
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

881

 

 

 
Abstract—This research paper presents a framework for 

classifying Magnetic Resonance Imaging (MRI) images for 
Dementia. Dementia, an age-related cognitive decline is indicated by 
degeneration of cortical and sub-cortical structures. Characterizing 
morphological changes helps understand disease development and 
contributes to early prediction and prevention of the disease. 
Modelling, that captures the brain’s structural variability and which is 
valid in disease classification and interpretation is very challenging. 
Features are extracted using Gabor filter with 0, 30, 60, 90 
orientations and Gray Level Co-occurrence Matrix (GLCM). It is 
proposed to normalize and fuse the features. Independent Component 
Analysis (ICA) selects features. Support Vector Machine (SVM) 
classifier with different kernels is evaluated, for efficiency to classify 
dementia. This study evaluates the presented framework using MRI 
images from OASIS dataset for identifying dementia. Results showed 
that the proposed feature fusion classifier achieves higher 
classification accuracy. 
 

Keywords—Magnetic resonance imaging, dementia, Gabor filter, 
gray level co-occurrence matrix, support vector machine.  

I. INTRODUCTION 

RI, an imaging technique, evolved as a clinical modality 
over 30 years [1], [2]. Medical imaging techniques/ 

analysis tools enable doctors and radiologists to reach a 
specific diagnosis. Medical image analysis and processing has 
significance in medicine especially in non-invasive treatment 
and clinical study. Medical image processing is an important 
tool to identify and diagnose various disorders. Imaging helps 
doctors visualize and analyze the image to understand 
abnormalities in internal structures. Medical images data use 
imaging techniques like Computed Tomography (CT), MRI 
and mammogram indicating the presence or absence of lesions 
with patient history [3], [4]. MRI is a scanning device using 
magnetic fields and computers to capture brain images on 
film. It does not use x-rays and provides pictures from various 
planes permitting doctors to see a tumor’s three-dimensional 
image. MRI detects signals from normal and abnormal tissue 
and ensures clear tumor images [5]. It is a widely used method 
of high quality medical imaging, especially in brain imaging 
where soft tissue contrast and non-invasiveness are 
advantages.  

MRI examined by radiologists is based on visual 
interpretation of films to identify abnormal tissue. Brain 
images are selected for image reference for this research as 
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brain injuries affect large areas of the organ. The brain 
controls and coordinates movement, behavior, and 
homeostatic body functions like heartbeat, blood pressure, 
fluid balance, and body temperature. Brain functions are 
responsible for cognition, memory, emotion, motor learning 
and other learning [6]. Brain MRI data classifications as 
normal and abnormal is important to prune normal patient and 
consider only those with the possibility of having 
abnormalities/tumor [7]. Fewer Radiologists’ and large 
volume of MRI to be analyzed, make readings labor intensive 
and costly. This needs an automated system to analyze and 
classify all medical images. Results of human analysis 
concerning false negative cases must be very low when 
dealing with human life. Double medical imaging readings 
lead to better tumor detection. 

Classification is assigning a physical object or incident to 
predefined categories. Medical image databases for image 
classification or teaching has various modality images, taken 
under differing conditions with variable accuracy of 
annotation. This is true for various on-line resource images, 
including those accessing journals on-line content. 
Approaches mixing visual and textual techniques for 
classification have promise in medical image classification. 
Fig. 1 is an overview of steps in medical image processing [8]. 
Preprocessing helps remove noise from the images, global and 
local features are extracted from which a subset of features are 
selected which is then classified. 
 

 

Fig. 1 Overview of the steps involved in medical image processing 
 
Texture classification is assigning an unknown sample 

image to one of known texture classes set. Texture 
classification is main domain in texture analysis and important 
in many computer image analysis applications for image 
classification/segmentation based on local spatial variations of 
intensity or color. Successful classification/segmentation 
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needs efficient image texture [9] description.  
Classification in data mining technique is used to predict 

group membership for data instances. Data mining is the use 
of data analysis tools to locate relationships in large data sets. 
Data mining is not managing data but data analysis/prediction. 
A classification technique processes various data than 
regression and is increasingly popular. Neural Networks (NN) 
are classification tools. Research in neural classification 
proved that NN is an alternative to varied classification 
methods. The advantage of NNs resides in the following 
theoretical aspects. First, NNs are data driven self-adaptive 
methods in which they can adjust themselves to the data, 
without any explicit specification of functional or 
distributional form with the underlying model. Second, NNs 
are universal functional approximations which can 
approximate any function with arbitrary accuracy. Since any 
classification procedure finds a functional relationship 
between the group memberships with the attributes of the 
object, accurate identification of this underlying function is 
very important. Third, NNs are nonlinear models, which make 
them flexible in modeling complex real world applications. 
Finally, they are able to estimate the posterior probabilities, 
which provide the basis in establishing the classification rules 
and performing statistical analysis [10]. NNs have been 
successfully applied to a wide variety of real world 
classification such as speech recognition, fault detection, 
medical diagnosis etc. 

Dementia is an age-related neurodegenerative disorder 
whose exact cause is still unknown. Alzheimer’s disease, a 
general form of dementia, is seen by loss of neurons and 
synapses in cerebral cortex and certain subcortical regions. 
Though most dementia patients are old, not all old people 
suffer from dementia meaning that dementia is not part of 
normal ageing. Dementia can happen to any person, but is 
common after 65 years. Persons in their 40s and 50s of both 
sexes can have dementia, but it is more common in men [11]. 

Dementia is of many types and each has its causes. Some 
common dementia types are: Alzheimer's disease, Lewy Body 
Dementia (LBD) and Fronto Temporal Dementia (FTD). 
Alzheimer's disease is a common cause for dementia. It 
accounts for 50% to 70% of all dementia cases. It is a 
progressive, degenerative illness attacking the brain causing 
shrinkage and disappearance of brain cells. Then, abnormal 
material builds up as “tangles” in brain cells center and as 
“plaques” outside brain cells. These interrupt messages in the 
brain destroying connections between brain cells. Sooner or 
later, brain cells die and information is unable to be recalled or 
taken in. As Alzheimer's disease affects brain’s neurons, 
certain functions are affected. Memory of recent events is 
affected at the start, but long-term memory is affected as the 
disease progresses [12]. 

LBD is due to degeneration and death of brain nerve cells 
and it accounts for 10% to 15% of dementia cases. The name 
is from the occurrence of abnormal spherical structures, 
named Lewy bodies that develop inside nerve cells. It is 
thought these lead to brain cells death. People suffering from 
LBD hallucinate visually, experience stiffness or shakiness 

with their condition fluctuating rapidly, often from day to day 
or hour to hour. 

FTD occurs when there is degeneration in the brain’s one or 
both frontal or temporal lobes. FTD is a common subtype 
accounting for 10% of all dementia cases. It is mainly a 
behavior disorder. People suffering from FTD are disinhibited 
or apathetic [13]. 

The proposed framework uses MRI images from OASIS to 
identify dementia. Features extraction is through Gabor filter 
with 0, 30, 60, 90 orientations and GLCM. Features are 
normalized and fused. ICA is used for feature selection. SVM 
classifier with various kernels is investigated. Comparison is 
with Gabor only, GLCM, and proposed fused features. 280 
normal MRI image and 140 images with dementia are used 
and classification accuracy determined.  

The rest of the study is as follows: Section II gives literature 
survey, Section III methodology, Section IV results and 
discussion, and Section V conclusion. 

II. LITERATURE SURVEY 

ICA-based feature extraction and automatic classification of 
AD-related MRI data was proposed by [14]. It is a new 
method based on ICA, an increasingly important biomedical 
signal processing technique enabling separation of blindly 
observed signals to original independent signals to identify 
potential AD neuroimaging biomarker(s). Experiments on 
MRI data from Open Access Series of Imaging Studies 
revealed that ICA-based method discerned AD and MCI cases 
from age matched controls. 

Investigation of MRI-based cortical surface structure 
complexity by sample entropy in dementia, for the first time to 
use SampEn to evaluate cortical surface structure complexity 
in early stage dementia compared to healthy controls was 
proposed by [15]. Results reveal an overall larger SampEn in 
the demented group compared to a non-demented group (p < 
0.05) indicating a structural irregularity increase of cortical 
surface in dementia. 

A new method of MRI images classification for Alzheimer's 
disease detection was proposed by [16] presenting Alzheimer's 
disease classification from MR images medical support. A 
large database of more than 1000 patients was used. Two 
problems were tackled in this work; the first where a 
classification method classified MR images as normal or with 
Alzheimer's disease and a second to identify and classify 
between normal subjects, MCI patients, and AD patients. 

Advanced systems in medical decision-making by using 
intelligent computing were suggested by [17]. Application of a 
new methodology for MR images classification was proposed 
using a large database. It had two objectives, the first where a 
classification method classified MR images as normal or with 
Alzheimer's disease and a second with the ambitious goal of 
identifying and classifying between normal subjects, MCI 
patients and AD patients.  

Diagnosis of Alzheimer's disease based on Voxel-Based 
Morphometric (VBM) and SVM was proposed by [18]. It is 
proposed that VBM and SVM be combined and introduced to 
diagnose AD for clinical applications. First, with VBM, 20 
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features were got from accurate structure imaging of possible 
AD and controls, and then PCA was used for feature 
dimensionality reduction to improve efficiency. Results were 
slightly better under PCA with fewer features. It was proved 
that combining VBM with SVM could be an automatic tool 
for early AD diagnosis.  

Reference [19] proposed a MRI-based classification 
framework based on shape and volume features to distinguish 
AD's patients from those normal. 3-D volumetric features 
along with 2-D shape features were first extracted from MRI 
data. Then, PCA decreased feature space dimensions. Lastly, a 
SVM classifier was trained for AD classification, the 
Classification accuracy improved from 64% by using 3-D 
volumetric features and 72% by using 2-D shape features, to 
84% by using both features with the proposed framework.  

Feature ranking based nested SVM ensemble for medical 
image classification was suggested by [20] which presented a 
method to classify structural brain MRI. An ensemble of linear 
SVMs was used to classify a subject as either work patient or 
normal control. Image voxels were ranked based on voxel 
wise t-statistics between voxel intensity values and class 
labels. Then voxel subsets were chosen based on rank value 
using a forward feature selection scheme. Finally, an SVM 
classifier trained on every of image voxels subset. A test 
subject’s class label was calculated combining individual 
SVM classifiers decisions using a voting mechanism. 

Automatic computer aided analysis tool using component-
based SVM was proposed by [21], with the approach being 
based first on an automatic feature selection and secondly 
combining component-based SVM classification and a pasting 
vote’s technique of SVM classifier ensembles. 

Automated Alzheimer's disease diagnosis with degenerate 
SVM-Based focus on automated diagnosis of AD was 
proposed by [22] based on researches on neuropathology; it 
adopted cortex regions thickness from the MRI to characterize 
AD pathology. 3D reconstruction technique extracted feature 
vectors from structured MRI data. 

Multiclass classification of Alzheimer's disease’s initial 
stages using structural MRI phase images was proposed by 
[23]. This was a new method based on progressive two class p 
TCDC-PSVM classifier to differentiate between elderly AD 
patients, MCI and NC. Structural phase images were formed 
to extract features using ICA which was subsequently used to 
classify. Results showed the approach’s efficacy and the 
advantages linked with using structural MRI phase images in 
discriminating AD’s early categories. 

Joint independent component analysis (jICA) of brain 
perfusion and structural MRI in dementia was presented by 
[24]. The authors tested benefits of joint analysis of 
multimodality MRI data using jICA and compared to 
unimodality analyses. They specifically designed a jICA to 
decompose multimodality MRI data joint distributions across 
image voxels and subjects to independent components that 
explain joint variations between image modalities across 
subjects. They applied jICA to MRI data from 12 patients 
identified with behavioral variant FTD (bvFTD), a dementia 
type and 12 healthy elderly individuals. Findings 

demonstrated jICA’s power to evaluate multimodality brain 
imaging data. 

Alzheimer's disease recognition by a self-adaptive resource 
allocation network classifier was proposed by [25] which was 
a new approach using VBM detected features with a SRAN 
classifier for AD detection from MRI scans. For feature 
reduction, PCA was performed on morphometric features 
from VBM analysis and reduced features were inputs for 
SRAN classifier. It indicated that the new PCA-SRAN 
classifier’s approach performs accurate AD classification 
using reduced morphometric features. 

III. METHODOLOGY 

MRI images collected from OASIS identify dementia in this 
work. Features extraction is by using Gabor filter with 0, 30, 
60, 90 orientations and GLCM. Features are normalized and 
fused. ICA is used for feature selection. SVM classifier with 
various kernels is also investigated. Comparison is with Gabor 
only, GLCM and proposed fused features. 280 normal MRI 
image and 140 images with dementia are used and 
classification accuracy determined. 

A. OASIS Data Set 

OASIS data set has a collection of 416 subjects covering 
adult life aged 18 to 96 including individuals with early-stage 
AD [6]. Ninety eight right-handed women (65-96 years) were 
selected from OASIS database. It ruled out a set of 200 
subjects with incomplete demographic, clinical or derived 
anatomic volumes information. For this study, the images of 
49 subjects normal subjects and 49 diagnosed with very mild 
to mild AD is used. Table I reveals a summary of subject 
demographics and dementia status. 

 
TABLE I 

EXPERIMENTAL RESULTS  

 Very mild to mild AD Normal 

No. of subject 49 49 

Age 78.08 (66-96) 77.77 (65-94) 

Education 2.63 (1-5) 2.87 (1-5) 

Socioeconomic status 2.94 (1-5) 2.88 (1-5) 

CDR (0.5/1.2) 31/17/1 0 

MMSE 24 (15-30) 28.96 (26-30) 

B. OASIS Imaging Protocol 

The OASIS database was built following a strict imaging 
protocol, to avoid imaging protocol variations which posed big 
image normalization problems. Multiple high-resolution 
structural T1-weighted Magnetization-Prepared Rapid 
Gradient Echo (MP-RAGE) images were acquired in a single 
imaging session [26]. 

C. Gabor Filters 

A one-dimensional Gabor filter is defined as multiplication 
of a cosine/sine (even/odd) wave with Gaussian windows as, 
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  ( | | 2)RBF Exp xi xj         (7) 
 
The above method can measure closeness of each test point 

to data points from data sets to be discriminated. As points set 
mapped are quite convoluted, complex discrimination occurs 
between sets far from convex in original space. 

SVM performed well as a learning algorithm in the past and 
perform well on various classification tasks. Also, SVMs 
allow rapid classification from trained models and can handle 
very high-dimensional input vectors. 

Error function used in this implementation is given by (8)  
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This can be minimized to 
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        (11) 

 

where C is capacity constant, w vector of coefficients, b a 

constant and i  parameters to handle non separable data 

(inputs). Index i labels N training cases. 

G. Radial Basis Function (RBF) Classifier 

A RBF network is an NN that uses a radial basis function as 
its activation function. This classifier is different from other 
NNs by possessing distinctive features such as more compact 
topology and faster learning speed [32]. The RBF classifier 
basically consists of three different layers: the input layer, one 
hidden layer and one output layer [33]. In this network, the 
determination of number of neurons in the hidden layer is very 
important. This is because it affects the network complexity 
and the generalizing capability of the network. If there are an 
insufficient number of neurons present in the hidden layer then 
the RBF network cannot learn the data adequately. Poor 
generalization will occur if there is more number of neurons. 
Training procedure of RBF networks includes an optimization 
of spread parameters of each neuron. The weights are selected 
between the hidden layer and output layer appropriately. The 
bias value added with each output is determined in the RBF 
network training [34]. 

Flowchart of the proposed methodology is shown in Fig. 4. 

 

 

Fig. 4 Flowchart of the proposed method	
 

IV. EXPERIMENTAL RESULTS 

In this work, MRI images collected from OASIS are used to 
identify dementia. Features are extracted using Gabor filter 
with 0, 30, 60, 90 orientations and GLCM. Features are 
normalized and fused. ICA is used for feature selection. SVM 
classifier with various kernels is investigated. Comparison is 
done with Gabor only, GLCM and proposed fused features. 
280 normal MRI image and 140 images with dementia are 
used. The results obtained are shown in Figs. 5-8.  

From Fig. 5, it is seen that the proposed feature fusion with 
RBF classifier has the highest classification accuracy of 
90.24% when compared to all other methods. It is better by 
2.71% than Gabor features with RBF classifier and better by 

5.78% than GLCM features with RBF classifier. 
From Fig. 6, it is seen that the proposed feature fusion with 

RBF classifier has higher average precision of 0.9065 
compared to all the other methods. It is better by 1.43% than 
Gabor features with RBF classifier and better by 5.27% than 
GLCM features with RBF classifier. 

From Fig. 7, it is seen that the proposed feature fusion with 
RBF classifier has higher average recall of 0.8714 compared 
to all other methods. The recall is better by 4.72% than Gabor 
features with RBF classifier and better by 8.34% than GLCM 
features with RBF classifier. 

 
 

MRI image OASIS dataset Features extraction using GLCM Features extraction using Gabor 
filter with 0,30,60,90 orientation 

Feature selection using ICA 
Classification using SVM 

comparing Gabor features only  
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