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Abstract—The stability analysis of Marangoni convection in 

porous media with a deformable upper free surface is investigated. 
The linear stability theory and the normal mode analysis are applied 
and the resulting eigenvalue problem is solved exactly. The Darcy 
law and the Brinkman model are used to describe the flow in the 
porous medium heated from below. The effect of the Crispation 
number, Bond number and the Biot number are analyzed for the 
stability of the system. It is found that a decrease in the Crispation 
number and an increase in the Bond number delay the onset of 
convection in porous media. In addition, the system becomes more 
stable when the Biot number is increases and the Daeff number is 
decreases.  
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I. INTRODUCTION 
HE instability of the convection driven by buoyancy is 
referred to as Rayleigh-Benard instability has been 
extensively studied since the early analysis by Horton and 

Rogers [1] and Lapwood [2]. They discussed a porous 
medium saturated by a wetting liquid, heated from below and 
they concluded that the filtration Rayleigh number has a 
critical value equal to 24π . The latter effect is due to the local 
variation of surface tension or referred to as Marangoni 
instability was first theoretically analysed by Pearson [3]. 
Sparrow, Goldstein and Jonsson [4] studied analytically the 
thermal instability of an internally heated fluid layer as well as 
a layer heated from below, with various boundary conditions. 
On the Marangoni instability problem, the effect of the surface 
deflection is later considered by Scriven and Sternling [5]. As 
these two kinds of instability take place at the same time, the 
instability mechanism is known as the Benard-Marangoni 
instability. Nield [6] first analyses the Benard-Marangoni 
instability problem. Katto and Masuoka [7] resolved some of 
the apparent divergence between theoretical predictions and 
experimental results on convective critical conditions for 
bottom-heated porous media by introducing the effective 
thermal diffusivity in the more conventional external Rayleigh 
number. Gupta and Joseph’s [8] numerical treatment showed 
excellent agreement with experimental results on the heat  
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transport across a bottom heated porous layer. Kazimi and 
Gasser [9] studied the onset of convection in a porous medium 
with internal heat generation by employing a rigid lower 
surface with a free upper surface and isothermal conditions at 
the upper and lower surfaces. The combination of critical 
Rayleigh numbers presented in their paper was expected to 
hold true for a bed with a rigid isothermal upper boundary as 
well as a free isothermal surface upper boundary. The thermal 
stability of superposed porous and fluid layers has been 
studied by Nield [10], using linear stability analysis for an 
empirical interfacial condition at the fluid-porous interface 
suggested by Beavers and Joseph. Davis and Homsy [11] later 
study the effect of the surface deflection on the combined 
Benard-Marangoni problem. The thermal stability for different 
system of superposed porous and fluid regions has also been 
considered by Pillatsis et.al [12] and Taslim and Narusawa 
[13]. Perez-Garcia and Carneiro [14] have carried out a 
systematic study of the linear stability of the Benard-
Marangoni convection with a deformable free surface. The 
effect of the internal heat generation on the Benard-Marangoni 
instability of a horizontal liquid layer with a deformable upper 
free surface was investigated by Ming-I Char and Ko-Ta 
Chiang [15]. The stability analysis is based on the linear 
stability theory and the resulting eigenvalue problem was 
solved by employing the fourth order Runge-Kutta-Gill 
method. Hennenberg et.al.[16] have  considered a liquid 
saturated porous media in contact with air and subjected to an 
adverse gradient of temperature in the lower boundary is 
perfectly conducting. They have developed the model that can 
be described in terms of the Brinkman model. They solved the 
Brinkman approach over the whole saturated porous matrix 
and obtained a critical wave number which was highly 
dependent on the Darcy number. The linear stability analysis 
of Marangoni convection in a composite system comprised of 
an incompressible fluid-saturated porous layer underlying a 
layer of the same fluid is considered by Shivakumara and 
Krishna [17]. The upper fluid surface, free to the atmosphere, 
is considered to be deformable and subjected to temperature 
dependent surface tension.  

The purpose of the present paper is primarily to examine 
the Marangoni convective instability in saturated porous 
medium with a deformable upper free surface which is heated 
from below. The linear stability theory and the normal mode 
analysis are applied and the resulting eigenvalue problem is 
solved exactly. The Darcy law and the Brinkman model are 
used to describe the flow in the porous medium and of interest 
are the effects of Crispation number; Cr, Bond number; Bo, 
and the Biot number; Bi.   
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II. MATHEMATICAL FORMULATION 
Consider a saturated isotropic porous matrix of thickness d 

and of infinite horizontal extent, heated from below.     
 

                                                Deformable                           

      
                                                                                                      
                                              HEATED 

Fig. 1 The porous layer heated from below 
 

Its upper boundary is at a temperature T0 and is in contact with 
a gaseous phase. The lower boundary is assumed to be a 
perfect conductor at a higher temperature TT Δ+0 . The free 
surface is assumed to be deformable. The saturated porous 
matrix is entirely described by the continuity, Brinkman 
momentum law and energy equations that are  
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where ( )wvu ,,=V  is the seepage velocity, mρ  is the mean 
density, lρ  is the clear liquid density, lc  is the specific solid 
heat capacity in the clear liquid, mc  is the specific solid heat 
capacity in the porous medium, km is the overall thermal 
conductivity of the porous medium, ffeμ is the effective 
saturated porous medium viscosity, ac  is the acceleration 
coefficient, P is the pressure, μ  is the pure liquid viscosity 
and Κ  the permeability of the porous matrix.  

The variables are then nondimensionalized using 
d, md ας 2 , dmα , TΔ , Κmμα as the units of length, time, 
velocity, temperature and pressure respectively. Using the 
dimensionless variables, the equations (1) – (3) are 
transformed to the following dimensionless form: 
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The boundary conditions at the bottom are for rigid boundary 
conducting to temperature perturbations that are: 

      0=== Dww θ ,  (7) 
which is evaluated at z = 0. The boundary conditions at z = 1, 
are 
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effMa p   is the equivalent of a Marangoni number for the upper 

surface, defined as, 

                           ml
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where effMa p  is the product of the pure liquid Marangoni 
number by a quantity which is a function of the porosity φ  
and of the thermal conductivity of the clear liquid and the 
solid (see detailed in [16]). If f is a disturbance quantity, then 
following [16], and expressing this quantity as 

( ) ( )[ ]∫ ∫
∞

∞−

∞

∞−

++= stykxkizfdkdktzyxf yxkyx  exp)(,,, , (13) 

with 22
yx kka +=  is a wavenumber, equation (5) and (6) in 

dimensionless form become 
 

         ( ) ( )( )( ) 0)( Da1 2222eff =−−−+ zWaDaDsaγ , (14) 
                         ( )( ) ( ) ),( 22 zWzsaD −=+− θ  (15) 

where W(z) is the vertical variation of the z-velocity 
and dzdD /= . The dimensionless form boundary conditions 
(7) – (11) become   

,0=W    (16) 

 ,0=θ    (17) 

                                          ,0=DW   (18) 
at z = 0 and 

                                            0=W ,   (19) 

     ( ) ,0-Bi =+ ηθθD   (20) 

       ( ) ( ) ,0Ma 2eff22 =−++ ηθpWaD  (21) 

                 ( ) ( ) ,0Bo3Cr 2222 =++−− ηaaDWaD  (22) 
 
at z = 1. The governing equations (14) and (15), subject 
to the boundary conditions (16) – (22), constitute an 
eigenvalue problem of order six can be solved exactly by 
setting s = 0, to obtain the equation relevant to the neutral 
stability. 

III. METHOD OF SOLUTION 
The resulting eigenvalue problem is solved exactly, in 

general, with effMa p  as an eigenvalue. Since equation (14) is 
independent of θ , it can be directly solved to get the general 
solution in the form 
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where A1 – A4 are constants to be determined and 

eff2Da
1

a
=α .  The parameter α  plays a crucial role. When 

the permeability K and the Darcy number, Daeff becomes 
infinite, then the parameter α is equal to one. Using the 
boundary conditions (16), (18) and (19) to solve equation (14), 
we obtain 
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The heat equation (15) has now to be solved defining their 
right-hand sides by the expressions given by equation (24). 
The solution obtained for θ  using the boundary condition 
(17) is given by 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+

⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣

⎡ +−
=

)sinh(Da)1()cosh(Da

)sinh(
2

)cosh(
2

)1(Da
)(

effeff

*eff

azaz

az
a
zcazz

aAz
αβα

αβ
θ                                                                                                

      (25) 

where
)sinh()sinh(
)cosh()cosh()1(

aa
aa

αα
αβ

−
−

= and two unknown quantities 

A and c* remain to be calculated.  
 

Now, we will use the last boundary conditions (20) and 
(21), to get the compatibility condition. From equation (20) 
and equation (25), after some obvious and tedious 
simplifications, we obtain 
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boundary condition (21) and the properties of the hyperbolic 

trigonometric functions and rearranging the terms, we obtain 
the explicit value of effMa p as a function of the wave number; 
a, the Biot number; Bi, the Bond number; Bo, the Crispation 
number; Cr,  and the Darcy number, Daeff is given by  
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From equation (27), it is seen that the Marangoni number 
whose explicit value is highly dependent on α and is thus a 
function of the permeability K. 

At finite a, when the Darcy number, ∞→effDa , a clear 
fluid φ  tends towards 1 and K which is dependent upon the 
layer width d, becomes infinite, then  the problem  (14) – (22)  
reduce to the problem studied by Wilson [13].  When α equal 
to one, equation (27) will produced the explicit Marangoni 
function for the conducting rigid wall. By applying the 
l’Hospital rule, we obtain 
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The compatibility condition (28) produces for Darcy 

numbers, Daeff much larger than one, exactly the results 
derived by [13].  To verify our results, test computations have 
been performed the marginal stability curves obtained by (28) 
are plotted in Figure 3 and 5. As expected, the classical curve 
[13] is reproduced and the critical Marangoni number obtained 
from equation (28) are found to be in excellent agreement with 
those of [13]. 

IV. RESULT AND DISCUSSION 
The criterion for the onset of Marangoni convection in a 

deformable saturated Benard-Marangoni one-layer porous 
system is investigated theoretically. The stability analysis of 
the Benard-Marangoni problem in porous media has been 
studied by Hennenberg et al. [16] and the linear stability 
analysis of the Benard-Marangoni problem in a layer of fluid 
with a deformable free surface has been studied by Perez-
Garcia et al. [14]. To verify our numerical results, test 
computations have been performed and the critical Marangoni 
number allocation shows a good agreement with the results 
given in [14] and [16] which are listed in Table 1 and Table 2.   

In Table 1, the critical values of Marangoni number and 
the corresponding critical wavenumber are shown for different 
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values of Daeff and Cr. Our results are compared with those of 
Perez-Garcia [14] obtained using a numerical method in the 
absence of thermal buoyancy (Rayleigh number = 0). We note 
that the results compare well with each other and for Cr = 0, 
the critical Marangoni number is equal to 79.60688, a known 
value for the case of a single fluid layer in the absence of 
surface deflection at the free surface which discussed by [3]. 
As Daeff decreases, the onset of Marangoni convection is 
increases. Although the value of the wavenumber increases as 
the value of Daeff increase, the critical wavenumber is 
approaching zero as the Cr increase. It can be clearly seen that 
the decrease in the Daeff number and Crispation number, will 
delay the onset of convection. 

The critical values of Marangoni number for different 
values of Bi, Daeff and Cr on the stability of the Marangoni 
convection in the case of Bo = 0, are shown in Table 2. The 
results of this analysis agree well with [16]. As Bi number 
increases, the value of critical Marangoni number increases 
quite rapidly. We also find that at each Bi, the critical 
Marangoni increases obviously as Daeff increase from the 
value of 10-1 to 10-2, but it is fairly insensitive to the increase 
of the value of the Crispation number. From the table, the 
system becomes more stable when the Biot number is 
increases.  

Figures 2(a) and 2(b), respectively show the plots of  
( effMa p )c and ac as the function of Cr for different values of 
Daeff and fixed values of Bo and Bi. From the figures, it may 
be inferred that an increase in the value of Cr is to decrease the 
value of ( effMa p )c , and thus making the system more unstable. 
The reason is that an increase in Cr is to increase the 
deflection of the upper surface, which in turn promotes 
instability much faster. It is also seen that ( effMa p )c number 
attains a constant value at specific Daeff number and at certain 
Cr, ( effMa p )c number decrease rapidly before attaining an 
asymptotic value with further increase in Cr.   

The other physical parameter that we considered is the 
Bond number, Bo as shown in Figure 3. Contrast to the effect 
of Cr, increase in the value of Bo makes the system more 
stable. The reason for this may be attributed to the fact that an 
increase in Bo leads to an increase in the gravity effect, which 
keeps the upper surface flat against the effect of surface 
tension, which forms a meniscus on the free surface. effMa p , 
corresponding to the first minimal point of the zero 
wavenumber, is quite sensitive to the surface tensile of the 
upper surface and increases as Bo increases. But it is very 
indifferent to the value of Bo at the second minimal point of 
the finite wavenumber especially at Bo = 0.4 and Bo = 0.5, 
where the ( effMa p )c fixed at the same value.  

Figure 4 shows a variation of effMa p with wavenumber a, for 
different values of Bi, in the case of  
Bo = 0, Cr = 0 and Daeff = 10-1. From the graph, an increasing 
of Bi, the medium becomes prone to stability.  

The variation of effMa p with wavenumber a, for different 
values of Daeff, in the case of Bo = 0.1, 
 Bi = 2, Cr = 10-6 are shown in Figure 5. It can be seen clearly 
that the onset of convection started earlier for Daeff = 100 

compared with Daeff ≤ -1. This is because when the 
permeability K is large the resistance to flow becomes 
effectively controlled by the ordinary viscous resistance and in 
this case, the convection phenomenon is similar to that in a 
fluid layer. The lower the permeability K, the lower the Daeff 
would be and the ( effMa p )c will increase.  
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TABLE I  CRITICAL VALUES OF MARANGONI NUMBER ( )
cp

effMa AND THE 

CORRESPONDING CRITICAL WAVENUMBER AC , FOR DIFFERENT VALUES OF 
DAEFF AND CR ON THE STABILITY OF  THE MARANGONI CONVECTION FOR BO = 

0.1 AND BI = 0. 

 
 [14]   Present   

Cr Fluid  Eq. 26  Daeff = 10-1  
 Mc ac ( )

cp
effMa  ac ( )

cp
effMa  ac 

0 79.607 1.99 79.60688 1.99 96.55991 2.43 
10-6 79.606 1.99 79.60580 1.99 96.55791 2.43 
10-5 79.596 1.99 79.59608 1.99 96.53960 2.43 
10-4 79.499 1.99 79.49898 1.99 96.35567 2.42 
10-3 66.667 0 66.6556 0 30.63800 0 
10-2 6.667 0 6.66680 0 3.06400 0 
10-1 0.667 0 0.66664 0 0.30640 0 
 
       Present    
Cr Da = 10-2  Da = 10-3  Daeff = 10-4  
 ( )

cp
effMa  ac ( )

cp
effMa  ac ( )cp

effMa  ac 

0 355.4975 2.57 2490.357 3.03 21720.94 3.61 
10-6 355.3287 2.57 2469.370 2.97 1000.000 0 
10-5 353.8065 2.55 316.264 0 100.000 0 
10-4 100.00 0 31.626 0 10.00 0 
10-3 10.00 0 3.162 0 1.00 0 
10-2 1.00 0 0.316 0 0.10 0 
10-1 0.10 0 0.032 0 0.01 0 
 

 
 

TABLE II CRITICAL VALUES OF MARANGONI NUMBER ( )
cp

effMa , FOR 

DIFFERENT VALUES OF BI, DAEFF AND CR ON THE STABILITY OF THE 
MARANGONI CONVECTION FOR BO = 0.  

 
 [16]      Present  

Bi      Cr = 0       Cr = 0  
 Daeff=10-1 Da = 10-2 Daeff=10-1 Da = 10-2 
0 96.560 355.497 96.55991 355.4973 
2 166.268 591.668 166.2953 591.6683 
4 229.544 796.751 229.5418 796.7514 
6 290.592 989.224 290.5913 989.2241 
8 350.510 1174.452 350.5096 1174.4517 

10 409.753 1354.904 409.7532 1354.9040 
   

      Present   
Bi  Cr = 10-6  Cr = 10-4  
 Daeff=10-1 Da = 10-2 Daeff=10-1 Da = 10-2 
0 96.55787 355.3262 96.35215 337.5594 
2 166.2917 591.5195 166.2300 576.4552 
4 229.5418 796.6037 229.5744 781.6695 
6 290.5926 989.0756 290.7095 974.0292 
8 350.5116 1174.302 350.7121 1159.1065 

10 409.7559 1354.753 410.0402 1339.4086 
     

 
 

 
Fig. 2(a) The effect of Cr on the stability of Marangoni 

convection for Bo = 0.2 and Bi = 0. 
 

 
Fig.  2(b) The variation of ac with Cr when Bo = 0.2 and 

Bi = 0 for a range of values of Daeff. 
 

 
Fig. 3 The stationary neutral curves effMa p are plotted for 

            several values of Bo on the Marangoni convection. 
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     Fig. 4  Variation of effMa p with wavenumber a, for different  
                 values of Bi, in the case of  Daeff = 10-1. 
 
 
 
 

     

Fig. 5  Variation of effMa p with wavenumber a, for different  

            values of Daeff, in the case of Bo = 0.1, Bi = 2, Cr=10-6 
 
 
 
 


