
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:4, 2017

140


Abstract—Low-density parity-check (LDPC) codes have been

shown to deliver capacity approaching performance; however,
problematic graphical structures (e.g. trapping sets) in the Tanner
graph of some LDPC codes can cause high error floors in bit-error-
ratio (BER) performance under conventional sum-product algorithm
(SPA). This paper presents a serial concatenation scheme to avoid the
trapping sets and to lower the error floors of LDPC code. The outer
code in the proposed concatenation is the LDPC, and the inner code
is a high rate array code. This approach applies an interactive hybrid
process between the BCJR decoding for the array code and the SPA
for the LDPC code together with bit-pinning and bit-flipping
techniques. Margulis code of size (2640, 1320) has been used for the
simulation and it has been shown that the proposed concatenation and
decoding scheme can considerably improve the error floor
performance with minimal rate loss.

Keywords—Concatenated coding, low–density parity–check
codes, array code, error floors.

I. INTRODUCTION

DPC codes, as a class of capacity achieving codes, have
found various applications in digital standards and

technologies since their discovery [1]. Using iterative belief
propagation techniques such as SPA, LDPC codes can be
practically decoded in time-feasible manner linear to their
block length [2]. However, decoding of some LDPC codes
using conventional SPA suffers from a weakness in higher
signal-to-noise ratios (SNR's) known as error floor [3], [4]
which is exhibited as a sudden saturation in BER [3]. The
error floor could be troublesome in some communication and
data storage systems where BER as low as 10−12 to 10−15 is
required.

It has been found that trapping sets (or near-codewords) are
the main cause of error floors in SPA decoding of LDPC
codes over AWGN channel [3], [4]. Recently, many research
efforts have been made to mitigate the error floor problem.
Some code construction methods have been proposed to avoid
trapping sets, thereby lowering the error floors [5], [6].
Trapping sets have sophisticated combinatorial properties and
in general it is difficult to find deterministic solutions for
lowering error floors through code construction. Other
methods aim to lower the error floor by changing the structure
of decoder [7]. Decoder-based strategies need a prior
knowledge of the dominant trapping sets in a particular code
through computer simulations or parity-check matrix
properties, which is often difficult to obtain. Also, it should be
noted that, for codes with small minimum distances,

Mohammad Ghamari from University of Texas at El Paso, United States e-

mail: mghamari@utep.edu

undetected errors could contribute to high error floors as well
[11].

Decoder-based methods such as bit pinning [9], and bit
flipping [11] have been proposed which modify the Log
Likelihood Ratio (LLR) values of certain node or check bits to
avoid trapping sets. The bit positions might be known from
code properties or can be guessed through trial and error [11].

In this work, we propose a concatenation of LDPC and
array codes. In the decoding process, LLR values are
interchanged between the LDPC decoder (SPA) and the array
code decoder (BCJR). Within the LLR interchange, bit-
pinning and bit-flipping techniques are used be improve the
performance. A Margulis LDPC code of length 2640 and rate
0.5 has been used to prove the concept through simulation and
it has been shown that the proposed concatenation scheme
together with the interactive decoding and bit-pinning/bit-
flipping techniques lower the error floor significantly.

II. TRAPPING SETS AND ERROR FLOOR LOWERING

TECHNIQUES

A (ω, ν) trapping set is a set of ω variable nodes which
induce a subgraph with ν odd-degree check nodes which may
lead the decoder to error-trap situations from which the
decoder cannot escape [3]. Each trapping set is associated with
a critical number ߳ (where ߳ ൑ which is the minimum (ߥ
number of erroneous variable nodes in a trapping set that leads
to decoder failure [8]. In any iteration of SPA, if at least ߳
number of errors appear in a trapping set, the even-degree
check nodes will become mis-satisfied, and the odd-degree
check nodes which may be referred to as un-satisfied check
nodes will trap the errors within the set, then the decoder fails
to converge no matter how many iterations are performed.

When an iterative decoder gets "trapped" by the subgraphs
associated with trapping sets, if there exists a way to inform
the decoder with great certainty the value of one or more of
the bits in a trapping set, then the iterative decoder would
stand a better chance at resolving the values of the other bits in
the trapping set [9]. This procedure is somehow possible
through bit-pinning idea; upon encoding, fix (or pin down) the
value of bits for each trapping set of known. The decoder then
sets the LLRs for these pinned bits to the maximum possible
value. The expense for pinning down these bits is usually very
small in code rate and length. Bit pinning is quite similar to
code shortening which is to remove selected columns of the
code’s parity-check matrix. Removing columns of H in the
decoder design is equivalent to setting the corresponding
LLR's to infinity, instead of a finite maximum value. In LDPC
decoding, since the trapping sets depends on the decoder input

Lowering Error Floors by Concatenation of
Low-Density Parity-Check and Array Code

Cinna Soltanpur, Mohammad Ghamari, Behzad Momahed Heravi, Fatemeh Zare

L

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:4, 2017

141

space and the decoding algorithm, it is very difficult to predict
trapping sets [10].

In the bit-flipping approach [11], an intuitive idea is to
locate all the unsatisfied check nodes to see if there are only a
relatively small number of them. In the decoding of each
block, the smallest number nc of unsatisfied check nodes
throughout the iterations is kept. Also, the set C of these nc
unsatisfied check nodes is recorded. If decoding fails, and nc is
less than a predetermined threshold, then we consider that the
decoding failure is caused by a trapping set S, in which C is
the set of odd degree check nodes. The wrong bits in hard
decision correspond to the set of variable nodes in S, which is
denoted by V. To correct the decoding error caused by S, the
decoder enters into the second stage. In the second stage, if
one can locate all the variable nodes in V, which is difficult,
the decoding is completed. In an attempt, a matching set is
defined as follows: for a set of check nodes C in a Tanner
graph, a matching set of C is a set of variable nodes such that
each of them is adjacent to one and only one check node in C.
Then, the set L of all the different matching sets of C is
generated. At least one of the matching sets in L is a subset of
V. The goal is to identify such a matching set from L and use
it to correct all the wrong bits. To this end, these bits from
subset of L are flipped by setting their initial LLR’s to the
maximum possible value with opposite signs, and perform the
iterative decoding over again.

III. CONCATENATION OF LDPC AND ARRAY CODE

The basic idea here is to put LDPC code serially
concatenated with an array code. In this configuration, the
LDPC code is chosen as outer code, and array code is the
inner code. While the encoding section is kept intact in the
proposed method, the decoding stage is modified to fit the
SPA decoder.

Firstly, information data are encoded with the LDPC code
then encoded data are forwarded through an interleaver which
would put them in the array form. Single parity check (SPC)
codes are calculated easily on each row and column and added
to the transmission data. The array code chosen is of very high
rate, and therefore, rate loss due to concatenation is very
small.

A. LDPC Decoding: SPA

In LDPC decoding, the SPA can be seen as belief
propagation algorithm. SPA is a soft-decision symbol-by-
symbol algorithm which iteratively processes the received
symbols to improve their LLR reliabilities [12]. The SPA is
further explained in this section in two steps; bit-to-check
message passing and check-to-bit message passing which are
complemented by initialisation and stopping steps. First, the
bit-nodes are initialised by setting the a posteriori probability
or the LLR. In AWGN channel, L୨ is found by:

L୨ ൌ LLR൫x୨หy୨൯ ൌ 2y୨/σଶ (1)

where Y ൌ ሼyଵ, yଶ, … , y୨, … , y୒}is the received channel values,

and X ൌ ሼxଵ, xଶ, … , x୨, … , x୒ሽ is the transmitted codeword. In
the bit-to-check message passing stage, the check nodes values
L୧୨ are updated. L୧୨ is the message held in the ith check node
(CN) which is to be send to the jth variable node (VN) and is
found by

L୧୨ ൌ 2tanhିଵሺ∏ tanh	ሺ0.5	L୨ᇲ୧ሻ୨ᇲ∈୒౟/ౠ
ሻ (2)

where N୧/୨ ൌ N୧ െ ሼjሽ is the set of all VN’s connected to the ith

CN (denoted by N୧) except the jth VN. L୨ᇲ୧ is the VN value

which is used to update the ith CN. In the first iteration, L୨ᇲ୧ is

set with the L୨ calculated in the initialisation stage. In the
check-to-bit stage, the bit nodes values L୨୧ are updated by:

L୨୧ ൌ L୧ ൅ ∑ L୧ᇲ୨୧ᇲ∈୑ౠ/౟
 (3)

where M୨/୧ ൌ M୨ െ ሼiሽ is the set of all CN’s connected to the

jth VN (denoted by M୨) except the ith CN. Then, LLR values
for each VN are calculated by

LLR୨ ൌ L୨ ൅ ∑ L୧୨୧∈୑ౠ

 (4)

B. Array Code Decoding

The array code decoding stage is done by either iterative
row or column BCJR decoder [13]. The algorithm is briefly
explained below.
 Initialization: Calculate the channel likelihood ratios the

same as in the SPA decoder, ܮ௖ݕ௜, for all received

symbols, where channel reliability factor is ܮ௖ ൌ 2
ଶൗߪ .

 Decode each row and column: Calculate the extrinsic
information,	ܮ௜, for all bits and in every SPC component
in each row or column. It should be noted that only the
extrinsic information is passed between the decoders in
each dimension.

 Iterations: decoding iteration is complete once all rows
and columns have been decoded. Repeat this decoding
process for a fixed number of times.

In order to calculate the extrinsic information for each bit in
each SPC code, we use similar terms as in SPA for LLR’s

௝ሻݔ௜ሺܮ ൌ ∏ଵሺି݄݊ܽݐ2 tanh	ቆ
ಽ
ೕᇲ
శಽ೎∙೤ೕᇲ

మ
ቇ

௡
௝ᇲୀଵ,ஷ௝ ሻ (5)

where ܮ௝ᇲ is the a priori information of ݆ᇱ௧௛ bit in the ith
iteration. The a priori information is initially zero; however, in
subsequent decoding, it is the sum of the extrinsic information
obtained from decoding the rows and columns

௝൯ݔ൫ܮ ൌ ௝ܮ
௥௢௪ ൅ ௝ܮ

௖௢௟ (6)

Although both SPA and BCJR use the same LLR concept, it

should be noted that the two algorithms are different in basis.
In the array code decoder, updates are estimated based on
Trellis diagram of dual code which makes the corresponding
message passing graph different from the Tanner graph for
SPA decoding.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:4, 2017

142

C. Hybrid Interactive Decoding (HID)

The SPA or any other message passing iterative decoder
asserts a failure if it does not converge after a maximum
number of iterations. However, if a failure is caused by a
trapping set, then there are only a relatively small number of
wrong bits and unsatisfied check nodes. A trapping set can be
viewed as a state of unstable equilibrium; thus, small
perturbation might be a way to cope with the failure [11]. The
alternated decoding process is as follows. Firstly, the inner
BCJR decodes the received codeword and gives out LLR
values. After de-interleaving, the LDPC SPA decoder tries to
find estimate of original signal. In case that the SPA decoder
is unable to converge to a valid codeword and reaches its
maximum iteration, the LLR values calculated by the SPA are
fed back to the array decoder for a new stage of decoding. The
array decoder uses this information and these LLR values to
try to decode the whole codeword. After a number of
iterations, if the decoding was unsuccessful, again inner
decoder forwards the LLR values to SPA decoder, but this
time with the LLR values produced by array code decoding.
The interactive process is shown in Fig. 1.

Fig. 1 Block diagram of the proposed concatenation

We further use combination of concatenation and bit

pinning/flipping methods as a hybrid method in which not
only the LLR are exchanged between the outer code and inner
code but also some changes are made to value of these LLR's.
In the interactive scheme, two effective approaches can help to
possibly escape from trapping sets; bit-pinning and bit-
flipping. In the SPA, the messages from the satisfied check
nodes tend to reinforce the current decoder decisions, while
the messages from the unsatisfied check nodes try to change
some of them. In fact, if we can locate some of the wrong bit
nodes, flip or fix them to a number and re-decode the block, it
is very likely that the decoder will not get trapped again thus
converges to a correct codeword. The idea used in the
proposed method is to try to find these bits by array-code
decoding. The array code decoder reveals the weak links.
Those bit values with small LLR values will be marked as
being incorrect and vice versa. In an attempt, we tried to
decode the codeword with fixed values. In the flipping case,
where bits with low LLR's are targeted, we change the sign
and assign a maximum possible value to the LLR. In the bit-
pinning case, we assign a maximum possible value to the LLR
to the confident bits with large LLRs. The rest of decoding
algorithm explained in decoding algorithm below.

The HID Algorithm:

• Step 1. Initialize the inner decoder, compute the LLR's for
a fixed number of iterations and forward the LLR values
to the outer decoder through the interleaver.

• Step 2. Compute the first estimate of the outer decoding

stage through SPA for ܫ௠௔௫௢௨௧ iterations. Check whether
the output of the outer decoder is a valid codeword in C.
If it is, label of the received signal L(rx) is the most likely
codeword, and decoding stops.

• Step 3. Interleave information and LLR values from outer
decoder to fit into the array format and add array code
single parity-check bits.

• Step 4. Perform the second stage, inner decoding by the
array code algorithm and obtain the estimate of LLR after

௠௔௫௜௡ܫ iterations. Set i0=0, and store decoded codeword in
outer code, go to step 5.

• Step 5. Continue decoding in outer stage through SPA
either with pinned bits which explained in step 5 or LLR
values obtained in step 4. Check whether the output of
outer decoder is a codeword in C and decoding is
finished. Check if the decoding is trapped. If it is, then go
to step 6.

• Step 6. Mark the bits with highest soft values attained
from array code decoding and pin them to fixed values in
the outer code buffer register. Or, alternatively mark those
bits with soft values smaller than the threshold value and
flip the sign. Go to step 5.

IV. SIMULATION RESULTS

In this study, we considered a Margulis (2640, 1320) of (6,
3) Gallager code which is constructed on Cayley graph with
prime number p=11. The girth for this code is 8, and the parity
check matrix is in full rank form. The minimum distance of
the code distance is not known, but satisfies minimum
distance of ݀୫୧୬ ൑ 220 [14]. Error floor appears at a block
error probability of about	10ି଺. The error floor, which was
first noted by Rosenthal and Vontobel [15], is not due to low-
weight codewords. Rather, it is caused by trapping sets that
could be distinguished in its parity check matrix. Margulis
(2640, 1320) gives a 40x66 base matrix for single parity-check
array code of size (2745, 2640). The Margulis rate is 1/2 and
designed SPC rate is 2640/2745=0.9610. The overall
concatenated code rate is 0.4805 which is only 0.16 code rate
loss in dB. The decoder function explained below. BPSK
modulated data transmitted through an AWGN channel arrives
to match filter at the decoder. The channel data are forwarded
to SPA decoder for a maximum of 40 iterations. If the SPA
converges to a codeword, the decoding finishes; otherwise, the
LLR and received data are passed to array code decoder for
five iterations. The new LLR's calculated by the array decoder
are from iterative decoding procedure explained in section III
which is in principle different from SPA. These LLRs resulted
from iterations of array code decoder can be used in different
ways to help us improve the SPA decoder. These LLR values
are not directly passed to SPA algorithm instead we tried a
selection of these bits to initialize the SPA decoder.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:4, 2017

143

Fig. 2 BER performance of the proposed method for concatenated
Margulis code (2640,1320) with array code (2745,2640)

Fig. 3 BLER performance of the proposed method for concatenated
Margulis code (2640,1320) with array code (2745,2640)

Those bits with high probability of being correct are

assigned LLR of maximum possible value, e.g. 20. The other
scenario is to choose the bits with probability of being correct,
low LLR values. In this case, the bits are chosen based on the
value of channel reliability factor for each Eb/N0. Then, the
sign of the selected bits is flipped, assigned a large value, e.g.
20, and passed it to the SPA decoder. It has been noticed that
there is a good probability that in each case the SPA algorithm
converges to a codeword. The result has been compared
against serial concatenation of LDPC and BCH code. On
contrary to proposed method, the BCH code acts as an outer
code. We chose (1320, 1243) BCH code with seven error
correcting capabilities with roots in GF(211) as in [10]. The
code rate of the overall system is reduced from 0.5 to 0.47,

corresponding to a 0.26 dB rate loss. In Figs. 2, 3, the
simulation result for bit and block error performance of the
proposed algorithm and SPA has been shown. The results
obtained here are the outcome of both bit-pinning and bit-
flipping techniques which were used sequentially whenever
primary stage decoder had been trapped. The effectiveness of
this simple decoder is also confirmed by simulations, which
shows no floor down to block error rate (BLER) of 10−8. We
collected 18 error events at 2.6 dB, 5 error events at 2.7 dB
and 2 error events at 2.8 dB.

V. CONCLUSION

A serial concatenation of LDPC and array codes and a
hybrid interactive decoding using both BCJR and SPA which
exploits the bit-pinning and bit-flipping techniques were
presented. The proposed HID algorithm targets potential
trapping sets to improve the performance of LDPC codes with
high error floors and is robust to any code with no available
prior knowledge of trapping set structure. In the proposed
configuration, exchange of extrinsic values between two
decoders which are different in principle helps to avoid the
trapping sets. Simulation results over AWGN channel showed
that the concatenated LDPC/array code compensates the
decrease in performance due to code rate loss and offers a
significant improvement in the error floor performance.

REFERENCES
[1] David J.C. MacKay and Radford M. Neal, "Near Shannon Limit

Performance of Low Density Parity Check Codes," Electronics Letters,
July 1996.

[2] Lin, S., & Costello, D. “Error Control Coding: Fundamentals and
Applications,” Upper Saddle River, NJ: Prentice Hall, 2004.

[3] D. MacKay and M. Postol, “Weakness of margulis and ramanujan
margulis low-density parity-check codes,” Electronic Notes in
Theoretical Computer Science, vol. 74, 2003.

[4] T. Richardson, “Error floors of LDPC codes," in Proc. 41st Allerton
Conf. Commun., Control, Computing, Allerton House, Monticello, IL,
USA, Oct. 2003.

[5] T. Tian, C. Jones, J. Villasenor, and R. Wesel, “Construction of
irregular ldpc codes with low error floors,” in Proc. of IEEE ICC ’03.,
vol. 5, pp. 3125–3129, May 2003.

[6] H. Xiao and A. Banihashemi, “Improved progressive-edge-growth (peg)
construction of irregular ldpc codes,” IEEE Communications Letters,
vol. 8, no. 12, pp. 715–717, Dec. 2004.

[7] E. Cavus and B. Daneshrad, “A performance improvement and error
floor avoidance technique for belief propagation decoding of LDPC
codes,” in Proc. 16th IEEE International Symposium Pers., Indoor
Mobile Radio Commun., vol. 4, pp. 2386-2390, Sept. 2005.

[8] Chilappagari S.K., Sankaranarayanan S., Vasic B, ‘Error Floors of
LDPC Codes on the Binary Symmetric Channel,”Proc. IEEE Conf.
Comms ICC'06，pp.1089-1094, 2006.

[9] Zhang Y. and RyanW.E., “Toward Low LDPC-Code Floors: A Case
Study,” IEEE Transactions on Communications, vol. 57, pp.1566-1573,
2009.

[10] Han Y. and Ryan Y. E. “Low-floor decoders for LDPC codes,” IEEE
Transactions on Communications, vol. 57, pp. 1663 – 1673, June 2009.

[11] Kang J., Zhang L., Ding Z., and Lin S., “A Two-Stage Iterative
Decoding of LDPC Codes for Lowering Error Floors,” IEEE
"GLOBECOM", 2008.

[12] Ryan W.E., Lin S., “Channel Codes: Classical and Modern,”
Cambridge Press, 2009

[13] D. M. Rankin and T. A. Gulliver, “Single parity-check product codes,”
IEEE Transactions on Communications, vol. 49, pp. 1354–1362, Aug.
2001.

[14] MacKay D., and Postol M., “Weakness of margulis and ramanujan

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:4, 2017

144

margulis low-density parity-check codes,” Electronic Notes in
Theoretical Computer Science, vol. 74, 2003.

[15] Rosenthal, J., and Vontobel, P. O. “Constructions of LDPC codes using
Ramanujan graphs and ideas from Margulis.” In Proceedings of the 38th
Annual Allerton Conference on Communication, Control, and
Computing, pp. 248, 2000.

