
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1023

Abstract— Current research on semantic web aims at making

intelligent web pages meaningful for machines. In this way, ontology

plays a primary role. We believe that logic can help ontology

languages (such as OWL) to be more fluent and efficient. In this

paper we try to combine logic with OWL to reduce some

disadvantages of this language. Therefore we extend OWL by logic

and also show how logic can satisfy our future expectations of an

ontology language.

Keywords— Logical Programming, OWL, Language Extension.

I. INTRODUCTION

Nowadays, much research has been done on the topic of

information integration and knowledge combination. These

researches aim at making a connection between users and

heterogeneous information systems that can be used in

intranet and internet environments. Within such framework,

ontology plays a pivotal role, because it provides a common

and shared agreement of a specific domain. In current

computer science, ontology is said to be “an agreement about

a shared, formal, explicit and partial account of a

conceptualization” [1]. We can also say that ontology contains

the vocabulary (concepts and terms) and the definition of

these concepts and their relationships for a specific domain.

RDF is one of the first languages that were used for

ontology representation. The expressivity of RDF is

deliberately very limited [2]. OWL is the last standard of

ontology language that was created by W3C. This language is

base on RDF(S) and DAML+OIL, and uses XML syntax to

represent ontology. More information on OWL can be found

in [2].

Efficient reasoning support is one of the main requirements

for an ontology language [2]. Over the last decades, reasoning

about logical theories has been studied well. It seems that

Description Logic (decidable fragment of FOL) can be used as

an appropriate formalism for representing and reasoning about

ontology.

The aim of this paper is to employ logic in OWL.

Combining DL and OWL can improve several problems in

using OWL. We can refer to some of them as follows: (1) The

syntax of OWL is very longsome and complicated. Logic can

grant a simple and fluent syntax to OWL. This is explained in

Mehran Mohsenzadeh is with the Computer Engineering Department,

Islamic Azad University, Sciences & Rese arch Center, Tehran, Iran (e-mail:

m_mohsenzadeh77@yahoo.com).

Fereidoon Shams is with the Computer Engineering Department, Islamic

Azad University, Sciences & Resear ch Center, Tehran, Iran (e-mail:

fsaliee@yahoo.com).

Mohammad Teshnehlab is with the Electrical Engineering Department,

KNT University, Tehran, Iran (e-mail: Teshnehlab@eetd.kntu.ac.ir).

section 2. (2) Logic can facilitate learning OWL. The logic

syntax is more popular in comparison to OWL syntax. (3)

OWL has been developed recently, and there is not many

tools for it yet. But researches on logic have been continued

for some decades and therefore there are many tools for logic.

If we establish OWL on logic, we can use these tools. (4) In

the near future, we expect much expressive ontologies for real

applications. Obviously, we need database techniques to deal

with such ontologies. Since we have many tools for logic that

use database technology, using logic for OWL can satisfy our

expectations in the future.

The rest of this paper is organized as follows. First, we give

an overview on OWL. Also, we show how OWL syntax can

be expressed with logic. In section 3 we present a primary

mapping from OWL primitives to LP. Next (section 4), we

check our method for ontology language requirements. In the

next section, we try to change our mapping to satisfy the

ontology language requirements. We will end with a

discussion about our approach and OWL layers that we

managed to support.

II. TOWARDS USING LOGIC IN OWL

In this section we show how OWL primitives can be

expressed by logic syntax. We start with a simple example.

Example 1: A professor is an academic staff member. To

express this example in OWL, we define a professor class and

consider it as subclass of academicStaffMember.

<owl:Class rdf:ID="Professor">

 <rdfs:SubClassOf rdf:resource="#AcademicStaffMember"/>

</owl:Class>

If we want to express this example in FOL, we can do it

with two unary predicate:

x : Professor(x) AcademicStaffMember(x)

And in the DL we can say:

Professor AcademicStaffMember

Consider the following example as it combines classes and

properties.

Example 2: A course is taught by an academic staff member.

We define a IsTaughtBy property and limit its domain and

range to Course and AcademicStaffMember, respectively.

<owl:ObjectProperty rdf:ID=“IsTaughtBy”>

 <rdfs:domain rdf:resource=“#Course”/>

 <rdfs:range rdf:resource=“#AcademicStaffMember”/>

</owl:ObjectProperty>

In FOL we can define a binary predicate as follows:

x,y : IsTaughtBy(x,y) Course(x)

x,y : IsTaughtBy(x,y) AcademicStaffMember(y)

LOWL: Logic and OWL, an Extension

M. Mohsenzadeh, F. Shams, M. Teshnehlab

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1024

DL notation of this example is:

T IsTaughtBy.Course

T IsTaughtBy.̄AcademicStaffMember

In this notation, T is the most general class (union of a class

and its complement). The Symbol ''̄ shows the inverse of a

relation.

Like class hierarchies, we can also define property

hierarchies. For example, we can define IsTaughtByProfessor

as a subproperty of IsTaughtBy which its range is a professor

(example 3)1.

<rdf:Property rdf:ID=“IsTaughtByProfessor”>

 <rdfs:subPropertyOf rdf:resource=“#IsTaughtBy”/>

</rdf:Property>

Logically, this can be expressed analogous to example 1 in

FOL and DL.

x,y : IsTaughtByProfessor(x,y) IsTaughtBy(x,y)

IsTaughtByProfessor IsTaughtBy

We can also define a class as conjunction of other classes in

OWL.

Example 4: A computer professor is a professor that also is a

member of computer department. In OWL, we can write:

<owl:Class rdf:ID=“ComputerProfessor”>

 <rdfs:subClassOf>

 <owl:Class>

 <owl:intersectionOf rdf:parseType=“collection”>

 <owl:Class

rdf:about=“#ComputerDepartmentMember”/>

 <owl:Class rdf:about=“#Professor”/>

 </owl:intersectionOf>

 </owl:Class>

 </rdfs:subClassOf>

</owl:Class>

This corresponds to logical conjunction in FOL:

x:ComputerProfessor(x)

ComputerDepartmentMember(x) Professor(x)

And intersection in DL:

ComputerProfessor ComputerDepartmentMember

Professor

In this example if rdfs:subClassOf is omitted, the symbol

must changes to , and must change to .

Universal qualified quantification can be used for locally

restricting the range of a property. In the following example,

we define PhD courses by limiting the range of IsTaughtBy

property.

Example 5: A PhD_Course is only taught by a professor. We

define this in OWL as follows:

<owl:Class rdf:ID=“PhD_Course”>

 <rdfs:subClassOf>

 <owl:Class>

1 Since OWL is constructed on top of RDF(S), the rdf:Property can easily

be converted to owl:ObjectProperty.

 <owl:intersectionOf rdf:parseType=“collection”>

 <owl:Class rdf:about=“#Course”/>

 <owl:Restriction>

 <owl:onProperty rdf:resource=“#IsTaughtBy”/>

 <owl:allValuesFrom rdf:resource=“#Professor”/>

 </owl:Restriction

 </owl:intersectionOf>

 </owl:Class>

 </rdfs:subClassOf>

</owl:Class>

The corresponding notation of this example in FOL is:

x : PhD_Course(x) Course(x) (y: IsTaughtBy(x,y)

 Professor(y))

We can also represent this in DL as follows:

PhD_Course Course IsTaughtBy.Professor

In OWL, we can define symmetric, transitive and inverse

properties.

Example 6: Classmate relationship is a symmetric relation. In

OWL a symmetric property can be defined using

owl:SymmetricProperty.

<owl:SymmetricProperty rdf:ID=“IsClassmate”/>

In Logic (FOL and also DL) we define a symmetric relation as

follows:

x,y : IsClassmate(x,y) IsClassmate(y,x)

Example 7: In a hierarchical structure, ‘parent’ relation is a

transitive relation. In OWL, we use owl:TransitiveProperty to

define a transitive property.

<owl:TransitiveProperty rdf:ID=“IsParentOf”/>

In FOL, we define a transitive relation in the following way:

x,y,z : (IsParentOf(x,y) IsParentOf(y,z))

IsParentOf(x,z)

In DL, we use the '+' symbol to express transitive property:

IsParentOf +

Example 8: The inverse of ‘IsTaughtBy’ is ‘Teaches’. We

employ owl:InverseProperty to define inverse properties.

<owl:ObjectProperty rdf:ID=“IsTaughtBy”>

 <owl:inverseOf rdf:resource=“#Teaches”/>

</owl:ObjectProperty>

The FOL corresponding notation is:

x,y : IsTaughtBy(x,y) Teaches(y,x)

x,y : Teaches(x,y) IsTaughtBy(y,x)

And in DL we use the ''̄ symbol:

IsTaughtBy Teaches ̄

Until now, we presented the definition of ontology

vocabulary and their relations. Now the definition of instances

based on the corresponding vocabulary will be presented.

In the following we instantiate some instances from the

Course and Professor classes.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1025

<Course rdf:ID=“MyCourse”/>

 <IsTaughtBy>

 <Professor rdf:ID=“MyProfessor”/>

 </IsTaughtBy>

</Course>

To define these instances, we use some facts in FOL:

Course("MyCourse").

Professor("MyProfessor").

IsTaughtBy("MyCourse","MyProfessor").

In the following section we suggest a mapping from OWL

primitives to LP.

III. A PRIMARY SOLUTION TO EMPLOY LOGIC IN OWL

According to the above examples, we can suggest a

mapping between OWL primitives and LP statements.

Each concept (class) in ontology can be mapped to a

unary relation (predicate) which the relation name is

the concept name, and the only argument is the

instance of that concept. For example, if ‘a’ is an

instance of class ‘c’, we write: C(a).

TABLE I

MAPPING BETWEEN OWL AND LP

LP Statements OWL Statements
B(X) :- C(X). C rdfs:subClassOf B

B(X) :- C1(X).

…

B(X) :- Cn(X).

(rdfs:union C1,…,Cn)rdfs:subClassOf B

B(X):- C1(X),…,Cn(X). (rdfs:intersectionOf C1,…,Cn) rdfs:subClassOf

B

B(X,Y) :- P(X,Y). P rdfs:subPropertyOf B

C(X) :- P(X,Y). P rdfs:domain C

C(Y) :- P(X,Y). P rdfs:range C

C2(X) :- C1(X).

C1(X) :- C2(X).

C1 owl:sameClassAs C2

P2(X) :- P1(X).

P1(X) :- P2(X).

P1 owl:samePropertyAs P2

P(Y,X) :- P(X,Y). owl:SymmetricProperty P

P(X,Z) :-

P(X,Y),P(Y,Z).

owl:TransitiveProperty P

R(Y,X) :- P(X,Y).

P(Y,X) :- R(X,Y).

R owl:InverseProperty P

D(Y) :- P(X,Y),C(X). owl:allValuesFrom

D is range on property P for class C

In FOL we can say:

X Y:D(Y)

P(X,Y) C(X)

owl:someValuesFrom

D is range on property P for class C

C(X) :- P(X,v).

P(X,v) :- C(X).

owl:hasValue

V value of property P for class C

Each property (relation) can be mapped to a binary

relation (predicate). The relation name is the property

name. The first argument is the name of the domain

instance, and the second one is the name of the range

instance. For example, if ‘a’ and ‘b’ are the domain and

range of property ‘p’ respectively, we define: P(a,b).

To define unnamed classes and properties, we need to use

virtual names. Table 1 shows the corresponding mapping

between OWL statements and LP statements.

Unfortunately, writing corresponding LP for

owl:someValuesFrom is difficult. In the table we present a

FOL corresponding, however, to write a LP corresponding we

need to rewrite it based on the situation. We can use two

approaches to map this statement: (1) writing all (ground) fact

that can be existed. (2) Using an owl:allValuesFrom map style

in Table 1 and exclude the possible (ground) fact that can’t be

existed. For example, if the range of property ‘p’ can be all

instances of class ‘c’ except the ‘a’ instance, we can write:

D(Y) :- P(X,Y) , C(X) , ~except(X).

except(a).

IV. A PROBLEM

Until now, we managed to find a solution to use logic for

OWL, but can this solution satisfy all our expectations for an

ontology language. How can we access concepts defined in

the ontology? One of the important research topics in

ontology is merging and integrating ontologies. In all the

current approaches, access to the concepts defined in the

ontology (in addition to the instances) is very necessary.

When we write: C(a). , we can simply find out if ‘a’ is an

instance of ‘c’ or not, but how can we see if concept (class)

‘c’ is defined in the ontology or, how can we access all

concepts that are defined in ontology?

V. A DOUBLE IMPLEMENTATION

In [3] an approach called DOGMA is introduced for

ontology engineering framework. In this approach ontology is

divided into two parts. This can lead us to the best general and

efficient ontologies. DOGMA approach decomposes ontology

into an ontology base, which holds (multiple) intuitive

conceptualization(s) of a domain, and a layer of ontological

commitments, where each commitment holds a set of domain

rules (see figure 1). More information on DOGMA approach

can be found in [4, 5].

We can use this principle (DOGMA called it the double

articulation) in our solution. If we refer to the previous

mapping, we will see that our approach only supports the

ontological commitment. We must support ontology base as

well. When we write ‘C(a).’, we express two facts. First, we

have a ‘c’ concept (class). Second, we have an instance of ‘c’

called ‘a’. Now, we try to map OWL to LP, but this time with

double implementation.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1026

Figure 1: Knowledge organization in DOGMA approach

Each concept (class) in ontology can be mapped to two

unary relations (predicates). First relation is defined as

before. The relation name is the concept name, and the

only argument is the instance of that concept. Second

relation is called ‘Class’ in which the only argument is

the concept name. For example, if ‘a’ is an instance of

class ‘c’, we write: C(a). and Class(c).

Each property (relation) can be mapped to a binary

relation (predicate) and a unary relation. The binary

relation is defined as before. The relation name is the

property name. The first argument is the name of the

domain instance, and the second one is the name of the

range instance. Second relation is called ‘Property’

which the only argument is the property name. For

example, if ‘a’ and ‘b’ are the domain and range of

property ‘p’ respectively, we define: P(a,b). and

Property(p).

Class instances (individuals) also must be represented

in ontological layer. Instance ‘i’ of class ‘c’ must be

mapped to a binary relation (predicate) as:

isIndividualOf(i,c).

Now let’s see the changes that must be done in Table I

based on this double implementation.

Subclass: If class ‘C’ is subclass of class ‘B’, in addition to

the rules mentioned in Table 1, the following rule must be

added: subClassOf(C,B). We know that this relation is

transitive, so we can state:

subClassOf(X,Z) :- subClassOf(X,Y) , subClassOf(Y,Z).

Subproperty : If property ‘P’ is subproperty of property ‘B’,

we must add the rule: subPropertyOf(P,B). This relation is

also transitive, so we add the following rule:

subPropertyOf(X,Z):-

subPropertyOf(X,Y),subPropertyOf(Y,Z).

With the following rules, there is no need to write ‘Class’ and

‘Property’ relations for hierarchical classes/properties.

Class(X) :- subClassOf(X,Y).

Class(Y) :- subClassOf(X,Y).

Property(X) :- subPropertyOf(X,Y).

Property(Y) :- subPropertyOf(X,Y).

Class equivalence: following rules must be added to Table 1

for owl:sameClassAs.

sameClassAs(X,Y) :- subClassOf(X,Y), subClassOf(Y,X).

sameClassAs(X,X) :- Class(X).

Property equivalence: analogous to class equivalent, we

must add the following rules:

samePropertyAs(X,Y) :-

subPropertyOf(X,Y), subPropertyOf(Y,X).

samePropertyAs(X,X) :- Property(X).

Instance equivalence: before we write the instance

equivalence rules, let’s see how an instance can be captured.

This is done by the following rule.

Individual(I) :- isIndividualOf(I,C) , Class(C).

Now, we can write equivalence rules.

sameIndividualAs(X,Y):-isIndividualOf(X,C1),

isIndividualOf(Y,C2), sameClassAs(C1,C2).

sameIndividualAs(X,X) :- Individual(X).

we can also define unequal instances with ‘notSameAs’

predicate. If ‘x’ and ‘y’ are not equal, we can write:

notSameAs(X,Y).

Equivalence: according to the above rules, we can state

equivalence as follows:

sameAs(X,Y) :- sameClassAs(X,Y).

sameAs(X,Y) :- samePropertyAs(X,Y).

sameAs(X,Y) :- sameIndividualAs(X,Y).

sameAs(X,Y) :- sameAs(Y,X).

sameAs(X,Z) :- sameAs(X,Y) , sameAs(Y,Z).

sameClassAs(X,Y) :- sameAs(X,Y) , Class(X) , Class(Y).

samePropertyAs(X,Y) :-

sameAs(X,Y), Property(X), Property(Y).

sameIndividualAs(X,Y) :-

sameAs(X,Y) , Individual(X) , Individual(Y).

class and property extension: consider ‘c’ is a class and ‘p’

is a property. we can extend class and property definitions

with the following rules:

C(X) :- C(Y) , sameIndividualAs(X,Y).

Ontology-base

Ontological

Commitments

Applications

An Ontology

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1027

P(X,Y) :- P(X,Z) , sameIndividualAs(Y,Z).

P(X,Y) :- P(Z,Y) , sameIndividualAs(X,Z).

Functional property: before presenting rules for functional

property, let’s see how inconsistencies of an ontology base

layer can be found.

inconsistence(X,Y) :- sameAs(X,Y) , notSameAs(X,Y).

inconsistence(X,Y) :-

sameAs(X,Y), Class(X), Property(Y).

inconsistence(X,Y) :-

sameAs(X,Y), Class(X), Individual(Y).

inconsistence(X,Y) :-

sameAs(X,Y) , Property(X) , Individual(Y).

If ‘p’ is a functional property, we can write:

sameIndividualAs(X,Y) :- P(D,X) , P(D,Y).

Now if ‘x’ and ‘y’ are defined as unequal instances (i.e.:

notSameAs(‘x’,’y’).), an inconsistency has occured. This can

be catch by current logic tools in LP environments.

Inverse Functional Property: like functional property, we

define the following rule for inverse functional property ‘p’.

sameIndividualAs(X,Y) :- P(X,R) , P(Y,R).

Cardinality: OWL Lite (see conclusion section) restricts

cardinality to (0,1). Cardinality (0,1) means functional

property, hence we can use the same functional property for

this cardinality.

The rest of the statements mentioned in Table I do not need

any change.

VI. CONCLUSION

Expressiveness is one of the major goals of OWL [6].

When a language is more expressive, its use and

implementation is more difficult. Current research shows that

only a limited subset of OWL primitives is used (even by

professional users). Therefore, three different sublanguages of

OWL has been developed:1-OWL Full: provides support for

maximum expressiveness and syntactic freedom of RDF with

no computational guarantees. 2- OWL DL: provides support

for the maximum expressiveness without losing computational

completeness and decidability of the reasoning systems.3-

OWL Lite: provides support for classification hierarchy and

simple constraint features, such as cardinality values of 0 or 1.

We showed how OWL primitives can be expressed by

logical syntax and suggested a mapping between OWL

primitives and LP statements. DOGMA approach decomposes

ontology into an ontology base, which holds (multiple)

intuitive conceptualization(s) of a domain, and a layer of

ontological commitments, where each commitment holds a set

of domain rules. Therefore, in our extension, we have

supported both of the layers and have presented the mapping

between OWL and LP statements in both layers.

In this paper, our idea is applicable for OWL Lite and part

of OWL DL. These sublanguages are expressive enough to

support most of our requirements. In addition, reasoning is

complete (guarantees that an answer will be found for a

problem). For future work, one can try to implement more

primitives of OWL to support OWL Full.

REFERENCES

[1] Ushold M., Gruninger M., Ontologies: Principles,

methods and applications, The Knowledge Engineering

Review, 1996.

[2] Antoniou G., Harmelen F., Web Ontology Language:

OWL, 2003.

[3] Ostadzadeh Sh., Mohsenzadeh M., Ontology Engineering

in comparison to Data Modeling, Advance topics in database

white paper, 2004.

[4] Jarrar M., Meersman R., Formal Ontology Engineering in

the DOGMA Approach, International conference on

Ontologies, Databases and Application, 2002.

[5] Ullman J.D., Principles of Database and Knowledge-base

Systems - volume 1, Computer Science Press, 1988.

[6] Heflin J., Web Ontology Language (OWL) Use Cases and

Requirements, W3C Working Draft, 2003.

