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Abstract—Mathematical models can be used to describe the 

dynamics of the spread of infectious disease between susceptibles 
and infectious populations. Dengue fever is a re-emerging disease in 
the tropical and subtropical regions of the world. Its incidence has 
increased fourfold since 1970 and outbreaks are now reported quite 
frequently from many parts of the world. In dengue endemic regions, 
more cases of dengue infection in pregnancy and infancy are being 
found due to the increasing incidence. It has been reported that 
dengue infection was vertically transmitted to the infants. Primary 
dengue infection is associated with mild to high fever, headache, 
muscle pain and skin rash. Immune response includes IgM antibodies 
produced by the 5th day of symptoms and persist for 30-60 days. IgG 
antibodies appear on the 14th day and persist for life. Secondary 
infections often result in high fever and in many cases with 
hemorrhagic events and circulatory failure. In the present paper, a 
mathematical model is proposed to simulate the succession of dengue 
disease transmission in pregnancy and infancy. Stability analysis of 
the equilibrium points is carried out and a simulation is given for the 
different sets of parameter. Moreover, the bifurcation diagrams of our 
model are discussed. The controlling of this disease in infant cases is 
introduced in the term of the threshold condition.  
 

Keywords—Dengue infection, equilibrium states, maternal 
antibodies, pregnancy and infancy.  

I. INTRODUCTION 
MONG emerging disease, dengue is one of the most 
important. It occurs in epidemics in Southeast Asia and 

Western Pacific Regions and comprises a major public health 
problem. Dengue infection is classified into three categories:  
Dengue fever (DF), Dengue hemorrhagic fever (DHF) and 
Dengue shock syndrome (DSS). Dengue fever (DF) is a 
benign, acute febrile syndrome and it is generally confined to 
tropical areas and characterized by myalgia or arthralgia, 
exanthema, leucopenia and lymphadenopathy. Dengue 
hemorrhagic fever (DHF) is a severe febrile disease of 
children and adolescents characterized by sudden onset of 
fever, nausea, vomiting, hepatomegaly, petechial 
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hemorrhagic, epitaxis, melaena and a tendency to delvelop 
dengue shock sysdrome (DSS) on the fifth to seventh day of 
illness with significant mortality.    

DF, DHF and DSS are caused by dengue virus of the genus 
Flavivirus, family Flaviviridae. It has four serotypes including 
dengue virus type 1, 2, 3 and 4 [1]. Infection in humans by 
one serotype produces life-long immunity against reinfection 
by the same serotype, but only temporary and partial 
protection against the other serotypes [2]. 

The female Aedes aegypti is the major vector for dengue 
virus transmission. It has been recently shown that infected 
mosquito requires longer time to acquire blood meal and that 
may contribute to the efficient transmission of the disease [3]. 
Longer feeding periods are more likely to be interrupted by 
the host. It will increase the chance of the infected mosquito 
who feed on additional hosts.  

A primary infection elicits a classic primary-type 
immunologic response characterized by the initially 
appearance of dengue antibodies of the immunoglobulin M 
(IgM) class [4]. Antibody of this immunoglobulin class 
neutralizes dengue virus and inhibits hemagglutination, but it 
does not fix complement [5]. Infection with a second member 
of the genus Flavivirus elicits a secondary-type antibody 
response. These antibodies fix complement and are 
predominantly of the immunoglobulin G (IgG) class and 
raised to antigenic determinants shared by the sequential 
infecting pairs, and so react broadly with many members of 
the family [4].  

The clinical syndrome was first described in 1779 as “joint 
fever” by David Bylon in Java [6]. In 1780, Benjamin Rush 
described an epidemic in Philadelphia under the name 
“breakbone fever”. Since the 18th century, dengue disease are 
recurred as epidemic worldwide [7]. However, the 
hemorrhagic form of this disease was first recognized as a 
new disease in the Phillipines in 1953 and subsequently 
became endemic and epidemic in many areas of tropical Asia 
[8]. 

Dengue hemorrhagic fever is now an increasing public 
health problem in most of the countries of tropical areas of the 
Southeast Asia and Pacific Regions. This disease is the 
leading cause of hospitalization and death in children in at 
least eight tropical Asia countries [2]. In Thailand, DHF was 
first recognized as an epidemic disease of children in Bangkok 
metropolitan in 1958. There were 2,148 cases with 240 deaths 
reported. The incidence increased to 5,947 cases in 1962 when 
the disease started to spread to other big cities, where the 
communications with Bangkok were accessible. In 1984-
1985, the incidences number has reached its highest peak ever 
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for over 28 years. There were 69,101 cases with 496 deaths in 
1984 and 80,811 cases with 505 deaths in 1985 [8]. The total 
reported cases were expressed in the form of the averaging of 
five years (except for the period of 2006-2007) which show 
overall trend. The table I shows a steadily rise over the whole 
period between 1961 and 2007. The rate of cases is 
increasing. The higher rates of increase of 2.6 and 2.7 folds 
for the early sixties and seventies represented the spread of 
DHF.  
 

TABLE I 
DENGUE HEMORRHAGIC FEVER, THAILAND 1961-2007. FIVE YEAR 

   AVERAGES TOTAL OF REPORTED CASES 
    Year Five-year total Average cases/yr Ratio 

increase 
1961-1965 20,480  4,096 2.60 
1966-1970 25,743 5,148 1.26 
1971-1975 69,530 13,906 2.70 
1976-1980 115,792 23,158 1.66 
1981-1985 224,857  44,971 1.94 
1986-1990 395,444 79,089 1.76 
1991-1995 263,671 52,734 0.67 
1996-2000 313,015 62,603 1.19 
2001-2005 402,840 80,568 1.29 
2006-2007* 102,410 51,205 0.64 
*Two-year period 
 

While DHF/DSS, a serious clinical condition occurs mostly 
in children between the age of 2 and 9 living in Asia or Asian 
Pacific region. However, in Southeast Asia where is a 
hyperendemic area, children below 1 year of age can also 
develop DHF/DSS [9]. The following figure shows the 
number of infant cases according to dengue disease between 
1997 and 2007 [10].  

 

 
Fig. 1  The number of infant cases due to dengue disease between 

1997 and 2007 . 
  
Maternal antibodies have also been shown to be a risk 

factor for DHF in infants. Because preexisting antibodies have 
long been held as the causative agent for this enhancement in 
secondary infections, this is commonly called antibody-
dependent enhancement (ADE) [11]-[13]. Infants less than 12 
months of age in Bangkok, Thailand infected with dengue 
viruses were at high risk for DHF if maternal antibodies to 

dengue virus were present at subneutralizing levels. This led 
to the theory that DHF is caused by antibody enhancement of 
viral infection [14]-[16]. The severe manifestations occur in 
infants, they might have acquired antibodies to two dengue 
virus serotypes by passive transfer of maternal antibodies and 
sequential exposure to primary infections at early age [17].  

Mathematical models have become important tools in 
analyzing the spread and control of infectious diseases. The 
process of model formulation clarifies assumptions, variables 
and parameters. Epidemical modeling can contribute the 
design and analysis of epidemiological surveys, suggest 
crucial data that should be collected, identify trends, make 
general forecasts and estimate the uncertainty in forecasts 
[18]-[19].  

In 1998, Esteva and Vargas [20] proposed the mathematical 
model for the transmission of dengue fever. They established 
the global stability of the endemic equilibrium. They 
discussed the vector population in term of the threshold 
condition which governs the existence and stability of the 
endemic equilibrium. 

In our studied [21], we formulated mathematical model 
when the population is separated into pregnant, non-pregnant 
human and vector classes. The purpose of this study is to 
study the transmission of dengue disease in a population 
containing the pregnant, non-pregnant, infant and incorporate 
effects of the maternal antibody into mathematical model.  

Since maternal antibodies of dengue virus in infants are 
disappeared in 3% by two months of age, in 19% by four 
months of age, in 72% by six months of age, in 92% by nine 
months of age, and in 100% by 12 months of age [22]. So 
that, the maternal dengue antibody disappears in infants by the 
age of 12 months. The most appropriated age for vaccination 
with a live-attenuated dengue vaccine in an endemic area is 
one year of age. The purpose of this paper is to use the 
mathematical models in understanding and controlling dengue 
disease in infants, which includes maternal antibody to dengue 
virus in infant population. In section 2, we propose a 
mathematical model for describing the transmission of dengue 
disease in pregnancy and infancy classes. Next section, the 
analytical result of the model is shown. Finally, section 4 
consists of our discussion, conclusion and the numerical 
solutions of the model. 

II. MATHEMATICAL MODEL 
Our model is based on susceptible-infected-recovered or 

SIR model. Maternal antibody to dengue virus is incorporated 
into our model. The transmission dynamic is described as 
follows. We divide the human population into two categories, 
pregnant woman and infant categories. Pregnant woman 
category is divided into three subcategories, susceptible, 
infected and recovered classes. Infant population is separated 
into three subcategories, susceptible, infected and recovered 
classes. Infected infant is classified into two subgroups, first 
group is the infectious infant who age not more than 6 months 
and the second group is the infectious infant who age more 
than 6 months but not more than 12 months. The vector 
population is divided into two categories, susceptible and 
infected mosquitoes, since the mosquitoes never recover from  
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infection. We assume each category has constant size, 
susceptible pregnant woman is never infected with dengue 
virus and infant is defined as the baby who age not more than 
12 months.  

 The dynamic of human population can be described by the 
following equations  

m
H m vm v m

dS P S I S
dt

μ γ= − −             (1.1) 

( )m
vm v m H m m

dI I S r I
dt

γ μ= − +            (1.2) 

m
m m H m

dR r I R
dt

μ= −               (1.3) 

1 2( )n
H vn v mn m vn v n

dS aqP k I I k I S
dt

μ γ γ γ= − + + +     (1.4) 

1
1 1( ) ( )n

vn v mn m n H m n
dI k I I S r I
dt

γ γ μ= + − +       (1.5) 

2
2 2( )n

vn v n H m n
dI k I S r I
dt

γ μ= − +           (1.6) 

and 
1 2( ) .n

m n n H n
d R r I I R
d t

μ= + −         (1.7) 

For the mosquito populations, the dynamic of mosquito 
population can be described as the following equations 

 
1 2( )v

v mv m nv n nv n v
dS A I I I S
dt

μ γ γ γ= − + + +       (1.8) 

1 2( )v
mv m nv n nv n v v v

dI I I I S I
dt

γ γ γ μ= + + −        (1.9) 

where  

mS  represented the number of susceptible pregnant human 
population, 

mI  represented the number of infectious pregnant human 
population, 

mR  represented the number of recovered pregnant human 
population, 

nS   represented the number of susceptible infant population, 

1nI  represented the number of infectious infant population 
who age not more than 6 months, 

2nI  represented the number of infectious infant population 
who age more than 6 months but not more than 12 
months, 

nR  represented the number of recovered infant population, 

vS   represented the number of susceptible vector population, 

vI  represented the number of infectious vector population, 
a  represented the percentage of infant who be not die while 

pregnant, 
q  represented the average number of infant which each 

woman can have in each time of pregnancy, 
P  represented the constant recruitment rate of pregnant 

woman, 

vN   represented the total adult mosquitoes, 

Hμ  represented the average constant death rate of pregnant 
woman, 

vμ  represented the average constant death rate of vector 
population, 

vmγ  represented the transmission rate of dengue virus from 
vector to mother and the mother is infected, 

vnγ  represented the transmission rate of dengue virus from 
vector to infant and infant is infected, 

mvγ  represented the transmission rate of dengue virus from 
mother to vector and the vector is infected, 

nvγ  represented the transmission rate of dengue virus from 
infant to vector and vector is infected, 

mnγ  represented the transmission rate of dengue virus from 
mother to infant and infant is infected, 

vmβ     represented the transmission probability from vector  
            to mother,  

vnβ  represented the transmission probability from vector to 
        infant, 

mvβ  represented the transmission probability from mother 
to vector, 

nvβ  represented the transmission probability from infant to 
    vector, 

mnβ  represented the transmission probability from mother 
to infant, 

mr   represented the constant rate at which human 
populations recovers, 

TN   represented the total number of human population, 

mN   represented the total number of pregnant woman, 

nN   represented the total number of infant, 

vN   represented the total number of vector population, 

A   represented the adult mosquito recruitment rate, 

1nmD  represented the percentage of dengue antibody which 
infant who age not more than 6 months received from  
mother in the beginning, 

2nmD  represented the percentage of dengue antibody which  
infant who age more than 6 months received from 
mother in the beginning, 

1k     represented the probability of dengue virus which 
infant received from the biting of infected vector in the 
beginning for baby not more than 6 months, 

2k    represented the probability of dengue virus which 
infant received from the biting of infected vector in the 
beginning for baby more than 6 months. 
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We assume 1 2
1 1

100 100,
100 100

nm nmD Dk k− −
= =   and 

2 1k k> . Therefore, our model consists of equations (1.1)-

(1.9) with three conditions  m m m mS I R N+ + = , 

1 2n n n n nS I I R N+ + + =  and v v vS I N+ = .  

Introducing the normalized parameters m
m

m

SS
N

= , 

m
m

m

II
N

= , m
m

m

RR
N

= , n
n

n

SS
N

= ,  1
1

n
n

n

II
N

= , 2
2

n
n

n

II
N

= ,  

n
n

n

RR
N

= , v
v

v

SS
N

=   ,  and v
v

v

II
N

= , equations (1.1) to 

(1.9) reduce to 

( ( / ) )m
H H vm v v m

d S A I S
dt

μ μ γ μ= − +          (2.1) 

( / ) ( )m
vm v v m H m m

d I A I S r I
dt

γ μ μ= − +          (2.2) 

1 2( ( / ) ( / ) )n
H h vn v v mn m m vn v v n

d S k A I I N k A I S
dt

μ μ γ μ γ γ μ= − + + +

                       (2.3) 

1
1 1( ( / ) ) ( )n

vn v v mn m m n H m n
d I k A I I N S r I
dt

γ μ γ μ= + − +    (2.4) 

2
2 2( / ) ( )n

vn v v n H m n
d I k A I S r I

dt
γ μ μ= − +         (2.5) 

and  
1 2( )(1 )v

mv m m nv n n nv n n v v v
d I I N I N I N I I
dt

γ γ γ μ= + + − −   

                       (2.6) 

where vm
vm

T

b
N h

β
γ =

+
, vn

vn
T

b
N h

β
γ =

+
, mv

mv
T

b
N h

β
γ =

+
, 

nv
nv

T

b
N h

β
γ =

+
 and mn mnγ β=  . 

The dynamic equations for ,m nR R  and vS   are not needed 

since 1m m mS I R+ + = , 1 2 1n n n nS I I R+ + + =  and 1v vS I+ =  . 
The requirements that TN , mN , nN and vN  are constant lead 
to the conditions that ( ) H TP aqP Nμ+ = , H mP Nμ= , 

H naqP Nμ=  and v vA Nμ= . 

III. ANALYSIS OF THE MATHEMATICAL MODEL 

A. Equilibrium Points  
The equilibrium points  are obtained by setting the right 

hand side of equations (2.1)-(2.6) equal to zero. Doing this, 
we get two equilibrium points 

i)  the disease free state  
   1 (1,0,1,0,0,0)E =               (3.1) 
    ii) the endemic disease state 
   * * * * * *

2 1 2( , , , , , )m m n n n vE S I S I I I=            (3.2) 
where 

* 1
*

1 1
m

v

S
R I

β
β

=
+

,                 (3.3) 

* 1 1
*

1 1 1( )m
v

RI
M R I

β
β

=
+

,               (3.4) 

*
* 2 1 1 1

* * * *
1 1 2 1 1 2 1 2 2 1 2 1 1

( )
( )( )

v
n

v v v v

M R I
S

R I M k R M I k R M I R I
β β

β β β θ
+

=
+ + + +

,  

                       (3.5) 
* * *

* 1 2 1 1 1 2 1 1
1 * * * *

1 1 1 2 1 1 2 1 2 2 1 2 1 1

( )
(( )( ) )

v v v
n

v v v v

k R M I R I R I
I

M R I M k R M I k R M I R I
β β θ

β β β θ
+ +

=
+ + + +

                       (3.6) 
* *

* 2 2 1 1
2 * * * *

1 1 2 1 1 2 1 2 2 1 2 1 1

( )
( )( )

v v
n

v v v v

k R I R I
I

R I M k R M I k R M I R I
β

β β β θ
+

=
+ + + +

 

                       (3.7) 

with *Iv  are solutions of  
* 3 * 2 *

3 2 1 0( ) ( ) ( ) 0v v vb I b I b I b+ + + =            (3.8) 
where  

2
3 1 2 1 1 2 2 3 1( ) ( )vb k k M R R Mθ θ μ= + + + ,         (4.1) 

2
2 1 1 2 1 2 1 1 2 1 2 3 1(( ) ( ( ) vb R k k M R T R Mβ θ θ θ μ= + + + +     

 1 2 1( )))vM θ θ μ+ +                (4.2) 
 1 1 2 1 2 1 1 1 2 1 1 3 1 2 3( ) ( ( ( ))b k k M R T R Rβ β θ β θ θ θ= + + − − + +          

  2
1 1 1 1 2 1 2 12 ( ( )))v vM M Rβ μ θ β θ θ μ+ + − + +       (4.3) 

2
0 1 1 2 1 3 1 1 2 2 1 2 2 1 3 1 1 2( ( ( ) ) )vb R M R k k R Mβ β θ θ β θ β θ β β μ= − − + + +

                       (4.4) 
where 

1 1 2 3 1 2 3 1( ( ) ( 2 )),vT R Mθ θ β θ θ μ= − + + + +

2 1 2 3 1 3 1( ( 2 ) ( ))vT R Mθ θ β θ μ= − + + +  
with  

1 ( )
vm m

v T

b N
N h

β
β

μ
=

+
 , 2 ( )

vn n

v T

b N
N h
β

β
μ

=
+

, 
2 2

1 2

( / )
( )

vm m v

v H T

b N A
R

N h
β μ

μ μ
=

+
, 

2 2

2 2

( / )
( )

vn n v

v H T

b N A
R

N h
β μ

μ μ
=

+
, 1

H m

H

r
M

μ
μ

+
= , 1

mn m

H

Nγ
θ

μ
= , 

2 mv mNθ γ=     and 3 nv nNθ γ=  . 
After we check the sign of 3 2,b b and 1b  are positive. 0b is 

negative when 
1 2 1 3 1 1 2 2 1 2 1 2 1 3

2
1 1 2

( )
1

v

R M R k k M R
M

β θ θ β θ β θ

β β μ

+ + +
> . So the 

solutions of (3.8) exist one positive solution that 
correspondence with (3.8) following Descartes’ Rule of Signs.  

B. Local Asymptotical Stability  
The local stability for each equilibrium point is determined 

from the signs of eigenvalues of the Jacobian matrix of the 
right hand side of the above set of differential equations. If all 
eigenvalues have negative real part, then that equilibrium 
point is local stability [22]. 
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C. Disease Free State  
For the system defined by (2.1) to (2.6), the Jacobian matrix 

evaluated at 1E  is the 6x6 matrix given by  

1

1

1
1

1

1 2 2 2
1

2 21

1 2
1 1

2

2 2
1

2

2 3 3

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0 0

0 0

H
H

H
H

H H
H H

E

H
H H

H
H

v

R

RM

k R k R
J

k RM

k RM

μμ
β

μμ
β

μ μμ θ μ
β β

μμ θ μ
β
μμ
β

θ θ θ μ

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥

− − − −⎢ ⎥
= ⎢ ⎥

⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

  

 
The eigenvalues are obtained by solving the characteristic 

equation; 61
det( ) 0EJ Iλ− =  where 6I  is the identity matrix 

size 6x6. The characteristic equation for the disease free state 
is given by 

2 3 2
1 2 1 0( ) ( )( ) 0H HM a a aλ μ λ μ λ λ λ+ + + + + =       (6.1) 

where   
2 12 H va M μ μ= + ,                                  (6.2) 

1 2 2 1 1 2 2 3 1 2 1
1

1 2

( ( ( ) ( 2 )))H H vR k k R M M
a

μ β θ β θ β μ μ
β β

− + − + + +
=  

                       (6.3) 
2 2

1 2 1 3 1 1 2 2 1 2 2 1 3 1 1 2
0

1 2

( ( ( ) ) )H vR M R k k R M
a

μ β θ θ β θ β θ β β μ
β β

− − + + +
=

                       (6.4) 
From the characteristic equation (6.1), the first three 

eigenvalues are 1 2 Hλ λ μ= = −  and 3 1 HMλ μ= − . The 
remaining three eigenvalues are found by solving 

3 2
2 1 0 0a a aλ λ λ+ + + = . 

These eigenvalues are negative when the coefficients 0 1,a a  
and 2a  satisfy the Routh-Hurwitz criteria [23] 
i)  2 0a >  , 
ii)  0 0a > , 
iii) 2 1 0a a a> , 
We can see that 2a  is always positive. Next, we consider the 
second and third conditions. We found that 0 0a >  and 

2 1 0 0a a a− > when 
2
1 1 2 1 2 1 3 1 1 2 2 1 2 1 2 1 3( )vM R M R k k M Rβ β μ β θ θ β θ β θ> + + +   

or   1 2 1 3 1 1 2 2 1 2 1 2 1 3
2
1 1 2

( )
1

v

R M R k k M R
M

β θ θ β θ β θ

β β μ

+ + +
< .   

All three conditions of Routh-Hurwitz criteria are satisfied for 
0 1R < , where 

1 2 1 3 1 1 2 2 1 2 1 2 1 3
0 2

1 1 2

( )

v

R M R k k M R
R

M
β θ θ β θ β θ

β β μ
+ + +

= . 

This means that all eigenvalues will be negative, leading to the 
disease free state being locally stable. 

D.  Endemic Disease State  
The local stability of the endemic state, 2E , is governed by 

the matrix  
11 16

21 22 26

32 33 36
62

42 43 44 46

53 55 56

62 64 65 66

0 0 0 0
0 0 0

0 0 0
0 0
0 0 0
0 0

E

a a
a a a

a a a
J I

a a a a
a a a

a a a a

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 
*

1
11

1

H v
H

R I
a

μ
μ λ

β
= − − − ,

*
1

16
1

H mR S
a

μ
β

= − , 
*

1
21

1

H vR I
a

μ
β

=  

22 44 55 1Ha a a Mμ λ= = = − − ,
*

1
26

1

H mR S
a

μ
β

= , *
32 1 ,H na Sμ θ= −  

* *
*1 2 2 2

33 1
2 2

[ ]H v H v
H H m

k R I k R I
a I

μ μ
μ μ θ λ

β β
= − + + + − , 

* *
1 2 2 2

36
2 2

H n H nk R S k R S
a

μ μ
β β

= − − , *
42 1H na Sμ θ=  

* * *
*1 2 1 2 2 2

43 1 46 53
2 2 2

, , ,H v H n H v
H m

k R I k R S k R I
a I a a

μ μ μ
μ θ

β β β
= + = =  

*
2 2

56
2

H nk R S
a

μ
β

= , *
62 2 (1 )va Iθ= − , *

64 65 3 (1 )va a Iθ= = − , 

* * *
66 2 3 1 3 2m n n va I I Iθ θ θ μ λ= − − − − − . 
The characteristic equation for the endemic state is given by 

5 4 3 2
1 4 3 2 1 0( )( ) 0HM a a a a aλ μ λ λ λ λ λ+ + + + + + =   (7.1) 

where 
* * * *

1 2 2 1 3 1 1 1 2
4

1 2

( ) ( )v m H n N H vI I I k R I
a

β β μ θ μ θ β β μ
β β

+ + + + +
=  (7.2) 

1 2 2 1 3 2 1 1 1
3

1 2

( ( ((1 (4 )) 2 )))H H vR k M M Q
a

μ β θ β θ β μ μ
β β

− + − + + + +
=

2* * * * *
1 2 1 2 2 2

1 2

1 ( ( ( (( ( 1) ) ))H H v H m N v mR k I I I I Iμ μ β μ θ
β β

+ + − + +  

* * * * * * *
1 2 2 1 1 3 1 1 1 3 1 1 2( ( 2 ( )) (( )m m N m N m vI I Q I I I k I Iβ β θ θ θ μ θ μ θ+ + + + + +

*
3 4 ))))vIθ+                    (7.3) 

2
2 3 2 1 2 1 2 1 3 1 1 1(( ( ( ( ( ) ( (2H v va kQ R Q M Qμ β θ θ θ θ β μ μ= + − + − + +

2 *
1 1 2 1 2 2 1

1 2

1(4 ) ))))) / ) ( ( ( ( (1 4v H mvM I Mμ β β μ β β θ
β β

+ + + +   

2 * * * * * * 2 * *
1 4 1 3 1 1 1 3 4 2 1 1 3 1) ( )m n m N m n H m NM Q I I I I I I M I Iθ θ θ θ θ μ θ+ + + + + + +

* * * * * *
1 3 1 1 2 3 1 2 32 (2 ( ))) (( ( 2 ))N m H N m H m vM I I I k I M Q I Iθ θ μ μ+ + + + + +

* * * * * *
3 1 1 2 1 1 2 1 2 4 3 1( ))) ( (( ( 2 ))N v n v H v v N vI I Q R R M Q I Q I Iθ β μ μ μ θ+ + + + + +

2* * * * * * * *
2 1 7 2 1 1 2 1 6 1( ( ) ( ) (2m v m v m m v mI I Q R Q I S I M I Rθ θ θ θ θ+ + + + + + + +

* * * * * * * * * *
3 1 2 3 1 3(1 ))) ( ( (1 ) )))v m m v m N v m m vI S I I I I I R S Iθ θ μ θ+ + + + + + +  

* * * * *
2 2 3 4( ( ) ))))v v v m v vk I I I I Sμ θ θ+ + + +           (7.4) 
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3
1 1 2 4 1 3 1 1 2 3 2 2 4 1 3 1 2 2(( ( ( ( )) ( (Ha k R Q Q R k R Q R Qμ β θ θ θ β θ θ= − + + − +

1 3 2 1 1 1 1 2 1 3 1 1 1)) ( ((1 (2 )) 2 ) ( HQ R M M Mθ β θ θ θ θ θ β μ+ − + + + + −

3 * *
1 1 2 2 1 1 2 1 2 1

1 2

12 )))) / ) ( ( ( ( (2 )v H m mQ M I Q Q Iμ β β μ β β θ θ
β β

+ + +

* * * * * *
3 1 1 2 1 3 1 1 2 1 12 ) ) (2 ( ))) (N m N N m H NI I I M I I I R Mθ θ θ θ μ+ + + + + +

2* * * * *
1 1 2 3 1 2 1 1(2 ( )) ( ( 1)v H v v N v m mM I M Q I I I Iμ μ μ θ θ θ+ + + + −

* * * * *
1 1 1 1 1 4 1 1(1 (2 )) ( ) (1m v m m mM R Q Q I S I R Mθ θ θ θ+ + + + + + + + +  

* * * * * * *
2 1 1 1 1 1 3 3(2 ) )) ( 2 ( (1v m v m m v mQ I R Q I S M I I Iθ θ θ μ θ+ + + + +  
* * * * * * * *

1 1 1 2 2 1 1 3) ( ))))) ( ( (N v m m N n v nM I I R S I R I S k R Mβ μ+ + + + + + +  
* * * * * * * *

1 2 2 3 1 2 2 4 1 1) ( ) ) )) (v m v n v n v n vM Q I I I I I I Q R R Iμ θ θ+ + + + + +  
* * * * * * *

1 3 3 2 5 1 1 6 1 3 1 1( ( (1 ) (v n v n v n nM I I I I M I Q Q I R Mμ θ θ+ + + + + + +
* * * * * * * * *

1 1 1 1 1 3 2(2 ) )) )) ( (1N v n v n n v m vI I R Q I S Q R Q S R Iθ θ+ + + + + + +
* * * * * * * * *

1 1 1 1 6) ( 2 )) (1 )m v m m m v m v vM R Q I S M R S S I M I I+ + + + + +  
* 2 * * * * *

1 2 1 1 3 3 1 1 1 3 3)))) ( ( ( ) )v v h m N H v vS k R M I I I R I Iβ μ θ μ β θ+ + + + + +
2* * * * * * * *

1 2 1 3 3 1 1 1 3 3 4 1( ( ) ) (2 ( ) (2v m v v m v v v vR I I I S M I I I R Iθ θ β θ μ+ + + + + +
* * * * * * * * * * *

3 2 1 1 6 2 2( )( ( (2 )) ) ( (1v n n n v n v n n v mI I I I I R I I S S Iθ θ+ + + + + + + +
2 2* * * * *2 ) ( )))))))v m m v vI R S I S+ + + +            (7.5) 

4
0 2 1 2 1 2 1 1 3 1 1 2 1 3(( ( ( ( ) ) (Ha k M R R R k M R Rμ θ β θ θ= − + + +

2
1 2 3 2 1 1 1 2 1 3 1 1 1 2( )) ( ( (1 ) ) ))) / )vR R M Mθ θ β θ θ θ θ β μ β β+ + + + + −

4 2 * * * * * * *
1 1 3 3 1 2 4 1 2 2 4

1 2

1 ( ( ( ) ( ) ( ( )H m N v m v m mM R I I I I kI I Iμ θ β β β θ
β β

+ + + +

* * * * * * * * * *
3 1 1 2 1 2 1 2 1 3 3) ( ) )) (N m N m N v m m m vI I I k I I I R I R S Iθ θ θ β θ θ+ + + + + + +

2* * * * * *
1 1 3 3 1 2 2 1 1 1( ( ( (1 ) ( ) (1v m m v m mM k I R I R I S Iβ θ β θ θ θ θ+ + + + + + + +

* * * * * * *
1 2 1 3 3 1( ))) ( ( ) )))))m v m v m v vR I S k I R I Sθ θ θ+ + + + + .    (7.6) 

where 
 * * * * * * * * * * * *

1 2 1 1 1( ) , ( ) ,n n N n v n n m m v m mI I I R I S R I R I S R+ = + = + + = , 
* * * *

1 1 1 1 1 2(2 (1 2 ) ) , (1 (2 (2 ) )v v v vM M I I M M I I+ + + = + + + = ,
* * * * * * * * *

1 3 1 1 5 6( ) , (1 2 ) , 1 2N n v n v v v v vI R I S I M M I I I I+ + = + + = + = , 
* * * * * * * * * *

2 1 2 4 7( (1 ) ( )) , 1n n v n v n n v v vI I I R I I S I I I+ + + + + = + = , 
* * * * * *

1 4 1 1 1 2 31 , (2 2 ) ,m m m m v m mI I M I I I Iθ θ μ θ+ = + + = + = ,
* * * * * * * *

2 2 3 1 1 2 2( (1 ) ) ,( ) ,( ) ,m v m v m m v vI I R I S I S S k k R kθ θ+ + + = + = + =

1 1 1 2 1 3(1 2 ) ,(2 ) ,( 2 ) .H v H v H vM M Mμ μ μ μ μ μ μ μ μ+ + = + = + =  
The first eigenvalue is 1 1 HMλ μ= − . It is always negative, 

the other eigenvalues 2 3 4 5, , ,λ λ λ λ  and 6λ  are found by 

solving 5 4 3 2
4 3 2 1 0a a a aλ λ λ λ λ λ+ + + + + = . To determine 

the local stability of the endemic equilibrium state, we need to 
check the signs of all eigenvalues for the endemic equilibrium 
state. The stability of the endemic equilibrium state can be 
determined by using Routh-Hurwitz criteria as follows: 
i)    0, , 0,1, 2,3, 4ia i i> ∀ = , 

ii)   2 2
4 3 2 2 4 1a a a a a a> + , 

iii)  2 2 2 2
4 1 0 4 3 2 2 4 1 0 4 3 2 4 0( )( ) ( )a a a a a a a a a a a a a a a− − − > − + .  

     We present the above three conditions by using the 
following figures, by mapping out the regions in i ja k−  phase 

space , 2 2
4 3 2 2 4 1( ) ja a a a a a k− − −  phase space and 

2 2 2 2
4 1 0 4 3 2 2 4 1 0 4 3 2 4 0(( )( ) ( ) ) ja a a a a a a a a a a a a a a k− − − − − − −  

phase space in which the three above conditions are found 
when 0,1, 2,3, 4i = , 1, 2j = . 
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                         2a)                                          2b) 
Fig. 2. The parameter space for the endemic equilibrium point which 
satisfies the  Routh-Hurwitz criteria with the value of parameters: 

10.000039139H dayμ −= , 10,000TN = , 
10.071428571v dayμ −= , 10.33333 , 0,b day h−= =  

10.33333 , 5,000, 5,000, 20,000m m nr day N N A−= = = = , 

vm vn mv nv mn0.1, 0.1, 0.1, 0.1, 0.01= = = = =β β β β β ,   
2a)     2 10.9, 0 1k k= ≤ ≤ ,  2b)  1 20.3, 0 1k k= ≤ ≤ . 
 
Thus, the endemic equilibrium state is locally stable when 

0 1R > . 
 

E. Numerical Results  
In this section, the numerical solutions are shown for the 

disease free and endemic regions. Parameters are used in this 
study correspond to the real life observations. 

0.000039139Hμ =  per day corresponds to life expectancy of 
70 years for human population. Since maternal antibodies 
level of dengue virus in infants are disappeared in 72% by six 
months of age. So that, we assume 2 1k k> .  Total human 
population ( )TN  is assumed to be equal to 10,000. 

, , ,vm vn mv nvβ β β β  and mnβ  are arbitrary chosen;   
0.1vm vn mv nvβ β β β= = = =  and 0.01mnβ = . The mean life of 

mosquito is 14 days that is 0.071428571vμ =  per day. The 
biting rate of the vector population is 1/3 per day; We assume 
each category has constant size, susceptible pregnant woman 
is never infected with dengue virus and infant is defined as the 
baby who age not more than 12 months.  

    

     

 
Fig. 3. Time series of susceptible pregnant human, infectious 
pregnant human, susceptible infant human, first infectious group of 
infant , second infectious group of infant and infectious vector 
proportions, respectively. The values of parameters are 

10.000039139H dayμ −= , 10,000TN = , 
10.071428571v dayμ −= , 10.33333 , 0,b day h−= =  

10.33333 , 5,000, 5,000, 200m m nr day N N A−= = = = , 

vm vn mv nv mn0.1, 0.1, 0.1, 0.1, 0.01= = = = =β β β β β  
'

1 2 0 00.3, 0.9, 0.994142, 0.997066k k R R= = = = . The fractions 
of populations oscillate to the disease free equilibrium state 
(1,0,1,0,0,0)  . 
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Fig. 4. Numerical solutions  demonstrate the solution trajectories, 
projected onto 1( , ), ( , ), ( , ),m m m n m nS I S S S I  

2 1 2( , ), ( , ), ( , ), ( , )m n m v n v n vS I S I I I I I for  0 1R >  respectively, with 
the value of parameters are  

10.000039139H dayμ −= , 10,000TN = ,
10.071428571v dayμ −= , 10.33333 , 0,b day h−= =  

10.33333 , 5,000, 5,000, 20,000m m nr day N N A−= = = = , 

vm vn mv nv mn0.1, 0.1, 0.1, 0.1, 0.01= = = = =β β β β β  

'
1 2 0 00.3, 0.9, 99.4142, 9.97066k k R R= = = = . The fractions  

of populations oscillate to the endemic disease equilibrium state.  
 

Furthermore, we consider the numerical solutions of infant 
populations when the probability of dengue virus which infant 
received from the biting of infected vector in the beginning for 
baby not more than 6 months 1( )k  and the probability of 
dengue virus which infant received from the biting of infected 
vector in the beginning for baby more than 6 months 2( )k are 
difference. We show these trajectories in Fig. 5. 
 

     

     

                    
                           5a)                                         5b) 
Fig. 5. Numerical solutions  demonstrate the solution trajectories, 
projected onto 1 2 1 1( , ), ( , ), ( , ),n n nS k S k I k   

1 2 2 1 2 2( , )( , ), ( , )n n nI k I k I k  with the values of parameters are same 
as Fig. 4, except the probability of dengue virus which infant 
received from the biting of infected vector in the beginning for baby 
not more than 6 months 1( )k  and the probability of dengue virus 
which infant received from the biting of infected vector in the 
beginning for baby more  than 6 months 2( )k . 

              5a)     2 10.9,0 1k k= ≤ ≤ ,    5b)  2 20.3,0 1k k= ≤ ≤ . 
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IV. DISCUSSION AND CONCLUSION 
In this study, pregnancy, infancy with maternal dengue 

antibody and the vector populations are assumed to have 
constant size. The threshold number is defined by 0R  where 

1 2 1 3 1 1 2 2 1 2 1 2 1 3
0 2

1 1 2

( )

v

R M R k k M R
R

M
β θ θ β θ β θ

β β μ

+ + +
=  

or                             

0 2
( / ) ( / )

( )( )( )( )
vm v mn m nv n vm v mv m

v T H mv T H m

b A N N b A N
R

N h rN h r
β μ γ γ β μ γ

μ μμ μ
= +

+ ++ +
  

         1 2( ) ( / )
( )( )

vn v nv n

v T H m

k k b A N
N h r

β μ γ
μ μ
+

+
+ +

  .        (8) 

The square root of this number represents the average 
number of secondary cases that one case can produce if 
introduced into susceptible population. This model, we are 
interested in dengue virus transmission between pregnant 
woman and infant with maternal dengue antibody. We 
consider the third term, it represented the number of 
secondary infant case in first and second groups (who age not 
more than 6 months and more than 6 months), respectively 
with the percentage of dengue antibody which infant who age 
not more than 6 months received from mother in the 
beginning, and the percentage of dengue antibody which 
infant who age more than 6 months received from mother in 
the beginning. If these values are higher, then the probability 
of dengue virus which infant received from the biting of 
infected vector are decreasing.  For a disease to be capable of 
invading and establishing itself in a host population, this 
threshold number must be greater than one, then every 
successive generation will diminish inside until its number 
approach zero.  

We can see from fig. 3, the susceptible pregnant human, 
infectious pregnant human, susceptible infant human, 
infectious infant human (first group), infectious infant human 
(second group), infectious vector proportions  approach to the 
disease free equilibrium state (1,0,1,0,0,0) respectively 
for 0 1R < . The imaginary part of the complex root of 
eigenvalue is approximately 0.148614.  From fig. 4, the 
fraction of populations spiral to the endemic disease state 
(0.508777,0.0000576711,0.0131868,0.00011451,
0.00000134528,0.0000404878)  when 0 1R > .  

  Fig. 5. shows    1 2 1 1 1 2 2 1( , ), ( , ), ( , ), ( , )( , ),n n n n nS k S k I k I k I k   

2 2( , )nI k  moving towards their equilibrium state when the 
probability of dengue virus which infant received from the 
biting of infected vector in the beginning for baby not more 
than 6 months  and the probability of dengue virus which 
infant received from the biting of infected vector in the 
beginning for baby more than 6 months are difference. We 
can see the trajectories spiraling towards the different endemic 
disease state (fig. 5a).  Susceptible infant human, infectious 
infant (second group) human populations decrease and the 
proportion of infectious infant (first group) human population 
increase when the probability of dengue virus which infant 
received from the biting of infected vector in the beginning for 
baby not more than 6 months  is higher. When the probability 

of dengue virus which infant received from the biting of 
infected vector in the beginning for baby more  than 6 months 

2( )k  is higher, susceptible infant human and infectious infant 
(first group) human populations decrease but the proportion of 
infectious infant (second group) human population increases. 

The bifurcation diagrams of equations (2.1)-(2.6) are shown 
in the following figures.  

                       

 
Fig.  6. Bifurcation diagrams of equations (2.1)-(2.6) demonstrate the 
equilibrium solutions of 1 2, , , , ,m m n n n vS I S I I I , respectively, for the 

different values of 0R  with 
10.000039139H dayμ −= , 10,000TN = ,

10.071428571v dayμ −= , 10.33333 , 0,b day h−= =  
10.33333 , 5,000, 5,000,m m nr day N N−= = =  

vm vn mv nv mn0.1, 0.1, 0.1, 0.1, 0.01= = = = =β β β β β  

1 20.3, 0.9k k= = .  represents the unstable solutions and  

 represents the stable solutions. 
 

The bifurcation diagrams demonstrate the equilibrium 
solutions of all populations for the different values of 0R , they 
represented the stable and unstable solutions. We can see that, 
for 0 11,R E<  will be stable and for 0 21,R E>  will be stable. 
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     If the threshold number is greater than one, the normalized 
susceptible pregnant and susceptible infant proportions are 
decreases. The normalized infectious pregnant human, 
infectious infant human (first group), infectious infant human 
(second group) and infectious vectors increase. If this 
reproductive number ( 0R ) is less than unity (one), then the 
proportions of infectious pregnant human, infectious infant 
human (first group), infectious infant human (second group) 
and infectious vector converge to the disease free state. The 
ultimate goal of any control effort is to reduce (8) below one 
[24, 25, 26, 27, 28, 29], then the infection will eventually die 
out and not persist in that community. There may be some 
secondary cases, but these will decrease with time. If we can 
reduce the biting rate of the vector, then the threshold number 
as defined in (8) will be smaller. This will reduce the 
outbreaks of dengue disease in infants 

Management of dengue hemorrhagic fever in pregnancy 
should be conservative, symptomatic and carry on through the 
shock stage. The critical period usually passes within 24 to 48 
hours. When a pregnant or parturient woman develops signs 
consistent with dengue disease, the diagnosis in her offspring 
should be considered even if the infant appears well in the 
first several days of life. Symptomatic and supportive 
treatments under close observation are the mainstay of 
treatment. Other infections, bacterial or viral, can cause 
clinical features and hematologic changes similar to those of 
dengue virus infection. The occurrence of subclinical 
infections may lend further confusion to the situation.  
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