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Magnetic Field Effects on Parabolic Graphene
Quantum Dots with Topological Defects

Defne Akay, Bekir S. Kandemir

Abstract—In this paper, we investigate the low-lying energy
levels of the two-dimensional parabolic graphene quantum dots
(GQDs) in the presence of topological defects with long range
Coulomb impurity and subjected to an external uniform magnetic
field. The low-lying energy levels of the system are obtained within
the framework of the perturbation theory. We theoretically
demonstrate that a valley splitting can be controlled by geometrical
parameters of the graphene quantum dots and/or by tuning a uniform
magnetic field, as well as topological defects. It is found that, for
parabolic graphene dots, the valley splitting occurs due to the
introduction of spatial confinement. The corresponding splitting is
enhanced by the introduction of a uniform magnetic field and it
increases by increasing the angle of the cone in subcritical regime.

Keywords—Coulomb impurity, graphene cones, graphene
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1. INTRODUCTION

INCE the successfully experimental realization [1], [2] of

graphene, a new research area [3], [4] developed in the
field of condensed matter physics and material science. This
material exhibits unusual physical properties, high crystal
quality, and exotic Dirac-type spectrum which is described by
the analogy with the relativistic Dirac equation [5], [6]. The
low-energy dispersion of electrons in graphene is occurred
near two unequivalent points in the Brillouin zone: K and K’
points [6], where a new pseudospin degree of freedom appears
due to the two sublattices defining the honeycomb lattice of
graphene. This area has attracted considerable attention by
both experimental and theoretical condensed matter physicists
due to its novel physical properties. In particular, GQDs have
been extensively studied in the recent literature. It has been
shown that their controllable various geometries and sizes
make them potential candidates for the future electronic and
optical devices [7]-[13].

As known, electrons can be described by a two-dimensional
Dirac-Weyl equation and behave as massless chiral fermions.
Due to this unique property, electrons in graphene cannot be
efficiently confined within finite spatial areas and cannot be
localized by time like confinement potentials. The
confinement of electrons in graphene is not trivial due to the
Klein’s paradox, which makes potential barriers transparent
for normally incident quasi-particles. This problem has been
studied in many theoretical investigations by using various
confinement geometries within the different schemes [14]-
[36]. Another alternative approach to confine Dirac electrons
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in graphene have been proposed in the presence of
inhomogeneous magnetic fields [16], [25]. In addition, there
have been extensive studies on the electronic properties of the
topological defects in graphene, i.e., graphene cones [37]-[39].
These structures can be realized by distortions of graphene
sheets by introducing various kinds of defects. These defects
induce lattice distortions that can be generally classified in two
types of dislocations and disclinations. Dislocations type
disorders arise from the translational lattice incompatibility of
the crystal lattice. In the presence of dislocations, an extra
vector has to be introduced, which is called the Burgers vector
[40]-[42]. Disclinations are defects that are originating from
the rotational incompatibility of the crystal lattice, and these
are equivalent to wedge disclinations. Disclination on a 2D
graphene can be thought of an explicit breaking of the local
rotational symmetry which can be measured by the Frank’s
vector [41].

The purpose of this work is twofold: First, we examine the
electronic properties of the parabolic GQDs in the vicinity of
the K-point of the Brillouin zone of the gapped graphene by
using the effective low-energy Dirac equation for the electron
quasi-particle states in the presence of a single charged
Coulomb impurity that is subjected to a homogeneous
magnetic field. The second one includes the physics of
graphene cones. In this paper, we examined the electronic
properties of parabolic QDs with topologically defected
graphene i.e. graphene cone. The energy levels of GQD in the
presence of defects and subjected to a uniform magnetic field
perpendicular to GQD plane are studied in this context within
the framework of the perturbation theory.

The paper is organized according to the following order: In
Section II, first, the model is introduced and following the
introduction the electronic properties of parabolic GQDs is
described and discussed. In Section III a brief summary and
conclusion is added.

II. THEORY

Electrons near the K-point of the graphene obey the
massless relativistic Dirac equation. The effective Hamiltonian
in the presence of a constant uniform magnetic field and a
parabolic confinement potential with a single charged
Coulomb impurity is given by

5 (>, e @ Ze?
H=vpa-(p+;A)—?+rmvEGZ+ﬁAr2. (1
o; and [ are Dirac matrices, vy = (3a/2)J, is the Fermi

velocity and J, is the resonance integral between nearest
neighbor carbon atoms which is of order of 2.7 eV. Here, a is
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the equilibrium bond length of the graphene. § = —ihV=
—ih(dy,dy) is the two-dimensional momentum operator, A is
the vector potential that generates the magnetic field B = V x
A, and it will be chosen in the symmetric gauge, i.c.,4 =
B(—y,x,0)/2, and Ze? /e is the strength of a charged impurity,
where Z is the atomic number of impurity, € is the dielectric
constant. The third term in (1), is the mass term and it gives
rise to an energy gap 2mv# in the spectrum of graphene, where
7 =+1 (t = —1) corresponds to the K ( K") valley. Throughout
this work, we restrict ourselves to a single valley (K) and a
single band (conduction). The last term in (1) corresponds to
GQD potential wherein A= Uy/2R2, U, and R, are the strength
and the radius of the graphene quantum dot, respectively. The
solution of (1) in the absence of parabolic potential is well
established in [39] in terms of spinor wave function, ‘P:, =
(¥l Wi,_) where A and B are the pseudospin indices and
refer to sublattices of graphene, while + and — signs denote
the valleys.

In order to get conical topology or topological defects in
graphene, one needs to introduce nontrivial holonomies in the
pseudoparticle wave function. In the presence of a graphene
cone with an angle of deficit 2 ngm/6 , the angular boundary
condition on spinor wave function ¥ is given by

Y(r,0 =2n) = eiezm(l_%ﬂ)‘{’(r, 0) 2)
where ng is defect number of topological defects. These
holonomies on spinor wave function can be represented by a
fictitious gauge field here ng is defect number of topological
defects, and these holonomies on spinor wave function can be
formed with fictitious gauge field

Ag(r) =$[i%% +§U3] 3)

By inserting this fictitious gauge field into (1), the effective
Hamiltonian for the low-energy excitations of a graphene cone
in the presence of both parabolic QD and a single charged
Coulomb impurity subjected to a homogeneous magnetic field
can be written as a sum of three Hamiltonians, H = Hy + H' +
H'' in units of Avg:

2 i
[, i
mo — ¢ n4 1
| Tt |
Hy = |_o__i o | C))
v et :
e
together with
Agr? Br/2a?
H+H = _° . 5
(—B?’/Za2 —A,r? ©)

In (5), B=B/Byis the dimensionless magnetic field, B, =
hc/ea?, and Z = Ze?/ehvp is the dimensionless coupling

constant. Here, we have also used the abbreviations m, =
mvp/h and Ag= A/hve. H, is the exactly solvable and its
corresponding energy eigenvalues are found to be

-1/2

§n=mo[1+Z_2/(n+ vz—Z_Z)Z] (6)

together with the corresponding eigenfunctions in terms of
Laguerre polynomials

_ Foj(r)et®d=n
l{ln'j(r) - < lGnJ (r)eig(f) (7)
where
Fnj(r)} _ (=1D)"Ny, ;(mg, Z)y/mg £ & e~
Gnj(D))  x (2Ar)~V2[LY (247) £ Cyy L2, (247)]

with a normalization constant

_ (ra+ D2+ VT ) v

N, i(my,Z) = =
nj(mo, 2) T(n+ 2y + 1) my2Z

and here C,; =—-(n+2y)/(j+myZ/2), where A=myZ/
VZ2+ (m+7y)?, y =+v2 =22 with v = (j £ ng/4)/(1 — ng/6)
which depends on j as well as the number of sectors ng
removed from the gapped graphene to from conical
topological defects. j =m; +1/2 is the eigenvalue of the
conserved total angular momentum J,. The quantum number n
takes values n = 0,1,2, ... if m; = 0, and n = 1,2, ... if m; < 0. It
can be easily checked that the lowest angular momentum
channel is j = +1/2, the critical coupling constant Z, takes the
well-known value, i.e., 0.5 for the case n = 0, and it increases
by increasing the angle of the cone, except for the case of
ng = 2. In our calculations, we have excluded the ng = 2
case, because it is required that supercritical regime. In the
framework of perturbation theory, by using corresponding
eigenfunctions and obtained the first-order shift in energy
eigenvalues of (1) as £ = &, + A&," + Ag,”, where

(B/amolZ* + (n+ )71
x [(Zn ++/v2 — Z_Z)v + (Z%+(n +y)2)1/2]

A&, =

®)

is the Zeeman term due to magnetic field and this result is
valid for B « Z?my%/2 and

88, = (1/4R3Zmy? Jy? = &) [2 on(n + v)(n + 2y) +

&7 My /N Mg® — &2 [2(n+ )% + n(n +2y) + 1] + 35,(n +
vl (€)

is the contribution due to parabolic quantum dot potential.
Thus, the energy eigenvalues can be written as,
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_ B _ 2—1/2
E= m0[1+22/(n+ vZ—ZZ)] +

(E/471_10[Z_2 +(n +)/)2]%) [(Zn +v2 — Z_Z)v +(Z% +
(n+ y)z)i] + (1/4§3Zﬁ02 Jmy? — s"nz) [2Mon(n+ Y)(n+

2¥) + 5,7 My /% — &2 2 +¥)2 + n(n+2y) + 1] +
3, (n+y)] . (10)

Due to the parabolic confinement effect, the energy of
topologically defected graphene cone is increased by
increasing the dot radius. Indeed, in Fig. 1, for the constant
effective dot strength Uy = 0.4 meV/nm?, we have plotted the
kinetic energies given by (10) for two ng = 0 and ng =1,
respectively, in the presence of four different strength
magnetic fields. For, ng = 0 (straight lines), we have lowered
energy levels as compared to the ng = 1 (dashed lines) case.
When the magnetic field tends to the higher values, Landau
levels of the gapped structure are restored in the presence of
pentagonal defect at the apex of the cone. In order to better
understand how the magnitude of these level splittings change

with magnetic field and dot strength, we have provided also
plots in Fig. 2, for the second low-lying state, i.e., n =1 and
for the first angular momentum channel j=1/2, in the
presence of triangular defect in the apex of the cone. In this
figure, straight lines represent the 1 Mev/nm? dot strength;
dashed lines show the 0.5 Mev/nm? dot strength. In this figure,
it should be noted that the level spacing is sensitive to the
changes in the parabolic dot strength. Additionally, the
difference of energy levels decreases by increasing dot radius.

In order to understand the influence of combined effects of
potentials, we have also plotted eigenenergies as a function of
dot radius R = (AvgRZ/Uy)'/? for a constant magnetic field,
B =5T in Fig. 3. As can be seen from this figure, energy
values in the presence of parabolic confinement potential
becomes weaker by the increase of dot radius. We also give
the corresponding energy dependences in Fig. 3, both for
various topological defects, and various parabolic dot potential
strengths.
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Fig. 1 The energy levels obtained for ng = 0(graphene sheet) and n = 1 (pentagonal defect at the apex of the cone) in the presence of
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Fig. 2 The lowest-lying energy levels of parabolic GOD as a function of quantum dot radius R = (thROZ / U0)1/3 in the presence of a
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triangular defect at the apex of the cone
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Fig. 3 The energy levels is plotted as a function of dot strength. In the presence of the different topological defects, i.e., graphene cones, with a
charged Coulomb impurity
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Fig. 4 Pseudo-Zeeman splitting due to topological defects as a function of the gap parameter, m, is plotted for fixed values of magnetic field
and dot radius, B = 10 T and R = 40 nm. Inset: In the absence of topological defects energy values are degenerate

From Fig. 4 it can be seen that, increasing the mass gap
term also enhances the level spacing. The level spacing
strongly depends on the number of sectors removed from the
gapped graphene to form topological defects.

For ng =0 (inset in Fig. 4) even in the presence of the
magnetic field B = 10 Tesla, with dot potential or without
potential situation have no difference from each other.
However, in case topological defects are injected in graphene,
these two situations differentiate from each other on the
condition that we analyze as a function of mass parameter. We
also show that, by the increase of mass parameter, energy
levels increase as well. We have found that the highest
contribution to the energy eigenvalues comes from the
pentagonal defect and small values of dot radius.

III. CONCLUSION

In summary, we have presented a calculation of energy
levels of GQD in the presence of topological defects with long

range Coulomb impurity which is subjected to an external
uniform magnetic field. The energy difference occurs due to
the presence of a spatial confinement potential and it continues
to increase as the radius decreases. Consequently, we have
shown how to control the energy levels by geometrical
parameters of a quantum dot with topological defects and by
the strength of uniform magnetic field. The possibility of
controlling their physical parameters such as their shapes and
sizes makes these system ideally suited for the investigation of
the electronic properties of this system. We think that, our
results will provide a deep understanding for the electronic
properties of graphene and graphene cones.
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