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Abstract— Current research on semantic web aims at making 

intelligent web pages meaningful for machines. In this way, ontology 

plays a primary role. We believe that logic can help ontology 

languages (such as OWL) to be more fluent and efficient. In this 

paper we try to combine logic with OWL to reduce some 

disadvantages of this language. Therefore we extend OWL by logic 

and also show how logic can satisfy our future expectations of an 

ontology language. 
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I. INTRODUCTION

Nowadays, much research has been done on the topic of 

information integration and knowledge combination. These 

researches aim at making a connection between users and 

heterogeneous information systems that can be used in 

intranet and internet environments. Within such framework, 

ontology plays a pivotal role, because it provides a common 

and shared agreement of a specific domain. In current 

computer science, ontology is said to be “an agreement about 

a shared, formal, explicit and partial account of a 

conceptualization” [1]. We can also say that ontology contains 

the vocabulary (concepts and terms) and the definition of 

these concepts and their relationships for a specific domain. 

RDF is one of the first languages that were used for 

ontology representation. The expressivity of RDF is 

deliberately very limited [2]. OWL is the last standard of 

ontology language that was created by W3C. This language is 

base on RDF(S) and DAML+OIL, and uses XML syntax to 

represent ontology. More information on OWL can be found 

in [2]. 

Efficient reasoning support is one of the main requirements 

for an ontology language [2]. Over the last decades, reasoning 

about logical theories has been studied well. It seems that 

Description Logic (decidable fragment of FOL) can be used as 

an appropriate formalism for representing and reasoning about 

ontology. 

The aim of this paper is to employ logic in OWL. 

Combining DL and OWL can improve several problems in 

using OWL. We can refer to some of them as follows: (1) The 

syntax of OWL is very longsome and complicated. Logic can 

grant a simple and fluent syntax to OWL. This is explained in 
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section 2. (2) Logic can facilitate learning OWL. The logic 

syntax is more popular in comparison to OWL syntax. (3) 

OWL has been developed recently, and there is not many 

tools for it yet. But researches on logic have been continued 

for some decades and therefore there are many tools for logic. 

If we establish OWL on logic, we can use these tools. (4) In 

the near future, we expect much expressive ontologies for real 

applications. Obviously, we need database techniques to deal 

with such ontologies. Since we have many tools for logic that 

use database technology, using logic for OWL can satisfy our 

expectations in the future. 

The rest of this paper is organized as follows. First, we give 

an overview on OWL. Also, we show how OWL syntax can 

be expressed with logic. In section 3 we present a primary 

mapping from OWL primitives to LP. Next (section 4), we 

check our method for ontology language requirements. In the 

next section, we try to change our mapping to satisfy the 

ontology language requirements. We will end with a 

discussion about our approach and OWL layers that we 

managed to support. 

II. TOWARDS USING LOGIC IN OWL 

In this section we show how OWL primitives can be 

expressed by logic syntax. We start with a simple example. 

Example 1: A professor is an academic staff member. To 

express this example in OWL, we define a professor class and 

consider it as subclass of academicStaffMember.

<owl:Class rdf:ID="Professor"> 

   <rdfs:SubClassOf rdf:resource="#AcademicStaffMember"/> 

</owl:Class> 

If we want to express this example in FOL, we can do it 

with two unary predicate: 

x : Professor(x)  AcademicStaffMember(x) 

And in the DL we can say:  

Professor  AcademicStaffMember 

Consider the following example as it combines classes and 

properties. 

Example 2: A course is taught by an academic staff member.

We define a IsTaughtBy property and limit its domain and 

range to Course and AcademicStaffMember, respectively. 

<owl:ObjectProperty rdf:ID=“IsTaughtBy”> 

   <rdfs:domain rdf:resource=“#Course”/> 

   <rdfs:range rdf:resource=“#AcademicStaffMember”/> 

</owl:ObjectProperty> 

In FOL we can define a binary predicate as follows: 

x,y : IsTaughtBy(x,y)  Course(x) 

x,y : IsTaughtBy(x,y)  AcademicStaffMember(y) 
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DL notation of this example is: 

T IsTaughtBy.Course 

T IsTaughtBy.̄AcademicStaffMember 

In this notation, T is the most general class (union of a class 

and its complement). The Symbol ''̄ shows the inverse of a 

relation. 

Like class hierarchies, we can also define property 

hierarchies. For example, we can define IsTaughtByProfessor

as a subproperty of IsTaughtBy which its range is a professor 

(example 3)1.

<rdf:Property rdf:ID=“IsTaughtByProfessor”> 

   <rdfs:subPropertyOf rdf:resource=“#IsTaughtBy”/> 

</rdf:Property> 

Logically, this can be expressed analogous to example 1 in 

FOL and DL. 

x,y : IsTaughtByProfessor(x,y)  IsTaughtBy(x,y) 

IsTaughtByProfessor  IsTaughtBy 

We can also define a class as conjunction of other classes in 

OWL. 

Example 4: A computer professor is a professor that also is a 

member of computer department. In OWL, we can write: 

<owl:Class rdf:ID=“ComputerProfessor”> 

  <rdfs:subClassOf> 

    <owl:Class> 

      <owl:intersectionOf rdf:parseType=“collection”> 

        <owl:Class 

rdf:about=“#ComputerDepartmentMember”/> 

        <owl:Class rdf:about=“#Professor”/> 

      </owl:intersectionOf> 

    </owl:Class> 

  </rdfs:subClassOf> 

</owl:Class> 

This corresponds to logical conjunction in FOL: 

x:ComputerProfessor(x)

ComputerDepartmentMember(x) Professor(x) 

And intersection in DL: 

ComputerProfessor  ComputerDepartmentMember 

Professor 

In this example if rdfs:subClassOf is omitted, the  symbol 

must changes to , and  must change to .

Universal qualified quantification can be used for locally 

restricting the range of a property. In the following example, 

we define PhD courses by limiting the range of IsTaughtBy

property. 

Example 5: A PhD_Course is only taught by a professor. We 

define this in OWL as follows: 

<owl:Class rdf:ID=“PhD_Course”> 

   <rdfs:subClassOf> 

      <owl:Class> 

1 Since OWL is constructed on top of RDF(S), the rdf:Property can easily 

be converted to owl:ObjectProperty. 

         <owl:intersectionOf rdf:parseType=“collection”> 

            <owl:Class rdf:about=“#Course”/> 

            <owl:Restriction> 

               <owl:onProperty rdf:resource=“#IsTaughtBy”/> 

               <owl:allValuesFrom rdf:resource=“#Professor”/> 

            </owl:Restriction 

         </owl:intersectionOf> 

      </owl:Class> 

   </rdfs:subClassOf> 

</owl:Class> 

The corresponding notation of this example in FOL is: 

x : PhD_Course(x)  Course(x)  ( y: IsTaughtBy(x,y) 

 Professor(y)) 

We can also represent this in DL as follows: 

PhD_Course  Course IsTaughtBy.Professor 

In OWL, we can define symmetric, transitive and inverse 

properties. 

Example 6: Classmate relationship is a symmetric relation. In 

OWL a symmetric property can be defined using 

owl:SymmetricProperty. 

<owl:SymmetricProperty rdf:ID=“IsClassmate”/> 

In Logic (FOL and also DL) we define a symmetric relation as 

follows: 

x,y : IsClassmate(x,y)  IsClassmate(y,x) 

Example 7: In a hierarchical structure, ‘parent’ relation  is a 

transitive relation. In OWL, we use owl:TransitiveProperty to 

define a transitive property. 

<owl:TransitiveProperty rdf:ID=“IsParentOf”/> 

In FOL, we define a transitive relation in the following way: 

x,y,z : (IsParentOf(x,y)  IsParentOf(y,z)) 

IsParentOf(x,z) 

In DL, we use the '+' symbol to express transitive property: 

IsParentOf + 

Example 8: The inverse of ‘IsTaughtBy’ is ‘Teaches’. We 

employ owl:InverseProperty to define inverse properties. 

<owl:ObjectProperty rdf:ID=“IsTaughtBy”> 

   <owl:inverseOf rdf:resource=“#Teaches”/> 

</owl:ObjectProperty> 

The FOL corresponding notation is: 

x,y : IsTaughtBy(x,y)  Teaches(y,x) 

x,y : Teaches(x,y)  IsTaughtBy(y,x) 

And in DL we use the ''̄ symbol: 

IsTaughtBy  Teaches ̄

Until now, we presented the definition of ontology 

vocabulary and their relations. Now the definition of instances 

based on the corresponding vocabulary will be presented.  

In the following we instantiate some instances from the 

Course and Professor classes. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1025

<Course rdf:ID=“MyCourse”/> 

   <IsTaughtBy> 

      <Professor rdf:ID=“MyProfessor”/> 

   </IsTaughtBy> 

</Course> 

To define these instances, we use some facts in FOL: 

Course("MyCourse"). 

Professor("MyProfessor"). 

IsTaughtBy("MyCourse","MyProfessor"). 

In the following section we suggest a mapping from OWL 

primitives to LP. 

III. A PRIMARY SOLUTION TO EMPLOY LOGIC IN OWL

According to the above examples, we can suggest a 

mapping between OWL primitives and LP statements. 

Each concept (class) in ontology can be mapped to a 

unary relation (predicate) which the relation name is 

the concept name, and the only argument is the 

instance of that concept. For example, if ‘a’ is an 

instance of class ‘c’, we write: C(a). 

TABLE I

MAPPING BETWEEN OWL AND LP

LP Statements OWL Statements 
B(X) :- C(X). C rdfs:subClassOf B 

B(X) :- C1(X). 

…

B(X) :- Cn(X). 

(rdfs:union C1,…,Cn)rdfs:subClassOf B 

B(X):- C1(X),…,Cn(X). (rdfs:intersectionOf C1,…,Cn) rdfs:subClassOf 

B

B(X,Y) :- P(X,Y). P rdfs:subPropertyOf B 

C(X) :- P(X,Y). P rdfs:domain C 

C(Y) :- P(X,Y). P rdfs:range C 

C2(X) :- C1(X). 

C1(X) :- C2(X). 

C1 owl:sameClassAs C2 

P2(X) :- P1(X). 

P1(X) :- P2(X). 

P1 owl:samePropertyAs P2 

P(Y,X) :- P(X,Y). owl:SymmetricProperty P 

P(X,Z) :-  

P(X,Y),P(Y,Z). 

owl:TransitiveProperty P 

R(Y,X) :- P(X,Y). 

P(Y,X) :- R(X,Y). 

R owl:InverseProperty P 

D(Y) :- P(X,Y),C(X). owl:allValuesFrom 

D is range on property P for class C 

In FOL we can say: 

X Y:D(Y) 

P(X,Y) C(X)

owl:someValuesFrom 

D is range on property P for class C 

C(X) :- P(X,v). 

P(X,v) :- C(X). 

owl:hasValue 

V value of property P for class C 

Each property (relation) can be mapped to a binary 

relation (predicate). The relation name is the property 

name. The first argument is the name of the domain 

instance, and the second one is the name of the range 

instance. For example, if ‘a’ and ‘b’ are the domain and 

range of property ‘p’ respectively, we define: P(a,b). 

To define unnamed classes and properties, we need to use 

virtual names. Table 1 shows the corresponding mapping 

between OWL statements and LP statements. 

Unfortunately, writing corresponding LP for 

owl:someValuesFrom is difficult. In the table we present a 

FOL corresponding, however, to write a LP corresponding we 

need to rewrite it based on the situation. We can use two 

approaches to map this statement: (1) writing all (ground) fact 

that can be existed. (2) Using an owl:allValuesFrom map style 

in Table 1 and exclude the possible (ground) fact that can’t be 

existed. For example, if the range of property ‘p’ can be all 

instances of class ‘c’ except the ‘a’ instance, we can write: 

D(Y) :- P(X,Y) , C(X) , ~except(X). 

except(a). 

IV. A PROBLEM

Until now, we managed to find a solution to use logic for 

OWL, but can this solution satisfy all our expectations for an 

ontology language. How can we access concepts defined in 

the ontology? One of the important research topics in 

ontology is merging and integrating ontologies. In all the 

current approaches, access to the concepts defined in the 

ontology (in addition to the instances) is very necessary. 

When we write: C(a). , we can simply find out if ‘a’ is an 

instance of ‘c’ or not, but how can we see if concept (class) 

‘c’ is defined in the ontology or, how can  we access all 

concepts that are defined in ontology? 

V. A DOUBLE IMPLEMENTATION

In [3] an approach called DOGMA is introduced for 

ontology engineering framework. In this approach ontology is 

divided into two parts. This can lead us to the best general and 

efficient ontologies. DOGMA approach decomposes ontology 

into an ontology base, which holds (multiple) intuitive 

conceptualization(s) of a domain, and a layer of ontological 

commitments, where each commitment holds a set of domain 

rules (see figure 1). More information on DOGMA approach 

can be found in [4, 5]. 

We can use this principle (DOGMA called it the double 

articulation) in our solution. If we refer to the previous 

mapping, we will see that our approach only supports the 

ontological commitment. We must support ontology base as 

well. When we write ‘C(a).’, we express two facts. First, we 

have a ‘c’ concept (class). Second, we have an instance of ‘c’ 

called ‘a’. Now, we try to map OWL to LP, but this time with 

double implementation. 
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Figure 1: Knowledge organization in DOGMA approach 

Each concept (class) in ontology can be mapped to two 

unary relations (predicates). First relation is defined as 

before. The relation name is the concept name, and the 

only argument is the instance of that concept. Second 

relation is called ‘Class’ in which the only argument is 

the concept name. For example, if ‘a’ is an instance of 

class ‘c’, we write: C(a). and Class(c). 

Each property (relation) can be mapped to a binary 

relation (predicate) and a unary relation. The binary 

relation is defined as before. The relation name is the 

property name. The first argument is the name of the 

domain instance, and the second one is the name of the 

range instance. Second relation is called ‘Property’ 

which the only argument is the property name. For 

example, if ‘a’ and ‘b’ are the domain and range of 

property ‘p’ respectively, we define: P(a,b). and 

Property(p). 

Class instances (individuals) also must be represented 

in ontological layer. Instance ‘i’ of class ‘c’ must be 

mapped to a binary relation (predicate) as: 

isIndividualOf(i,c). 

Now let’s see the changes that must be done in Table I 

based on this double implementation. 

Subclass: If class ‘C’ is subclass of class ‘B’, in addition to 

the rules mentioned in Table 1, the following rule must be 

added: subClassOf(C,B). We know that this relation is 

transitive, so we can state: 

subClassOf(X,Z) :- subClassOf(X,Y) , subClassOf(Y,Z). 

Subproperty : If property ‘P’ is subproperty of property ‘B’, 

we must add the rule: subPropertyOf(P,B). This relation is 

also transitive, so we add the following rule: 

subPropertyOf(X,Z):-

subPropertyOf(X,Y),subPropertyOf(Y,Z). 

With the following rules, there is no need to write ‘Class’ and 

‘Property’ relations for hierarchical classes/properties. 

Class(X) :- subClassOf(X,Y). 

Class(Y) :- subClassOf(X,Y). 

Property(X) :- subPropertyOf(X,Y). 

Property(Y) :- subPropertyOf(X,Y). 

Class equivalence: following rules must be added to Table 1 

for owl:sameClassAs. 

sameClassAs(X,Y) :- subClassOf(X,Y), subClassOf(Y,X). 

sameClassAs(X,X) :- Class(X). 

Property equivalence: analogous to class equivalent, we 

must add the following rules: 

samePropertyAs(X,Y) :- 

subPropertyOf(X,Y), subPropertyOf(Y,X). 

samePropertyAs(X,X) :- Property(X). 

Instance equivalence: before we write the instance 

equivalence rules, let’s see how an instance can be captured. 

This is done by the following rule. 

Individual(I) :- isIndividualOf(I,C) , Class(C). 

Now, we can write equivalence rules. 

sameIndividualAs(X,Y):-isIndividualOf(X,C1), 

isIndividualOf(Y,C2), sameClassAs(C1,C2). 

sameIndividualAs(X,X) :- Individual(X). 

we can also define unequal instances with ‘notSameAs’ 

predicate. If ‘x’ and ‘y’ are not equal, we can write: 

notSameAs(X,Y). 

Equivalence: according to the above rules, we can state 

equivalence as follows: 

sameAs(X,Y) :- sameClassAs(X,Y). 

sameAs(X,Y) :- samePropertyAs(X,Y). 

sameAs(X,Y) :- sameIndividualAs(X,Y). 

sameAs(X,Y) :- sameAs(Y,X). 

sameAs(X,Z) :- sameAs(X,Y) , sameAs(Y,Z). 

sameClassAs(X,Y) :- sameAs(X,Y) , Class(X) , Class(Y). 

samePropertyAs(X,Y) :-  

sameAs(X,Y), Property(X), Property(Y). 

sameIndividualAs(X,Y) :-  

sameAs(X,Y) , Individual(X) , Individual(Y). 

class and property extension: consider ‘c’ is a class and ‘p’ 

is a property. we can extend class and property definitions 

with the following rules: 

C(X) :- C(Y) , sameIndividualAs(X,Y). 

Ontology-base

Ontological 

Commitments 

Applications 

An Ontology 
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P(X,Y) :- P(X,Z) , sameIndividualAs(Y,Z). 

P(X,Y) :- P(Z,Y) , sameIndividualAs(X,Z). 

Functional property: before presenting rules for functional 

property, let’s see how inconsistencies of an ontology base 

layer can be found. 

inconsistence(X,Y) :- sameAs(X,Y) , notSameAs(X,Y). 

inconsistence(X,Y) :-  

sameAs(X,Y), Class(X), Property(Y). 

inconsistence(X,Y) :-  

sameAs(X,Y), Class(X), Individual(Y). 

inconsistence(X,Y) :-  

sameAs(X,Y) , Property(X) , Individual(Y). 

If ‘p’ is a functional property, we can write: 

sameIndividualAs(X,Y) :- P(D,X) , P(D,Y). 

Now if ‘x’ and ‘y’ are defined as unequal instances (i.e.: 

notSameAs(‘x’,’y’). ), an inconsistency has occured. This can 

be catch by current logic tools in LP environments. 

Inverse Functional Property: like functional property, we 

define the following rule for inverse functional property ‘p’. 

sameIndividualAs(X,Y) :- P(X,R) , P(Y,R). 

Cardinality: OWL Lite (see conclusion section) restricts 

cardinality to (0,1). Cardinality (0,1) means functional 

property, hence we can use the same functional property for 

this cardinality. 

The rest of the statements mentioned in Table I do not need 

any change. 

VI. CONCLUSION

Expressiveness is one of the major goals of OWL [6]. 

When a language is more expressive, its use and 

implementation is more difficult. Current research shows that 

only a limited subset of OWL primitives is used (even by 

professional users). Therefore, three different sublanguages of 

OWL has been developed:1-OWL Full: provides support for 

maximum expressiveness and syntactic freedom of RDF with 

no computational guarantees. 2- OWL DL: provides support 

for the maximum expressiveness without losing computational 

completeness and decidability of the reasoning systems.3- 

OWL Lite: provides support for classification hierarchy and 

simple constraint features, such as cardinality values of 0 or 1. 

We showed how OWL primitives can be expressed by 

logical syntax and suggested a mapping between OWL 

primitives and LP statements. DOGMA approach decomposes 

ontology into an ontology base, which holds (multiple) 

intuitive conceptualization(s) of a domain, and a layer of 

ontological commitments, where each commitment holds a set 

of domain rules. Therefore, in our extension, we have 

supported both of the layers and have presented the mapping 

between OWL and LP statements in both layers. 

In this paper, our idea is applicable for OWL Lite and part 

of OWL DL. These sublanguages are expressive enough to 

support most of our requirements. In addition, reasoning is 

complete (guarantees that an answer will be found for a 

problem). For future work, one can try to implement more 

primitives of OWL to support OWL Full. 
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