigen vectors representing the 
first 2 vibratory modes. This method is used to derive the 
uncoupled equations governing the motion of the free 
vibrations of the system in terms of principal coordinates by 
introducing a linear transformation between the generalized 
coordinates q and the principal coordinates g .  Equation (61) 
now becomes

ctrlext ffgTKgTM +=+ .  (62)  

Multiplying Eq. (62) by TT on both sides and further 
simplifying, we get 

***
ctrlext ffgKgM * +=+ ,  (63) 

where TMTM T=* , TKTK* T= , ext
T

ext fTf =*  and 

ctrl
T

ctrl fTf =* .

Here, the various parameters like *** ,,, ctrlext ffKM *  in 
Eq. (63) represents the generalized mass matrix, the 
generalized stiffness matrix, the generalized external force 
vector and the generalized control force vector respectively.  

The generalized structural modal damping matrix *C is
introduced into Eq. (63) by using 

*** KMC βα += , (64) 
where α and β are the frictional damping constant and the 

structural damping constant used in *C . The dynamic 
equation of the smart flexible cantilever beam developed is 
obtained as 

**
ctrlext ffgKgCgM *** +=++ . (65) 

F. State Space Model of the Smart Structure 
The state space model of the smart flexible cantilever beam 

is obtained as follows [30], [63]. 

Let ===
4

3

2

1

2

1

x
x

x
x

x
x

gg , (66) 

Thus, 4231 , xxxx ==  (67)   
and Eq. (65) now becomes  

*****
2

1

4

3

4

3
ctrlextx

x
x
x

x
x

ffKCM +=++ ,  (68) 
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which can be further simplified as   

.****

****

11
4

31

2

11

4

3

ctrlext

x
x

x
x

x
x

fMfM

CMKM

−−

−−

++

−−=
 (69) 

The generalized external force coefficient vector is

,)(* trT
ext

T
ext fTfTf ==   (70) 

where )(tr  is external force input (impulse disturbance) to the 
beam.  The generalized control force coefficient vector is

)()(* tutV TaT
ctrl

T
ctrl hThTfTf ===   (71) 

where the voltage )(tV a  is the input voltage to the actuator 

from the controller and is nothing but the control input  )(tu
to  the  actuator, h  is  a  constant  vector  which  depends  on  
the  actuator  type, its characteristics and its position  on the 
beam and  is  given  by   

[ ]
[ ]00........11

,00........11 18312

−=

−= ×

c

p

a

zbdEh
 (72) 

for one piezoelectric actuator element (say, for the piezo patch 
placed at the finite element position numbering 2), where 

cp azbdE =31 being  the actuator constant.   

So, using Eqs. (67), (70) and (71) in Eq. (69), the state 
space equation for the smart beam for 2 vibratory modes is 
represented as 

)(
0

)(
0

0

11

4

3

2

1

11

4

3

2

1

**

****

trt

x
x
x
x

I

x
x
x
x

TT +

+
−−

=

−−

−−

fTM
u

hTM

CMKM       (73) 

i.e., )()()( trtt EuBxAX ++= . (74) 
The sensor voltage is taken as the output of the system and 

its equation (output equation) is obtained as 
,)()( tytV Ts == qp    (75) 

where Tp is a constant vector which depends on the 
piezoelectric sensor characteristics and on the location of the 
piezo sensor on the beam and is given by  

[ ]
[ ],11........00

,11........00 81314

−=

−= ×

c

c
T

S

bzeGp
 (76) 

for the piezo-patch placed at finite element location 4 and  

cc SbzeG =31  is the sensor constant.  Thus, the sensor 
output equation for a SISO case is given by     

,
4

3)( ===
x
x

ty TTT TpgTpqp  (77) 

which can be finally written as 

[ ]=

4

3

2

1

0)(

x
x
x
x

ty T Tp .           (78) 

i.e., .)()()( tutxty T DC +=  (79) 
which is the output equation. The single input single output 
state space model (state equation and the output equation) of 
the smart structure developed for the system in (74) and (79) 
thus, is given by 

,)()()(,)()()( tuttytrtutx T DxCEBAx +=++=   (80) 
with  

)44(
11 ****

0

×
−− −−

=
CMKM

A
I

,
)14(

1*
0

×
−=

fTM
E T

  B = 
[ ]

,
,0

,
0

MatrixNull*
)41(

)14(

1 =
=

×

×

− D
pC

hTM

TT

T

 (81) 

where the parameters )(tr , )(tu , EDCBA ,,,, , )(tx ,

)(ty  represents the external force input, the control input, 
system matrix, input matrix, output matrix, transmission 
matrix, external load matrix, state vector and the system 
output (sensor output).

Since Timoshenko beam model is closer to the actual 
model, it is used as the basis for controller design in our 
research work.  The state space model in Eq. (80) is obtained 
for various sensor / actuator locations on the cantilever beam 
by using 3 regular beam elements and 1 piezo electric element 
at a time as a collocated pair as shown in Fig. 2, thus giving 
rise to 4 SISO models of the smart beam system.   

By placing a piezoelectric element as sensor / actuator at 
one finite element of the cantilever beam and making other 
elements as regular beam elements as shown in Fig. 2 and by 
varying the position of the piezoelectric sensor / actuator from 
the fixed end to the free end, various SISO state space models 
are obtained with the inclusion of mass and stiffness of the 
sensor / actuator. Then, the control of these models is obtained 
using the MROF based DSM control technique, which is 
considered, in the next section, thus, finally concluding the 
best model for vibration control.   

State space model of the smart cantilever beam with sensor / 
actuator pair at element 1 (fixed end), i.e., the SISO model 1 is 
represented by Eqn. (80) with 

−−
−−

=

0000.00000..01637.00000.0
0000.00006.00000.05567.5
0001.0000
00001.000

*411 eA ,
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−
−

=

0027.0
0514.0
0
0

1B ,  (82) 

[ ]0010.00026.0001 −−=TC , 01 =D ,

−

=

2241.1
0567.3
0
0

*311 eE .

State space model of the smart cantilever beam with sensor 
/ actuator pair at element 2 (fixed end), i.e., the SISO model 2 
is represented by Eqn. (80) with 

−−
−−

=

0000.00000..01158.00000.0
0000.00003.00000.02159.3
0001.0000
00001.000

*412 eA ,

−
−

=

0168.0
0862.0
0
0

2B  , (83) 

[ ]5738.08572.000*312 −= eCT , 02 =D ,

−

=

9010.0
5605.2
0
0

*312 eE .

State space model of the smart cantilever beam with sensor 
/ actuator pair at element 3 (fixed end), i.e., the SISO model 3 
is represented by Eqn. (80) with 

−−−−
−−−−

=

0000.00000.00839.00000.0
0000.00004.00000.08213.3

0001.0000
00001.000

*413 eA ,

−

=

0198.0
0375.0
0
0

3B ,  (84) 

[ ]0003.00019.000*313 −= eCT , 03 =D ,

−

=

7842.0
6924.2
0
0

*313 eE .

State space model of the smart cantilever beam with sensor / 
actuator pair at element 4 (fixed end), i.e., the SISO model 4 is 
represented by Eqn. (80) with 

−−−−
−−−

=

0002.00000.03620.20000.0
0000.00000.00000.00402

0001.0000
00001.000

*414 eA ,

−

=

1822.0
0164.0
0
0

4B ,  (85) 

[ ]2542.00208.000*314 −−= eCT , 04 =D ,

−

=

4109.1
5449.0
0
0

*314 eE .

The mode frequencies of the smart beam for all the 4 SISO 
models is shown in the Table III. 

TABLE III 
CHARACTERISTICS OF THE 4 SISO MODELS

PZT location First mode (Hz.) Second mode (Hz.) 

Model 1 6.7532 39.3458
Model 2 5.9325 31.2640
Model 3 4.9661 33.5070
Model 4 3.1094 23.8404

III. REVIEW   OF   MULTIRATE OUTPUT FEEDBACK
BASED DISCRETE TIME SLIDING MODE CONTROL (USING

BARTOSZEWICZ LAW) [64] 
The theory of sliding model control (SMC) is based on the 

concept of varying the structure of the controller by changing 
state of the system in order to obtain a desired response [52]. 
Generally, a switching control action is used to switch 
between different structures and the system state is forced to 
move along the chosen manifold, called the switching 
manifold which determines the closed loop system behavior 
[53], [54]. In the recent years, considerable efforts have been 
put into studying the concepts of Digital Sliding Mode (DSM) 
controller design [55]-[57]. 

In the case of DSM design, the control input is applicable 
only at certain sampling instants and the control effort remains 
constant over the entire sampling period. Moreover, when the 
states reach the switching surface, the subsequent control 
would be unable to keep the states confined to the surface. As 
a result, DSM can undergo only quasi-sliding mode, i.e., the 
system states would approach the sliding surface but would 
generally be unable to stay on it. Thus, in general, DSM does 
not possess the invariance property found in CT sliding mode. 
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Bartoszewicz [58] proposed a state feedback based control 
law for uncertain systems that guarantees discrete sliding 
mode. Moreover, this law avoids the switching function 
present in other sliding mode control algorithms such as in 
[57] and thus avoids chatter. However, the above-mentioned 
sliding mode control strategies require full-state feedback. 
But, in practice, all the states of the system are not always 
available for measurement. Since the system output is always 
available for measurement, output feedback [18], [43] can be 
used for controller design. 

The problem of static output feedback [50] is a well-
researched one. However, no results are available till today 
which show that guaranteed closed loop stability [23] can be 
achieved by using static output feedback [37]. The guaranteed 
stability of the closed loop system can be achieved by using 
fast output sampling technique [47], [59]. Werner in [59] has 
used fast output sampling (FOS) feedback which has the 
features of static output feedback [29] and makes it possible to 
arbitrarily assign the closed loop poles of the system. Unlike 
static output feedback, fast output sampling feedback [46] 
always guarantees the stability of the closed loop system. 

In fast output sampling [46], each sampling period τ is sub-
divided into N subintervals of width / NτΔ = . N must be 
chosen to be greater than or equal to the observability index of 
the system. The last N output samples are measured at time 
instants t l= Δ , l = 0,1,2, … and a constant control signal 
u is applied over a period τ . The control signal is 
constructed as a linear combination of the last N output 
samples. 

In this paper, the discrete-time multirate output feedback 
sliding mode control algorithm proposed in [60] that is based 
on Bartoszewicz’s control law [58] and fast output sampling 
feedback [59] is used for systems with disturbance (impulse). 
Here, the disturbance is the external force signal )(tr , which 
is applied to the beam at its free end. This algorithm has the 
advantage that it does not require the state information for 
control purpose. The control input is deduced using past 
output samples and the immediate past input signal alone. 
Moreover, the strategy used here eliminates the restriction on 
the closed loop system poles not being at the origin as 
imposed in [59]. 

Consider a discrete-time thn order single output system that 
is sampled with a sampling interval τ sec.

( )
),()(

),()()()(1
kxCky

kfkukxkxkx
=

+Γ+ΔΦ+Φ=+ τττ  (86) 

here, τΦΔ  is the uncertainty in the state,  )(kf  is an external 
disturbance vector and ( )C,, ττ ΓΦ  are matrices of 
appropriate dimensions with ( )ττ ΓΦ ,  being controllable and 
( )C,τΦ  being observable.  Let us define the disturbance 

vector as 
Let us define the disturbance vector as

( ) ( ) ( ).d k x k f kτ= ΔΦ +   (87) 

Let the desired sliding manifold be governed by the 
parameter vector Tc such that 0≠Γτ

Tc  and the resulting 
quasi-sliding motion is stable and let the disturbance be 
bounded such that

( ) ( )Td k c d k=  (88) 
satisfies the inequality 

ul dkdd ≤≤ )( , (89) 
where ld  and ud  are the known upper and lower bounds on 
the disturbance respectively. Here, we define the following 
terms 

( ) ( ),5.0,5.00 ludul ddddd −=+= δ  (90) 
The switching surface is given by

)()( kxcks T= . (91)
The quasi-sliding mode is defined as the motion such that 
( )s k ε≤ , where the positive constant ε  is called the quasi-

sliding-mode bandwidth. A reaching law proposed by 
Bartoszewicz [58] is of the form 

)1()()1( 0 ++−=+ ksdkdks d , (92) 

where )(kd  is defined in Eq. (89) and  ( )ds k  is apriori 
known function that satisfies the following conditions. 
a.  If (0) 2 ds δ> , then ),0()0( ssd =  (93) 

0)0()( ≥dd sks for any 0≥k ,

0)( =ksd  for any *kk ≥ ,

,2)()1( ddd ksks δ−<+ for any *kk < .

b.  If (0) 2 ds δ≤  then,  (94) 

( ) 0 for any 0.ds k k= ≥

The value of the positive integer *k is chosen by the 
designer so as to have a trade off between faster convergence 
and the magnitude of the control input u. By controlling the 
rate of decay (tuning *k ), the convergence of 0)( =ks  is 
tuned.  The reaching law in Eq. (92) together with the 2 
conditions of the function ( )ds k imply that the reach law 

condition is satisfied and that, for any *kk ≥ , the QSM in the 

dδ vicinity of the sliding plane 0)()( == kxcks T exists.  One 

possible function for ( )ds k , when (0) 2 ds δ≥ can be 
described as 

( ) ,.....,,1,0),0()( *
*

*
kks

k
kkksd =−=  (95) 

where

d

s
k

δ2
)0(* < . (96) 

The control law that satisfies the reaching law defined in 
(92) and achieves sliding mode for the system with 
disturbance described in (86), can be computed to be 
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( ) ( )1
0( ) ( ) ( 1) .T T

du k c c x k d s kτ τ
−

= − Γ Φ + − +  (97) 

When the control input described in (97) is fed into the 
system, it would guarantee that for any *k k≥ , the system 
would satisfy the inequality 

0( ) ( 1) .ds k d k d δ= − − ≤  (98) 
Hence, the states of the system settle within a quasi-sliding 

mode band whose width is less than half the width of the band 
described in [57]. 

In [60], a multirate output feedback based equivalent of the 
above algorithm was proposed using a modified reaching law 
as

)1()1()()1( 00 ++−−+−=+ ksekedkdks d ,  (99) 
where a new variable )(ke  is introduced.  The control input 
generated using this algorithm [60] can be represented as 

( )
)),1(

)1(()(

00

1

+−++

−Φ+ΦΓ−= −

ksed
kuLcyLccku

d

u
T

ky
TT

τττ   (100) 

where,

dduy CCILDCLCL 1
00

1
0

1
0 ,, −−− −=−Γ=Φ= ττ , (101) 

( )2
0 0

2
1

0

0

, ,

N
iN

i

C
CC

C
C DC

CC
−

−

=

Γ
Φ

ΦΓ + Γ
= =Φ

Φ ΓΦ

 (102) 
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Φ

= Φ Φ

Φ Φ

, (103) 

( )ul eee += 5.00  and ( )lue ee −= 5.0δ  are the mean 
(average value) and the variation (maximum deviation) of the 
function of the uncertainty. le  and ue  are the lower and upper 
bounds of )(ke . The new variable )(ke , which is the effect of 
disturbance on the sampled output is defined as 

( ) ( )T
de k c L d kτ= Φ  (104) 

where the bounds on )(ke  is given by ul ekee ≤≤ )( , since 

the disturbance )(~ kd  is bounded. The value of N is chosen to 
be > the observability index υ  of the system defined as “the 
observability index of a system represented by the triplet 

( )CBA ,,  is the minimum integer value of υ  such that” 

=

− υυ CA

CA
C

Rank

CA

CA
C

Rank

1

  (105) 

Hence, the control input can be computed using the past 
output samples and the immediate past input signal. But, at 

0=k , there are no past outputs for use in control, hence )0(u
is obtained by ignoring )1( −ke  and 0e  (as we expect no 
disturbance before the instant 0=k  to affect the system) and 
assuming an initial state )0(x  to obtain 

),1()1()()1( 00 ++−−+−=+ ksekedkdks d  (106) 

).()2()1()( 00 ksekedkdks d+−−+−−=  (107) 

When *max( , 2),  ( ) 0dk k s k> = and therefore 

0 0( ) ( 1) ( 2) .s k d k d e k e= − − + − −  (108)  
Thus, we have 

0 0

0 0

( ) ( 1) ( 2)

( 1) ( 2) ,

( ) .
d e

d e

s k d k d e k e

d k d e k e

s k

δ δ
δ δ

= − − + − −

≤ − − + − − = +

≤ +

 (109) 

It can be seen that this algorithm does not need the 
measurement of the states of the system for the generation of 
the control input. But, as a trade off, the width of the quasi-
sliding mode band is increased by eδ .  The control technique 
discussed in the previous paragraphs [60] is used to design a 
MROF based DSMC control scheme to suppress the 
vibrations in a smart structure, which is modeled using 
Timoshenko beam theory for 2 vibratory modes. 

IV. DESIGN OF DISCRETE SLIDING MODE CONTROLLER USING 
MULTIRATE OUTPUT FEEDBACK TECHNIQUE

The control technique discussed in the previous section [60] 
is used to design a controller to suppress the first 2 vibration 
modes of a flexible cantilever beam through smart structure 
concept for the various SISO state space models of the smart 
beam given in section 2 in Eqs. (82)-(85) in which the piezo 
patches are placed at various locations [61] , [62].

The first task in designing the DSMC controller is the 
selection of the sampling intervalτ . The maximum bandwidth 
for all the sensor / actuator locations on the beam are 
calculated (here, the 2nd vibratory mode of the plant) and then 
by using existing empirical rules for selecting the sampling 
interval based on bandwidth, approximately 10 times of the 
maximum 2nd vibration mode frequency of the system has 
been selected. The sampling interval used is 004.0=τ
seconds [63]. 

The cantilever beam is divided into 4 finite elements. PZT’s 
are bonded to the beam at one FE position only as a collocated 
pair, say, at fixed end (FE location 1) or at FE position 2 or at 
FE position 3 or at FE position 4 (free end), thus giving rise to 
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4 SISO models (1 actuator input u and 1 sensor output y) of 
the same smart structure plant as shown in the Fig. 2. 

The beam is excited by an impulse signal applied at the free 
end of it as shown in the Fig. 2. The beam is thus subjected to 
vibrations and the open loop impulse response (plot of sensor 
outputs y as a function of t of the various SISO models are 
observed without the controller. The designed DSMC 
controller is put in loop with the plant and the closed loop 
responses, the control input and the sliding function are 
observed for all the 4 SISO models of the same smart structure 
plant.  The performance of these 4 SISO models is evaluated 
for AVC by carrying out the simulations in MATLAB, 
observing the various responses and finally concluding with 
the discussions on the simulation results.  The frequency 
response plots of the 4 models are also observed.  

V. SIMULATION RESULTS

The application of the control law [60] to the SISO smart 
structure model derived in Section 3 gave the following 
simulation results shown in the Figs. 3 - 18.  

Fig. 3  Plot of sliding function for model 1 (PZT) at FE 1 

Fig. 4  Plot of control effort for model 1 (PZT) at FE 1 

Fig. 5  Plot of sensor output for model 1 (PZT) at FE 1 

Fig. 6  Plot of sliding function for model 2  (PZT) at FE 2 

Fig. 7  Plot of control effort for model  2 (PZT) at FE 2 
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Fig. 8  Plot of sensor output for model 2 (PZT) at FE 2 

Fig. 9  Plot of sliding function for model  3  (PZT) at FE 3 

Fig. 10  Plot of control effort for  model 3 (PZT) at FE 3 

Fig. 11  Plot of sensor output for  model 3 (PZT) at FE 3 

Fig. 12  Plot of sliding function for  model  4 (PZT) at FE 4 

Fig. 13   Plot of control effort for model 4 (PZT) at FE 4 
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Fig. 14  Plot of sensor output for  model 4 (PZT) at FE 4 

Fig. 15  Bode plot for model 1 

Fig. 16  Bode plot for model 2

Fig. 17  Bode plot for model 3 

Fig. 18  Bode plot for model 4

VI. CONCLUSION

An application of the discrete time sliding mode control 
proposed in [60] is used for the design of controllers for smart 
structure vibration control in this paper. Here, the comparison 
and discussion of the simulation results of the vibration 
control for the smallest magnitude of the control effort u
required to control the vibrations of the smart cantilever beam 
is presented.  The best model for AVC is also arrived at. From 
the simulation results, it is observed that 
• Modeling a smart structure by including the sensor / 

actuator mass and stiffness and by varying its location on 
the beam from the free end to the fixed end introduces a 
considerable change in the system’s structural vibration 
characteristics,

• The uncontrolled system takes much longer time to damp 
out the oscillations as compared to the system with the 
designed sliding mode control input, i.e., without control 
the transient response was predominant and with control, 
the vibrations are suppressed, 
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• When the piezo element is placed near the root, the sensor 
output voltage is greater because of the heavy distribution 
of the bending moment near the fixed end, thus leading to 
a larger strain rate, 

• Sensor voltage is less when the piezo pair is located at the 
free end because of lesser strain rate and hence require 
more control effort, 

• Sensitivity of the sensor / actuator pair depends on its 
location on the beam from the root hub, collocation of the 
piezo pair and the gain of the amplifier used, 

• System responds well in CL and does not exhibit 
undesirable chattering phenomenon. Neither does the 
system vibrate much, 

• MROF based DSMC avoids the use of the signum function 
in the control input and the control law uses only the past 
output samples and the past control input instead of the 
system states, guarantees faster convergence of the 
system, 

• Representative point to the QSM band around the line 
0)( =kxcT and better steady state accuracy of the 

control system, 
• Comparing the 4 SISO models, it is observed that as the 

smart beam is divided into 4 FE with piezo pair at the 
fixed end (SISO model 1), the vibration characteristics 
are the best to demonstrate the AVC of smart beams 
because of the above-mentioned inferences. 

Hence, it may be concluded that an effective vibration 
control technique is demonstrated here. The limitations of 
Euler-Bernoulli beam theory such as the neglection of the 
shear and axial displacements have been considered here. 
Thus, the Timoshenko beam theory corrects the simplifying 
assumptions made in Euler-Bernoulli beam theory and the 
model obtained can be closer to a exact one. 

ACRONYMS

FOS Fast Output Sampling  
SISO Single Input Single Output   
MIMO Multi Input Multi Output  
FEM Finite Element Method  
FE Finite Element  
LMI Linear Matrix Inequalities 
MR Magneto Rheological  
ER Electro Rheological   
PVDF Poly Vinylidene Fluoride  
CF Clamped Free   
CC Clamped Clamped  
CT Continuous Time 
DT Discrete Time  
HOBT Higher Order Beam Theory  
DTSMC Discrete Time Sliding Mode Control 
SMC Sliding Mode Control 
MROF Multi-Rate Output Feedback 
RHS Right Hand Side  
LTI Linear Time Invariant  
EB Euler-Bernoulli  

PZT Lead Zirconate Titanate 
IEEE Institute of Electrical & Electronics Engineers 
IOP Institute of Physics 
ISSS Institute of Smart Structures and Systems  
SPIE Society of Photonics & Instrumentation Engineers 

NOMENCLATURE

extf  External force input  

l  Length of the beam 
b  Width of the beam  

bE  Young’s modulus of beam 

bρρ ,  Mass density of beam  

βα ,  Structural constants 

bt  Thickness of beam  

pl  Length of the piezoelectric patch 

at  Thickness of actuator  

st  Thickness of sensor 

pE  Young’s modulus of piezoelectric  

pρ  Mass density of piezoelectric 

31d  Piezoelectric strain constant  

31g  Piezoelectric stress constant 

θ  Bending angle (rotation about Y axis)  
β  Shear angle 

ZYX and,  The 3 axis of 3D space   

u  Axial displacement along X  axis  
v  Lateral displacement along the Y axis 

UT ,  Kinetic energy and strain energy 

xzσ , xxσ  Shear stress, Tensile stress    

2
G=   Shear coefficient 

 Linear strain  
γ  Shear strain 

I   Mass MI of beam element  
A  Area of cross section of beam element 
w   Linear velocity   

dq  Distributed force along length of the beam  
m  Moment along the length of the beam  

eW    Work done due to the external forces   

W  External work done  
t   Time in secs 

ia   Unknown coefficients )( 4,3,2,1=i

jb   Unknown coefficients )( 3,2,1=j
q  Vector of displacements and slopes  
q  Strain rate 

fE  Electric field  
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D   Dielectric displacement 
e  Permittivity of the medium  

Es  Compliance of the medium 
d   Piezoelectric constant  

)(tQ  Charge developed on the sensor surface  

)(ti  Current generated by the sensor surface 31e
 Piezoelectric stress / charge constant 

sV  Sensor voltage sV

cG  Signal-conditioning device with gain  

cK  Controller gain cK
)(ty  Output of the system (sensor output) 

)(tV a  Actuator voltage  

)(tV s  Sensor voltage 

ctrlf   Control force applied by the actuator   
tf  Total force coefficient vector 

*M  Generalized mass matrix  
*K  Generalized stiffness matrix 
*C   Generalized damping matrix  

g   Principal coordinates 

)(tu   Control input    

)(tr External input to the system 

)(tx  State vector  

)(tx  Derivative of the state vector  
nℜ n dimension space  

τ  Sampling interval 
G  Output injection gain  
υ   Controllability index of the system 

kk yu ,  Input and output at the thk instant   

00 , DC  Lifted system matrices   

321 ,, ρρρ  Spectral norms  

I  Identity matrix 
N  Number of sub-intervals  
L  Length of beam element 

pM  Mass matrix of the piezoelectric element  

pA  Area of the piezoelectric patch 

[ ]IM ρ  Mass matrix with rotary inertia          
pK  Stiffness matrix of piezoelectric element  

φ   Ratio of beam bending stiffness to shear stiffness 

[ ]TwN   Mode shape functions for displacement taking φ
into consideration 

[ ]TNθ   Mode shape functions for rotations taking φ  into 
consideration

[ ]T
aN   Mode shape functions for accelerations taking φ

into consideration 

bK  Stiffness matrix of the regular beam element (also 
called as the local stiffness matrix) 

bM  Mass matrix of the regular beam element (also 
called as the local Mass matrix) 

[ ]AM ρ  Mass matrix associated with translational inertia  

, ,xx yy zzε ε ε  Longitudinal strains or the tensile strains in the 3 

directions

xyyzxz
γγγ ,,  Shear strains induced in the beam along the 3 

directions
G   Shear modulus (or modulus of rigidity) of the beam 

ττ ΓΦ ,  System matrix, input matrix discretized at sampling 
interval of τ  secs 

ΓΦ ,  System matrix, input matrix discretized at sampling 

interval of Δ  secs 
DCBA ,,,  State space matrices (CT) : System matrix, input 

matrix, output matrix, transmission matrix  
E  External load matrix which couples the disturbance 

to the system 
KM ,  Mass and stiffness of the regular beam element 

Tp  Constant vector, which depends on sensor 
characteristics 

Th  Constant vector, which depends on actuator 

characteristics 
w Time dependent transverse displacement of Z axis 

AM   Resultant moment acting on the beam because of 
electric field 

M  Assembled mass matrices (global mass matrix) 

K  Assembled stiffness matrices (global stiffness 
matrix), Periodic output feedback gain 

T  Modal matrix containing the eigenvectors 
representing the 1st 2 modes 

** ff ctrlext and  Generalized external force vector and generalized 
control force vector 
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