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Abstract—Land vehicle navigation system technology is a 

subject of great interest today. Global Positioning System (GPS) is a 
common choice for positioning in such systems. However, GPS alone 
is incapable of providing continuous and reliable positioning, because 
of its inherent dependency on external electromagnetic signals. 
Inertial Navigation is the implementation of inertial sensors to 
determine the position and orientation of a vehicle. As such, inertial 
navigation has unbounded error growth since the error accumulates at 
each step. Thus in order to contain these errors some form of external 
aiding is required. The availability of low cost Micro-Electro-
Mechanical-System (MEMS) inertial sensors is now making it 
feasible to develop Inertial Navigation System (INS) using an inertial 
measurement unit (IMU), in conjunction with GPS to fulfill the 
demands of such systems. Typically IMU’s are very expensive 
systems; however this INS will use “low cost” components. 
Unfortunately with low cost also comes low performance and is the 
main reason for the inclusion of GPS and Kalman filtering into the 
system. The aim of this paper is to develop a GPS/MEMS INS 
integrated system, which is able to provide a navigation solution with 
accuracy levels appropriate for land vehicle navigation. The primary 
piece of equipment used was a MEMS-based Crista IMU (from 
Cloud Cap Technology Inc.) and a Garmin GPS 18 PC (which is both 
a receiver and antenna). The integration of GPS with INS can be 
implemented using a Kalman filter in loosely coupled mode. In this 
integration mode the INS error states, together with any navigation 
state (position, velocity, and attitude) and other unknown parameters 
of interest, are estimated using GPS measurements. All important 
equations regarding navigation are presented along with discussion. 
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I. INTRODUCTION 
AVIGATION has been present for thousands of years in 
some form or another. The birds, the bees, and almost 

everything else in nature must be able to navigate from one 
point in space to another [1]. For people, navigation had 
originally included using the sun and stars. Navigation 
comprises the methods and technologies to determine the time 
varying position and attitude of a moving object by 
measurement. Position, velocity, and attitude, when presented 
as time variable functions are called navigation states because 
they contain all necessary navigation information to geo-
reference the moving object at that moment of time. A 
navigation sensor measures quantity related to one or more 
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elements of the navigation state such as Global Positioning 
System (GPS). A combination of sensors capable of 
determining all navigation states makes up a navigation 
system such as Inertial Navigation System (INS). A sensor 
that supplies only partial information on the navigation states 
or that is used as a constraint on some of the states will be card 
Navaid (such as odometers). [1] Inertial navigation is the 
determination of the position of a vehicle through the 
implementation of inertial sensors. It is based on the principle 
that an object will remain in uniform motion unless disturbed 
by an external force. This force in turn generates acceleration 
on the object. If this acceleration can be measured and then 
mathematically integrated, then the change in velocity and 
position of the object with respect to an initial condition can 
be determined. The inertial sensor which measures 
acceleration is known as an accelerometer. To measure the 
attitude, an inertial sensor known as a gyroscope is required. 
This sensor measures angular velocity, and if mathematically 
integrated provides the change in angle with respect to an 
initially known angle. The combination of accelerometers and 
gyros allows for the determination of the pose of the vehicle. 
An inertial navigation system usually contains three 
accelerometers, which are commonly mounted with their 
sensitive axes perpendicular to one another. The working 
theory of accelerometer is based on the Newton’s laws. In 
order to navigate with respect to the inertial reference frame, it 
is necessary to keep track of the direction in which the 
accelerometers are pointing. Rotational motion of the body 
with respect to the inertial reference frame may be sensed 
using gyroscopic sensors and used to determine the orientation 
of the accelerometers at all times. Given this information, it is 
possible to transform the accelerations into the computation 
frame before the integration process takes place. At each time-
step of the system's clock, the navigation computer time 
integrates this quantity to get the body's velocity vector. The 
velocity vector is then time integrated, yielding the position 
vector. Hence, inertial navigation is the process whereby the 
measurements provided by gyroscopes and accelerometers are 
used to determine the position of the vehicle in which they are 
installed. By combining the two sets of measurements, it is 
possible to define the translational motion of the vehicle 
within the inertial reference frame and to calculate its position 
within that frame. 

II. INERTIAL NAVIGATION 
The basic principle of an INS is based on the integration of 

accelerations observed by the accelerometers on board the 
moving platform. The system will accomplish this task 
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frame (b frame). The origin of the ECEF frame is the center of 
the Earth’s mass. The X-axis is located in the equatorial plane 
and points towards the mean Meridian of Greenwich. The Y– 
axis is also located in the equatorial plane and is 90 degrees 
east of the mean Meridian of Greenwich. The Z-axis parallels 
the Earth’s mean spin axis. LLF is a local geodetic frame 
serves as local reference directions for representing vehicle 
attitude and velocity for operation on or near the surface of the 
Earth; for this reason, it is often referred to as navigation 
frame (n-frame). A common orientation for LLF coordinates is 
the North-East-Up (NEU) system. The origin of the LLF 
frame is coincides with sensor frame. The Z-axis is orthogonal 
to the reference ellipsoid pointing up. The X-axis is pointing 
towards geodetic East. The Y-axis is pointing toward geodetic 
North.  

 

 
Fig. 3 Body Frame (b-frame) 

 
The body frame (Fig. 3) represents the orientation of the 

IMU axes. The IMU sensitive axes are assumed to be 
approximately coincident with the moving platform upon 
which the IMU sensors are mounted. The origin of the body 
frame is at the center of the IMU. The X-axis points towards 
the right of the moving platform, the Y-axis points toward the 
front of the moving platform, and the Z-axis is orthogonal to 
the X and Y axes to complete a right-handed frame.  

D. INS Mechanization Equation 
The IMU measurements include three angular rate 

components provided by the gyroscopes and denoted by the 
3x1 vector b

nbω  as well as three linear acceleration 
components provided by the accelerometers and denoted by 
the 3x1 vector bf  . This means that the angular velocities 

b
nbω  of the body frame are measured with respect to the 

inertial frame [7]-[9], Fig. 4 shows a block diagram of INS 
mechanization algorithm. 
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Fig. 4 INS Mechanization block diagram [4] 
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The Euler angles can also be determined from quaternion 

by the following [4]: 
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III. KALMAN FILTER 
The Kalman filter was added to estimate the position, 

velocity and attitude of the system. The full Kalman filter 
equations will not be presented here due to limited space, but 
an overview of the process is shown in Fig. 5 and further 
information can be found in [3]. 
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Fig. 5 Kalman filter algorithm  
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In this integration scheme, GPS and inertial processing is 
carried out in two separate filters, but interacting, filters [6]. 
Together these constitute a decentralized filter process; hence, 
this strategy is also referred as a decentralized integration 
strategy. The GPS measurements are processed independently 
in a GPS-only Kalman filter. Then the output of this filter is 
used periodically as input to the INS-only filter. The INS-only 
filter uses the difference between the GPS-derived position 
and velocity estimates, and the INS mechanization-derived 
position and velocities as measurements to obtain the error 
estimates. The position/velocity covariance matrix is 
transferred from the GPS-only filter to the INS master filter as 
the measurement noise. 

VII. EXPERIMENTAL SETUP AND RESULTS 
The experimental work is divided into two main parts. The 

first part is the navigation solution using stand alone IMU 
without the Kalman filter or the GPS positional corrections. In 
the second part the Kalman filter and GPS were introduced to 
the system in order to show their impact to overcome the 
limitation of the IMU. 

A.  Test Setup 
The experiments were conducted using a car with the IMU 

and GPS mount on it. A laptop was connected to both sensors 
and recorded the data. To perform this experiment a trajectory 
was selected as shown in the following picture (Fig. 9) which 
will be used as a reference trajectory; this picture is taken 
using Google earth. The data was then taken and analyzed in 
Matlab using the proceeding equations.  

 

 
Fig. 9 Selected area for the experimental setup  

B. GPS Only Solution 
In order to assess the performance of the integrated system, 

it is necessary to examine the performance of the aiding 
source, which is primarily GPS sensor. Thus, this section 
quantifies the accuracy of the navigation solution available 
from the GPS 18 receiver. Fig. 10 shows the estimated 
trajectory as derived from the GPS sensor. The corresponding 
output velocities of the derived trajectory are given in Fig. 11. 

 

Fig. 10 Vehicle trajectory as estimated by GPS 
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(c) 

Fig. 11 North, East, and Vertical velocities respectively estimated by 
GPS 

C. INS Navigation Solution Only 
To examine the performance of the IMU the first set of 

results was done without the use of the Kalman filter and GPS 
(stand alone mode). The resulting INS navigation solution 
(position and attitude) without any corrections are shown in 
Figs. 12 and 13 respectively. It is clear that performing 
navigation using stand alone MEMS IMU shows that the 
performance is largely degraded with time; this is of course 
due to the accumulation of the noisy measurements of 
acceleration and angular rate. When we look at Fig. 13 the 
GPS (working alone) GPS provides good results compared to 
stand alone INS but it is only gives positioning in low rate 
(every 1 sec). 

 

 

Fig. 12 Vehicle trajectory as estimated by INS 
 
 

 

(a) 
 

 
(b) 

 

 
(c) 

Fig. 13 North, East, and Vertical velocities respectively estimated by 
INS 

D. GPS/INS Integration Using Kalman Filter 
After the inclusion of the GPS and Kalman filter, the plots 

shown in Figs. 14 and 15 are much better. From Fig. 14 it is 
clear that the GPS and INS lie right on top of each other. 
Taking a closer look at Fig. 15 shows that the two do not 
really lie exactly on top, but rather the INS transitions 
smoothly through the GPS points. 
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Fig. 14 Vehicle trajectory as estimated by GPS\INS 

 

 
Fig. 15 The effect of integrating Crista IMU and GPS 18PC sensor 

using Kalman filter in trajectory estimation 

VIII. CONCLUSION 
This paper has shown the effective combination of two 

different sensors (GPS and IMU) each with their own 
strengths and weaknesses. The “low cost” IMU used in this 
work is not capable of running by itself and providing any 
reasonable positioning information. GPS provides good 
results, but is only capable of determining position every 
second. The two sensors combined has the capability of 
Producing good estimates of position in between the one 
Second updates. 
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