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Abstract—This paper shows the advantages of the material 

failure process simulation by improve finite elements with embedded 
discontinuities, using a new definition of traction vector, dependent 
on the discontinuity length and the angle. Particularly, two families of 
this kind of elements are compared: kinematically optimal symmetric 
and statically and kinematically optimal non-symmetric. The 
constitutive model to describe the behavior of the material in the 
symmetric formulation is a traction-displacement jump relationship 
equipped with softening after reaching the failure surface.  

To show the validity of this symmetric formulation, representative 
numerical examples illustrating the performance of the proposed 
formulation are presented. It is shown that the non-symmetric family 
may over or underestimate the energy required to create a 
discontinuity, as this effect is related with the total length of the 
discontinuity, fact that is not noticed when the discontinuity path is a 
straight line.  
 

Keywords—Variational formulation, strong discontinuity, 
embedded discontinuities, strain localization.  

I. INTRODUCTION 
HE idea of lumping a strain concentration into a line or 
surface for 2D and 3D quasi-static damage mechanics 

problems, respectively, has motivated the development and 
application of solid finite elements with embedded 
discontinuities (FEEDs) [2], [8]-[14], [26], [28], [29], [30]. An 
extension of this technique was the development of finite 
elements simulating hinges in beams [3], [5], [15] and [16] 
and an extended formulation for the analysis of softening 
hinge lines in inelastic thick plates [6]. More recently, FEEDs 
have been used for dynamic fracture simulations [3], [4] and 
[17]. In the formulation of these kinds of elements, there are 
mainly two requirements which must be satisfied in the 
localization zone: 1) equilibrium, traction continuity across the 
discontinuity interface and 2) kinematics, free relative rigid 
body motions of the two portions of an element split up by a 
discontinuity. 

A comprehensive study of FEEDs is found in [18], where 
these elements are classified into three families: 1) statically 
optimal symmetric (SOS), which satisfies equilibrium but 
does not kinematics; 2) kinematically optimal symmetric 
(KOS), which satisfies kinematics and apparently does not 
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satisfy equilibrium; and 3) statically and kinematically optimal 
non-symmetric (SKON), which satisfies both equilibrium and 
kinematics. New symmetric FEEDs, including mixed and 
assumed enhanced strain techniques, have been explored by 
[24], showing that although these symmetric FEEDs reduced 
the stress locking problem, the SKON formulations still 
provide better results. Recently, [20] have shown that KOS 
formulations satisfies both equilibrium and kinematics, 
introducing a new definition of the traction vector, which is 
dependent on the discontinuity length and on the direction; 
with this formulation, the energy necessary to create a 
discontinuity is coherent with its length. 

This paper shows the advantages of the material failure 
process simulation with FEEDs developed by [20] from the 
KOS family. The equilibrium in the KOS formulation is 
satisfied by a new definition of traction as a function of the 
length of the discontinuity, in the sense that the two equations 
at the residual are forces. 

The outline of this paper is as follows. Section II provides 
the equations defining kinematics and the boundary value 
problem (BVP) of a solid with discontinuities and the discrete 
constitutive model to describe the behavior of the material in 
for the development of discontinuities. Section III presents the 
energy functional of solids with strong discontinuities for the 
KOS formulation. Section IV shows the finite element 
approximation of the variational formulation with strong 
discontinuities. Numerical examples of elements with 
discontinuities, which validate the proposed formulation, are 
presented in Section V. Finally, in Section VI, conclusions 
derived from the work are given. 

II. PROBLEM DEFINITION 

A. Boundary Value Problem 
Consider a 3D body, defined by an open bounded domain,

3RΩ ∈ , and boundary, Γ, (Fig. 1a), loaded until it undergoes 
a displacement discontinuity, [|u|], across a surface, S, where 
the inelastic deformations are concentrated. This discontinuity 
splits the domain into two sub-domains such that, Ω= Ω-+ 
Ω++S, with two boundaries, Γ= Γ-+ Γ+. The boundary 
conditions are the prescribed surface tractions, t*, on

σ σ σ
− +Γ = Γ + Γ  and the prescribed displacements, u*, on

u u u
− +Γ = Γ + Γ , such that uσΓ ∪ Γ = Γ  and uσΓ ∩Γ =∅ . 

This problem may be idealized using two different 
approaches: Strong Discontinuity (SD) and Discrete 
Discontinuity (DD). The first approach considers that Ω 
remains continuous after [|u|] initiates (Fig. 1b), with a 
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material behavior described by non-linear stress-strain 
constitutive equations. The second approach considers that Ω 
stops being continuous, due to the development of S (Fig. 1c) 
and that, there is traction transmission, related with[|u|], 
throughout the discontinuity borders. Consequently, the 
constitutive behavior of the material around the discontinuity 
is described by traction-separation constitutive laws, whereas 
the rest of the domain, / S + −Ω = Ω + Ω , is described by 
standard constitutive laws. 

 

 
Fig. 1 Continuum Ω with: (a) boundary conditions, (b) SD and (c) 

DD 
 
The discontinuous displacement fieldu, with a jump [|u|]at a 

given (material) pointS, induces an unbounded strain field. 
Both fields can be expressed as: 

 

 
[ ]
[ ]( )SS
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u u x u x

u u nε ε
 (1) 

 
where u  is the continuous part of the displacements and ε the 
continuous part of the strains, HS is the Heaviside function 
defined on S (Hs(x)=0 x −∀ ∈Ω  y Hs(x)=1 x +∀ ∈Ω ), and δS is 
the Dirac delta function. 

The BVP for SD and DD formulations is defined by the 
next equations and boundary conditions: 
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In the SD formulation, the tractions, given in (2), are 

computed from the projected stresses σS, from a stress-strain 
constitutive law, whereas in the DD, these tractions are 
computed directly from a traction-displacement relationship. 

B. Constitutive Discrete Damage Model 
The isotropic discrete damage model, shown in Fig. 2, is 

defined by [23]as: 
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where Ԅ is the discrete free energy density, T is the traction 
vector. The damage variable ω is defined in terms of the 

hardening/softening variable
_
q  , which is dependent on the 

hardening/softening parameter H . The damage multiplier λ
determines the loading-unloading conditions, the function

( )f qT, , bounds the elastic domain defining the damage 
surface in the tractions space. 
 

 
Fig. 2 Discrete damage model 

 
The tangent constitutive equation, in terms of rates from the 

model in (3) is:  
 

 [ ]T
dC u= ⋅T  (4) 

 
where T

dC  is the discrete tangent constitutive operator, relating 
the traction and the jump displacement of the nonlinear 
loading range, which is defined by 
 

 ( ) [ ] [ ]( )31 q HT
d

α
α

ω −− e e eC Q Q u u Q= − ⋅ ⊗ ⋅  (5) 

 
and for the elastic loading and unloading range ( 0ω = ): 
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III. VARIATIONAL FORMULATION 

A. Symmetric Formulations 
The KOS approximation is based on the displacement 

functional [1], [19]-[21] and [31]: 
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where the free energy density ( )uΨ ε ,depends on the 
continuous strain field ε , and the free discrete energy density,

[ ]( )SΨ u  depends on the jump given by:  
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From which the elastic stressσ, is defined by: 
 

 :Cσ = ε  (9) 
 

The first variation of the functional given in (7) is: 
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which unlike non-symmetric formulation, it also includes the 
inner traction continuity of the BVP. 

IV. FINITE ELEMENT APPROXIMATION 

A. Discretization 

1) Regularization of the Displacement Kinematics 
It is not possible to prescribe the boundary conditions, u*, in 

only one of the displacement fields, u or[|u|], this difficulty is 
overcome, according to [22], by defining the displacement 
field as in (11), see Fig. 3a and b, i.e., 

 
 [ ] ,ˆ ( )S x yM= +u u x u  (11) 

 
Then, the strain field is defined by: 
 

 [ ] ,ˆ ( )S S S
S x yM= ∇ = ∇ + ∇u u x uε  (12) 

 
where û is the regular displacement field and Ms(x) is a 
function given by: 

 
 ( ) ( ) ( )S SM H φ= −x x x  (13) 
 

where Ԅ (x)is a continuous function such that: 
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The function MS, has two properties: ( ) 1SM x x S= ∀ ∈ and

( ) 0SM x x − += ∀ ∈ Ω ∪ Ω (Fig. 3c). 
The continuous displacement field of (1) is now defined as: 
 

 [ ] ,ˆ ( ) x yφ= −u u x u  (15) 

 
In the continuous part of the solid, which may be linear 

elastic, the continuous strain field, is given by: 
 

 S= ∇ uε  (16) 
 

Substituting (15) into (16), 
 

 [ ] [ ], ,ˆ ( ) ( )S S S
x y x yφ φ= ∇ − ∇ − ∇u x u x uε  (17) 

 

 
Fig. 3 Graphic representation of: (a) continuous displacements, (b) 

regular displacements and (c) function MS. 
 
If the displacement jump is constant in(17), the continuous 

strain field may be rewritten as: 
 

 [ ] ,ˆ ( )S S
x yφ= ∇ − ∇u x uε  (18) 

 
For 2D problems, the displacement jump and traction vector 

are defined in a local system n,s or in a global system x,y as 
shown in Fig. 4. 
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 ,x y = nσ ⋅T  (21) 
 

 
Fig. 4 Discontinuity: a) reference system, b) triangle element and c) 

quadrilateral element 

2) Approximation of the Displacement and Strain Fields 
The regular displacement field is approximated by: 
 

 ˆ =u Nd  (22) 
 
where N is the standard vector of shape functions of the 
element 
 

 ( )
1

i n e
ii N=

=∑N =  (23) 
 
and d, is the nodal displacement vector. The function, Ms(x), is 
defined in the finite element approximation as: 
 
 ( )( )e e e

S SM H φ= −x x  (24) 
 
where Ԅ eis constructed by: 
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where iN + are the shape functions corresponding to the nodes 
placed on Ω+ of the finite element which contains the 
discontinuity, in agreement with the definition of Ԅ in (14). 

The displacement field defined in (11) is given by 
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The continuous strain field in (18)is approximated as: 
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and the unbounded strain field as: 
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where B, is the standard strain interpolation matrix, containing 
the derivatives of the standard shape functions ∂(Nd)=Bd. 

B. Extremization of the Energy Functional  
The equilibrium equations corresponding to this 

formulation are obtained by substituting (26) and (27) into the 
energy functional of (7), and setting the derivatives with 
respect to the variables (dand[|u|]) to zero, 
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As in (29) and (30), ( )σ ε and ,x yT are nonlinear, their 

respective linearizations with Taylor series give: 
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where R1 and R2 are defined as: 
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To reduce the size of the system given in (31), the 

additional degrees of freedom, Δ[|u|], may be condensed. In 
(32), R1 means the equilibrium between the external and the 
internal forces in the domain Ω\S, whereas R2, in (33), the 
equilibrium between the forces in the domain Ω\Sand forces in 
the discontinuity ΓS; R1and R2have units of force, unlike the 
SKON formulation, which one equation have units of force 
but the other equation has units of force/length2.  

C. Tractions at Discontinuity 
To consistently achieve equilibrium in the KOS 

formulation, the R2 forces given in (33), must be enforced to 
zero. Then, according to [20] 
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the definition of traction given in (35) is different to those 
used by [27]: 
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1

x y
d l

dl
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where Ae is the element area and n+ the unit normal to a border. 

V. NUMERICAL EXAMPLES 

A. Triangle with Discontinuity Non Parallel to a Border 
Fig. 5 shows a constant strain triangle with the following 

mechanical properties: Young´s modulus, E=1000 MPa, 
Poisson ratio υ=0.0, maximum tensile stress, tu=1 MPa and 
fracture energy density Gf=0.005MN/m. From its performed 
elastic analysis, imposing a horizontal displacement of 
d=0.000634755 at node 2, the stresses obtained were 
σx=0.413251, σy=0.082650 and σxy=-0.198361. With these 
stresses, the major principal stress direction is θ=-25.097° . 
After this, the nonlinear analyses of this element with three 
different locations of the discontinuity with direction 
perpendicular to the major principal stress direction were 
carried out. The locations of the considered discontinuities 
with lengths: ld1=0.179, ld2=0.358andld3=0.534, are shown in 
Fig. 5b to d. In this example, the discontinuities are not 
parallel to a border of the element. 

The load Pvs. displacement d curves for each discontinuity 
are shown in Fig. 6, these cases do not show numerical 
problems when tn reaches the maximum tensile traction. 
Nevertheless, different areas under the Pvs.d curves are 
obtained, which correspond to the energy necessary to produce 
the respective discontinuity. The larger the discontinuity 
length, the more energy is needed to produce the discontinuity. 
The numerical solution with a SKON formulation corresponds 
to the solution for the discontinuity length ld3 obtained with 
the KOS formulation, which is the case when the discontinuity 
was place at the centroid of the element, showing that the 
SKON may under or overestimate the energy as stated by [20].  

 

 
Fig. 5 Triangular element: a) geometric model, b) discontinuity ld1, c) 

discontinuity ld2 and d) discontinuity ld3 
 

 
Fig. 6 Load vs. displacement curves 

B. Specimen Under Shear 
The rectangular specimen with geometry and boundary 

conditions shown Fig. 7 is under a horizontal load applied at 
its upper part. Because the specimen is fixed from the base to 
the center of its height, shear stresses are localized along the 
longitudinal axis. The mechanical properties of the material 
were: Young´s modulus, E=26.5MPa, Poisson ratio υ=0.3, 
maximum shear stress, τu=20 kPa and shear fracture energy 
density Gf1=52.083 N/mandGf2 =100N/m. Plane strain was 
considered for the analysis. 

Three different meshes with 2D triangular elements where 
used for the simulation of this specimen shown in Fig. 8; two 
of them were structured and the last one was unstructured. The 
computed load vs. displacement curves are congruent with the 
numerical results reported by [7], who applied a FEEDs of the 
SKON family. The areas under these curves, shown in Fig. 9, 
agree with the energy necessary to produce this discontinuity. 
It is interesting to say that [7] used a plasticity surface with 
softening, taking the ultimate shear stress as the yield stress. 
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VI. CONCLUSIONS 
The triangular element with discontinuities non parallel to a 

border demonstrated that this formulation, member of the 
KOS family of FEEDs, does not induce spurious tractions 
when the discontinuity is placed in perpendicular direction to 
the principal stress. 

In is shown that the SKON family may over or 
underestimate the energy required to create a discontinuity, as 
this effect is related with the total length of the discontinuity, 
fact that is not noticed when the discontinuity path is a straight 
line. 

When the discontinuity length is considered into the 
analysis, the energy required to create a discontinuity may be 
less than with a SKON formulation, because this energy is 
directly related with the length of the path followed by the 
discontinuity.  
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