
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

753

 Abstract—A hardware efficient, multi mode, re-configurable
architecture of interleaver/de-interleaver for multiple standards,
like DVB, WiMAX and WLAN is presented. The interleavers
consume a large part of silicon area when implemented by using
conventional methods as they use memories to store permutation
patterns. In addition, different types of interleavers in different
standards cannot share the hardware due to different construction
methodologies. The novelty of the work presented in this paper is
threefold: 1) Mapping of vital types of interleavers including
convolutional interleaver onto a single architecture with flexibility
to change interleaver size; 2) Hardware complexity for channel
interleaving in WiMAX is reduced by using 2-D realization of the
interleaver functions; and 3) Silicon cost overheads reduced by
avoiding the use of small memories. The proposed architecture
consumes 0.18mm2 silicon area for 0.12µm process and can
operate at a frequency of 140 MHz. The reduced complexity helps
in minimizing the memory utilization, and at the same time
provides strong support to on-the-fly computation of permutation
patterns.

Keywords—Hardware interleaver implementation, WiMAX,

DVB, block interleaver, convolutional interleaver, hardware
multiplexing.

I. INTRODUCTION

HE focus of this research is to enable the hardware re-
use for FEC subsystems. Among FEC subsystems,

interleavers and de-interleavers appeared to be the most
silicon consuming. This is due to the silicon cost of the
addressing/permutation tables used in the conventional
approaches. Due to rapidly changing technology trends,
many consumer products require the adaptation of different
interleaving standards. Therefore a re-configurable
architecture supporting multiple radio communication
standards with minimal hardware cost is always beneficial.
This paper presents a flexible and low cost hardware
interleaver architecture, which covers the block interleavers
for channel interleaving and duo-binary turbo codes adopted
in IEEE 802.16e [1] and the convolutional interleaver as
specified in ETSI EN 300-744 [2].

System level overview for IEEE 802.16e called WiMAX
is shown in Fig. 1(a) and for ETSI EN 300-744 called DVB
is shown in Fig. 1(b). WiMAX uses the block interleaver for
channel interleaving and duo-binary turbo code interleaving.

R. Asghar is with Department of Electrical Engineering, Linköping

University, SE-58183, Linköping, Sweden (phone: +46 (0)13 28 2313; fax:
+46 (0)13139 282 ; e-mail: rizwan@ isy.liu.se).

D. Liu is with Department. of Electrical Engineering, Linköping
University, SE-58183, Linköping, Sweden (e-mail: dake@ isy.liu.se).

In block interleavers, the data is written sequentially in a
memory and read in a random order after applying certain
permutations. The block interleaver can also be considered
as a row-column matrix. In this case, data is written row-
wise in a memory configured as a row-column matrix and
then read column-wise after applying certain intra-row and
inter-row permutations. On the other hand, the convolutional
interleavers use multiple first-in-first-out (FIFO) cells with
different widths and depths to disperse the adjacent
information. In addition to different structures of block
interleaving and convolutional interleaving, they also
impose different latency measures. All these mismatches
between different types of interleavers make it hard to
implement them on a single architecture. Recently [4] [5]
has proposed an architecture to implement the de-interleaver
for WiMAX and DVB in a single chip using 0.6 mm2 and
0.484 mm2 area respectively. A fast interleaver design
covering 802.16 and 802.11 has been proposed in [6] with
some extra hardware cost. An FPGA implementation of
DVB interleaver is described in [7] with emphasis on
minimizing memory utilization. The architecture given in
[4] [5] and [7] use six small memories each having size of
255 byte or less, which turns out to be hardware inefficient
due to significant overheads of small memories. Some
commercial implementations for interleaver/de-interleavers
are also available from major FPGA vendors like Xilinx,
Altera and Lattice Semiconductor. The architecture insights
for these implementations are not disclosed and they are
provided as IP Blocks. However, the available literature

Rizwan Asghar and Dake Liu

Low Complexity Multi Mode Interleaver
Core for WiMAX with Support for

Convolutional Interleaving

Fig. 1. Overview of encoding in (a) WiMAX channel,
(b) DVB channel.

T

(a)

Channel

Randomizer FEC Enc.
(RS and CC) Interleaver Mapper

De-
Randomizer

FEC Dec.
(RS and CC)

De-
Interleaver De-Mapper

From
PHY
/MAC

To
PHY
/MAC

Message
Word

Message
Word

RS Convolutional
Interleaver CC

RS Convolutional
De-interleaver CC

Outer Encoder Inner Encoder

Outer Decoder Inner Decoder

Code
Word

Code
Word

Channel

(b)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

754

[18]–[20] explains the memory configuration, performance
and area utilization in terms of logic elements (LEs) or
lookup-tables (LUTs).

Our proposed architecture uses two single port memories
of size 512 bytes and 1024 bytes, thus minimizing the
overheads due to small memories. It enables the hardware
re-use for different types of interleavers to compute the
interleaved addresses for writing/reading the data to/from
memory, in order to achieve the low cost solution. Low cost
solution is also supported by realizing the 1-dimensional
permutation functions provided for WiMAX channel
interleaver into 2-dimentional functions, where it is easy to
realize the interleaver as a row-column matrix. Section 2 of
this paper presents the 2-D transformation steps for
WiMAX/WLAN channel interleaver and section 3 describes
the interleaver construction for duo-binary turbo codes. The
convolutional interleaver construction is provided in section
4 while section 5 presents the complete hardware solution
for re-configurable interleaver. Section 6 and 7 provide the
implementation results and conclusion respectively.

II. WIMAX/WLAN CHANNEL INTERLEAVER

WiMAX uses Read-Solomon and convolutional encoding
followed by an interleaver as shown in Fig. 1(a) to detect
and correct errors to improve the performance of the
communication system. Different interleaving patterns apply
for different modulation schemes BPSK/QPSK, 16-QAM
and 64-QAM. The channel interleaving in WiMAX/WLAN
[3] is based on a block interleaver, which is expressed in the
form of a set of two equations for two steps of permutations.
The first step ensures that adjacent coded bits are mapped
onto non-adjacent subcarriers, while the second step ensures
that adjacent coded bits are mapped alternately onto less or
more significant bits of constellation, thus avoiding long
runs of lowly reliable bits.

The first permutation ݉௞ for index ݇ is defined by:

()%cbps
k

N k
m k d

dd
= ⋅ +⎛ ⎞ ⎢ ⎥

⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
 (1)

Here ௖ܰ௕௣௦ is the block size corresponding to number of
coded bits per allocated sub-channels per OFDM and typical
value for d used in WiMAX is 12 and 16. The operator % is
defined as the modulo function computing the remainder
and the operator ۂݔہ is the floor function i.e. rounding
towards zero. The second permutation ݆௞ for index ݇ is
given by:

%kk
k k cbps

cbps

mm dj s m N s
Ns

⋅= ⋅ + + −
⎛ ⎞⎛ ⎞⎢ ⎥⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

(2)

The parameter ݏ is defined as ݏ ൌ ݈ܿ݁݅൫ ௖ܰ௣௖/2൯, where
௖ܰ௣௖ is number of coded bits per sub-carrier, i.e., 1, 2, 4 or 6

for BPSK, QPSK, 16-QAM or 64-QAM respectively and
݈ܿ݁݅ operation is rounding towards infinity. The de-
interleaver, which performs the inverse operation, is also
defined by the two permutations. Let ݊ be the index of
received bits within the received block of ௖ܰ௕௣௦ bits. The
first permutation ݉௡ for index ݊ is defined by:

%n
cbps

nn dm s n s
Ns

⋅= ⋅ + +
⎛⎛ ⎢ ⎥ ⎞ ⎞⎢ ⎥
⎜⎜ ⎟ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝⎝ ⎣ ⎦ ⎠ ⎠

 (3)

The second permutation ݇௡ for index ݊ is given by:

()1 n
cbpsn n

cbps

m
dNk d m

N
⋅−= ⋅ − ⋅

⎛ ⎢ ⎥ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎣ ⎦ ⎠

 (4)

The range of ݊ and ݇ for eq. (1) to (4) is defined as 0, 1,
2, ሺ ௖ܰ௣௕௦ െ 1ሻ. If we try to implement the two steps of
permutations by direct computation then they are found to
be quite hardware inefficient. This is due to the presence of
complex functions like floor function and modulo function.

The alternate is to consider the two steps as one step and
find the correlation between input and output which should
be hardware efficient. We present here the idea of realizing
the one dimensional equations into a joint 2-dimensional
expression. It is not necessary to transform both set of
equations to 2-D space and implement separately, as they
are inverse of each other. Thus only one set of equations can
be transformed for efficient hardware implementation and
same can be used for other by just swapping the order of
read and write of data into memory. The following sub-
sections present the transformation steps for all kinds of
modulation schemes used in WiMAX/WLAN.

A. BPSK / QPSK

Due to ݈ܿ݁݅ operation the parameter ݏ is 1 for both BPSK
and QPSK. Defining ܰ ൌ ௖ܰ௕௣௦ eq. (3) simplifies to
݉௡ ൌ ݊ ൅ 0 ൌ ݊, and therefore eq. (4) becomes:

()()1n
d n

k d n N
N

⋅
= ⋅ − ⋅−

⎢ ⎥
⎢ ⎥⎣ ⎦

n
N d nd n

k d n
d NN

⋅⋅
= ⋅ +− ⋅⎛ ⎞ ⎢ ⎥⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎣ ⎦⎠

n n nk d β γ= ⋅ + (5)

Where

and
/

n n
N d n d n n

n
d N N N d

β γ
⋅ ⋅

= − ⋅ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Due to the presence of floor function, it is difficult to
work out a complete algebraic solution for these equations,
however looking at the behavior of different terms and
verifying for all possible block sizes, we try to re-structure
the equations. MATLAB is used for verification of new
structures at all stages. For a simple illustration, an example
case of BPSK with 2 sub channels and d ൌ 16, N ൌ 32, is
taken and behavior of β୬ is analyzed against the index ݊.

2
2

n
n

nβ = − ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

755

()0 0 0%2n nn β β= → = → =

()1 1 1%2n nn β β= → = → =

()3 0 2%2n nn β β= → = → =

.

()1 %2n nn n nβ β= → = → =

After checking all cases for BPSK and QPSK (i.e. sub-
channels 1,2,4,8,16), ߚ௡ can be generalized as:

()%n
N

n
d

β =

Thus for BPSK or QPSK case, eq. (5) can now be written
as :

()%n
N d n

k d n
d N

⋅
= ⋅ +⎢ ⎥

⎢ ⎥⎣ ⎦
 (6)

Introducing 2 dimensions ݅ and ݆ (i.e. a two dimensional
array), for which ݆ increments when ݅ expires, the ranges for
݅ and ݆ can easily be selected as mentioned below:

() ()0,1, ' '1 %
N N

i which satisfies against n if i n
d d

= =− (7)

0,1, (1) ' '
/

n
j d withbehavior against n j

N d
= − = ⎢ ⎥

⎢ ⎥⎣ ⎦ (8)

The interleaver can now be realized as a 2D row-column
matrix with size ݅ ൈ ݆. Total number of columns is ݀,
defined by the limit on ݆ and total number of rows is ܰ/݀.
Eq. (6) can be written in the form:

,n i jk k d i j≡ = ⋅ + (9)

Here ݅ and ݆ are row and column counters respectively but
at the same time, they also provide the inter-row and inter-
column permutations. The case of BPSK and QPSK is the
simplest one as it does not carry any specific inter-row or
inter-column permutation pattern due to the parameter ݏ ൌ
1. That is why we end up with a relatively simple hardware
needing just one addition and a multiplication as shown in
Fig. 2(a), but it provides the basis for analysis for 16-QAM
and 64-QAM which are more complicated.

B. 16-QAM

The parameter ݏ is 2 for 16-QAM therefore eq. (3) and
eq. (4) can be written as:

2 % 2
2n

d nnm n
N

⎛ ⎞⎛ ⎞⋅⎢ ⎥⎢ ⎥= ⋅ + +⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
 (10)

nn
n n

N d md m
k d m

d NN

⋅⋅
= ⋅ +− ⋅⎛ ⎞ ⎢ ⎥⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎣ ⎦⎠

 (11)

Two terms can again be defined as ߚ௡ and ߛ௡ .

and
.n n

n n n
N d m d m

m
d N N

β γ
⋅

= − ⋅ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (12)

Therefore n n nk d β γ= ⋅ +

After verifying for all the range for WiMAX, the
parameter ߛ௡ can be written as:

. .

/
n

n
d m d n n

j
N N dN

γ = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ (13)

However, it does not mean that ݉௡ is equal to ݊ all the
time. This is valid only due to the presence of floor function
around it. Using definitions in eq. (10) and eq. (13), ߚ௡ can
be re-written as:

2 % 2
2n

Nd n d nn n
dN N

β ⋅ ⋅
= ⋅ + + − ⋅⎛ ⎞⎛ ⎞⎢ ⎥ ⎢ ⎥⎢ ⎥

⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
(14)

Now we try to re-arrange this equation to find some new
structure which is similar to eq. (9). For illustration purposes
some steps for the 16-QAM example case with ݀ ൌ 16 and
ܰ ൌ 64 are given below:

Fig. 2. HW realization for channel interleaving in WiMAX (a)
BPSK-QPSK, (b) 16-QAM, (c) 64-QAM.

Fig. 3. Examples of data interleaving for (a) 16-QAM, N=64;
(b) 64-QAM, N=96.

(b)

A
x

B

Total
Col

i_addr
j

+
0

1

i

‘1’

j[0]

i[0]

+/-
ri,j

(c)

A
x

B

Decoding
Logic

i

Total
Col

0
1

i_addr

C[3:0],
R[0],
Mode

j

(i+
1)

%
3

Logic

+/- +

0
1
22

‘1
’

ri,j

(a)

A
x

B

Total Col

i_addr
j

+
Row Perm

(i)

017 34 29 46 15

1633 2 45 14 31

321 18 13 30 47

4865 82 77 94 63

6481 50 93 62 79

8049 66 61 78 95

(b)

017 2 29 14 31

161 18 13 30 15

3249 34 61 46 63

4833 50 45 62 47

(a)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

756

()
() (){ }()

0 0 0 1 0 % 2

(0 1) (0 1)1 0 % 2 0 % 20 % 2

n nn β β= → = → = +−⎡ ⎤⎣ ⎦

+ + −−⎡ ⎤⎣ ⎦

()
() (){ }()

1 1 1 1 0 % 2

(1 1) (1 1)1 1 % 2 0 % 21 % 2

n nn β β= → = → = +−⎡ ⎤⎣ ⎦

+ + −−⎡ ⎤⎣ ⎦

()
() (){ }()

2 2 2 1 0 % 2

(2 1) (2 1)1 2 % 2 0 % 22 % 2

n nn β β= → = → = +−⎡ ⎤⎣ ⎦

+ + −−⎡ ⎤⎣ ⎦

()
() (){ }()

3 3 3 1 0 % 2

(3 1) 1 (3 1)3 % 2 3 % 2 0 % 2

n nn β β ⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

= → = → = − +

+ − + −

()
() (){ }()

4 1 0 1 1 % 2

(0 1) 1 (0 1)0 % 2 0 % 2 1 % 2

n nn β β ⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

= → = → = − +

+ − + −

()
() (){ }()

5 1 1 1 1 % 2

(1 1) 1 (1 1)1 % 2 1 % 2 1 % 2

n nn β β ⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

= → = → = − +

+ − + −

.

.

() ()

() ()(){ }
, 1 % 2 % 2

(1) 1 % 2 % 21

n i jr ij j

i i ii

β ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤⎣ ⎦

≡ = +−

+ − + −

×
(15)

Where ݅ and ݆ are defined with ranges as mentioned in eq.
(7) and eq. (8) i.e.

%
/

N ni and jn
d N d

⎛ ⎞ ⎢ ⎥
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

= =

Verifying for all the cases in 16-QAM, we reach to a new
structure for ߚ௡ as given in eq. (15). This structure is not as
simple as that of BPSK/QPSK case. The reason is the
presence of permutation pattern in 16-QAM case.
Considering the 2 dimensions ݅ and ݆, the 2D transformation
of interleaver for 16-QAM can be described as:

, ,n i j i jk k d r j≡ = ⋅ + (16)

The parameter ݎ௜,௝ provides an intra-row permutation
pattern sequence for selective columns, such that a
permutation is applied for all alternate columns ሺ2ݕ ൅ 1ሻ௧௛
and no permutation is applied for each 2ݕ௧௛ columns, where
ݕ ൌ 1,2, … … … … ݀/2. Considering total number of rows as
ܴ, the required inter-row permutation for row number
݅ ሺ0,1,2 … … … ܴ െ 1ሻ is ݅ ൅ 1 and ݅ െ 1 for each 2݅௧௛ and
ሺ2݅ ൅ 1ሻ௧௛ row respectively. Looking at eq. (16), the generic
structure for 16-QAM is same as that of eq. (9) except the

additional complexity for selective row permutation. The
structure of eq. (16) is easy to implement with a row and
column counter ݅ and ݆. The terms with modulo function can
be controlled by just the LSB of corresponding variable and
the rest can be managed by a lookup table (LUT) or an
adder. As number of rows in the block can be many (upto 96
for WiMAX) thus use of LUT is not efficient here. Instead
we can use a 7 bit adder, which can also give the benefit of
generalizing the implementation. The hardware realization
for interleaver address generation for 16-QAM in WiMAX
is shown in Fig. 2(b).

C. 64-QAM

As number of coded bits per sub-carrier are 6 for 64-
QAM transmission, thus using the parameter s ൌ 3, eq. (3)
is written as:

3 % 3
3n
n d nm n

N
⎛ ⎞⎛ ⎞⋅⎢ ⎥ ⎢ ⎥= ⋅ + +⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

 (17)

Defining the two terms ߚ௡ and ߛ௡ as given in eq. (12) and
eq. (13) we can write expression for ߚ௡ for 64-QAM as:

3 % 3
3n

Nn d n d nn
dN N

β ⋅ ⋅
= ⋅ + + − ⋅⎛ ⎞⎛ ⎞⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
(18)

Again applying the same re-structuring exercise as we did
for 16-QAM case, we reach to an even more complicated
2D-structure for ߚ௡. Due to increased complexity for
permutation patterns for 64-QAM the intermediate steps
carry much longer terms, thus we directly present the final
structure for ߚ௡.

()
()

()[]
() ()

()

()

() () ()[]

() () ()[]

,
' ' 1

1 '
2

' ' 1
2 1 '

2
' ' 1

'(' 1)
'1

2

' '' 2' 1 ' 1

2 '1 1 ' ' 1

n i j
j j

ij

i i
i i

j j
i i

ii

i ij ij i

ii i i

rβ −
= ⋅+−

−
+− −

+ − −
−

+ −+

−+− −
+

+ +− − −

⇒ ⎡ ⎤
⎢ ⎥⎣ ⎦

⎧ ⎧ ⎡ ⎤ ⎫⎫
⎢ ⎥⎪ ⎪ ⎪⎪⎣ ⎦

⎨ ⎨ ⎬⎬
⎡ ⎤⎪ ⎪ ⎪⎪
⎢ ⎥⎩ ⎩ ⎣ ⎦ ⎭⎭

⎧ ⎧ ⎫⎫
⎨ ⎨ ⎬⎬
⎩ ⎩ ⎭⎭

(19)

Fig. 4. CTC Encoder with Interleaver.

Fig. 5. Hardware for CTC Interleaver.

CTC
Interleaver

S1 S2 S3

A
B

A
B

Y1,W1

Y2,W2

Systematic part

Parity
part

0

1

2

3

R

i_addr

N
msb

1

0

–
+

N
msb

1

0

–
+Q3

Q2
Q1
‘1’

P0

‘0’

i%4

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

757

Here ݅ and ݆ are row and column count respectively, with
the ranges mentioned in eq. (7) and eq.(8). The new
parameters ݅Ԣ and ݆Ԣ are defined as below:

()' % 3 and ' % 31i j ji= =+

The term ߚ௡ for 64-QAM provides the selective inter-row
permutation for every ሺ3݆ ൅ 1ሻ௧௛ and ሺ3݆ ൅ 2ሻ௧௛ column.
The permutation for all these columns is within 3 rows and
afterwards it is repeated. Considering total number of rows
as ܴ, the inter-row permutation in ሺ3݆ ൅ 1ሻ௧௛ columns for
row number ݅ ሺ0,1,2 … … … ܴ െ 1ሻ is ݅ ൅ 1, ݅ ൅ 1, ݅ െ 2 for
3݅௧௛, ሺ3݅ ൅ 1ሻ௧௛ and ሺ3݅ ൅ 2ሻ௧௛ row respectively. The inter-
row permutation for ሺ3݆ ൅ 2ሻ௧௛ columns is ݅ ൅ 2, ݅ െ 1 and
݅ െ 1 for 3݅௧௛, ሺ3݅ ൅ 1ሻ௧௛ and ሺ3݅ ൅ 2ሻ௧௛ row respectively.
Examples of address permutations for 16-QAM and 64-
QAM with small block sizes are shown in Fig. 3, which also
correspond to the permutation patterns described here.

Combining the interleaver structure for all the cases, the
2D single step generic interleaver function ݇௜,௝ can be
described as:

, ,i j i jk d r j= ⋅ + (20)

Where ݎ௜,௝ ൌ ݅ for BPSK/QPSK and it is defined by eq.
(15) and eq. (19) for 16-QAM and 64-QAM respectively.
Although eq. (19) looks very long and complicated, but
eventually, we get a hardware efficient solution.
Additionally we stick to the generic interleaver hardware for
all types of modulation schemes. The implementation of
modulo terms ݆%3 and ሺ݅ ൅ 1ሻ%3 and some other terms
inside braces are easier to generate through a very small
lookup table. Other permutation values with addition and
subtraction can be implemented with the help of a
multiplexer and an adder. The hardware realization for 64-
QAM interleaver is shown in Fig. 2(c).

III. INTERLEAVER FOR DUO-BINARY TURBO CODES

The turbo codes [10] invented in 1993 captured great
importance due to exhibiting near Shannon-limit
performance. Recently, double binary turbo codes
(convolutional turbo codes, CTC) have received a great
attention as they are adopted in several mobile radio systems
such as DVB and WiMAX. They can offer many advantages
like performance, over the classical single-binary turbo
codes [11]. Fig. 4 shows the block diagram for the duo-
binary encoder including an interleaver. In CTC the
information is treated as pair of bits and the two output
parts, systematic output and parity output are almost un-
correlated due to the presence of interleaver. The interleaver
for CTC is a two step interleaver and is defined for a
particular block size ܰ. Parameters for block size,
modulation scheme and coding rate are provided in WiMAX
standard [1], and are designated as ଴ܲ, ଵܲ, ଶܲ and ଷܲ. Two
steps of interleaving are described below:

Step 1:
Let the incoming sequence be
଴ݑ ൌ ሾሺܣ଴, ,଴ሻܤ ሺܣଵ, ,ଵሻܤ ሺܣଶ, ,ଶሻܤ ሺܣேିଵ, ,ேିଵሻሿܤ
for ݅ ൌ 0 ܰ െ 1,
if ሺ݅%2ሻ ൌ ,௜ܣሺ ݄݊݁ݐ 1 ௜ሻܤ ൌ ሺܤ௜, .௜ሻܣ

The new sequence is
ଵݑ ൌ ሾሺܣ଴, ,଴ሻܤ ሺܤଵ, ,ଵሻܣ ሺܣଷ, ,ଷሻܤ ሺܤேିଵ, ேିଵሻሿܣ

Step 2:
The function ܲሺ݆ሻ provides the address of the couple
from the sequence ݑଵ that shall be mapped onto address
j of the interleaved sequence. ܲሺ݆ሻ is defined by the set
of four expressions with a switch selection as follows:
for ݆ ൌ 0 ܰ െ 1,
switch ሺ݆ % 4ሻ:

case 0: ܲሺ݆ሻ ൌ ሺ ଴ܲ . ݆ ൅ 1ሻ % ܰ
case 1: ܲሺ݆ሻ ൌ ቀ ଴ܲ . ݆ ൅ 1 ൅ ே

ଶ
൅ ܲ1ቁ % ܰ

case 2: ܲሺ݆ሻ ൌ ሺ ଴ܲ . ݆ ൅ 1 ൅ ܲ1ሻ % ܰ
case 3: ܲሺ݆ሻ ൌ ቀ ଴ܲ . ݆ ൅ 1 ൅ ே

ଶ
൅ ܲ3ቁ % ܰ

The four equations given in step 2 can be written in
combined form as:

()0 .() %jP j QP j N+= (21)

Where

1

2

3

1 ; (%4 0)
1 / 2 ; (%4 1)
1 ; (%4 2)
1 / 2 ; (%4 3)

j

if j
N P if j

Q
P if j
N P if j

=

+ + =
=

+ =

+ + =

⎧
⎪
⎨
⎪
⎩

Let

0 0. % 0j P j Nβ β= → =

Then recursively:

()01 %jj P Nββ + +=

Fig. 6. Convolutional interleaver and de-interleaver in DVB.

Fig. 7. Hardware for RAM read/write address generation for
convolutional (de) interleaver in DVB.

0

1

2

3

10

11

0

1

2

3

10

11

0

1

2

3

10

11

0

1

2

3

10

11

Interleaver De-Interleaver

M = 17 M = 17

Ordered
Data

Ordered
Data

Interleaved
Data

M x 2

M x 3

M x 2

M x 3

C
om

pa
re

A
x

B

0

1

1

0

0

1

R
*

1

0

Reg. File (r0 ~ r10)

M=17
for DVB

C
FG

M
od

e

‘1’

Branch
Count

Max. Br.
‘11’ for DVB

Read
Address

Write
Address

De-Int De-Int
De-Int

De-Int

11

11

4
4

9

11

11

11

11

11

R* Load ‘1122’ when De-Int Mode
11

11

+

+/-
–

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

758

Now if we know ߚ௝ by recursive computation, ܲሺ݆ሻ can
be computed from the following equation.

()() %j jQP j Nβ += (22)

By looking at the range of parameters ߚ௝ and ܳ௝, their
sum cannot be larger than 2ܰ. Thus ܲሺ݆ሻ can be computed
by using addition and subtraction with compare and select
logic, as shown in Fig. 5 where the values for ܳ௝ are
provided through a lookup table. Same type of hardware is
used in the recent work [12] and [13] to implement the
interleaver for complete CTC decoder design. Our objective
is to integrate this hardware with other interleaver structures
in a multiplexed way to achieve a flexible and
reconfigurable interleaver which can support the WiMAX
standard, in case the turbo code is used.

IV. CONVOLUTIONAL INTERLEAVER FOR DVB

The convolutional interleaver used in DVB is based on
the Forney approach [8] which is compatible with Ramsey
type III approach [9]. In order to distribute burst errors,
which are not corrected by Viterbi decoder in receiver, a
convolutional interleaver is used in transmitter between RS
encoding and convolutional encoding as shown in Fig. 1(b).
Thus a de-interleaver has to be incorporated in the receiver
before the RS-decoder, to be able to decode the packets. The
convolutional interleaver for DVB consist of ܫ ൌ 12
branches and each branch j is composed of first-in-first-out
(FIFO) shift registers with depth ݆ ൈ ܯ where ,ܯ ൌ 17 for
DVB. The packet of 204 bytes consisting of one sync byte
ሺ0 ൈ 0 ݎ݋ 47 ൈ 8ሻ is entered into the interleaver in aܤ
periodic way. For synchronization purpose the sync bytes
are always routed to ܾ0 ݄ܿ݊ܽݎ of interleaver as shown in

Fig. 8. Flow Graph for (a) Channel Interleaving in WiMAX, (b) CTC Interleaving,
(c) The read/write address computation for DVB.

Fig. 9. Flow Graph for combined interleaver (Gray blocks
show the flow overlap and hardware sharing between
different interleavers).

(a) (c)(b)

Input N

Init & P, Q,
Lookup

Wait Start
Pulse

End
Frame

Y
N

i_addr

(ADD-3)
B + P0

Sub &
Compare

Find B

(ADD-1)
B + Q

Sub &
Compare

(Find i_addr)

Input R

Init reg
R0 ~ R10

Sync
Detection

Last
Branch

Reset Br.
Count (R)

(ADD-1)
Resolve Branch

Number (j)

(MULTIPLY)
Find Br. Size

U = 17 x j

Compare and
Select Read

Address

Y

N

End
Frame

INC R
(Br. count)

(ADD-3)
INC R(j)

Read reg.
Wr = R(j)

(ADD-2)
Find Br. Start

T(j) = U + T(j-1)

Write to reg.
R(j)

N
Y

Wr_addr Rd_addr

Input N

Find Total
Rows (TR)

Wait Start
Pulse

Last
Row

Reset R &
INC

Col Counter

Compute
(R+1) % 3

(ADD-1)
Resolve Row

Perm.

(MULTIPLY)
Find Row Start
U = Total Col x

Row_perm

(ADD-2)
Column Offset

T = U + C

Y

N

End
Frame

INC R
(row count)

Y
N

i_addr

Input N/R

Last
R

(MULTIPLY)
Find U

Compare and
Select Read

Address

Y

N

End
Frame

INC R

(ADD-2)
Find T

Write to reg.
R(j)

N

Y

Mode
WiMAX

Mode

Find Total
Rows (TR)
(or) Lookup

Init reg
R0 ~ R10

Sync
Detection

Wait Start
Pulse

Mode
(ADD-3)
INC or
B+P0

Mode Compute
(R+1) % 3

(ADD-1)
Resolve Row
Perm / Branch

Mode

Read reg.
Wr = R(j)

Reset R &
INC

Col Counter

DVB

WiMAX DVB

WiMAX DVB

WiMAX

DVB

DVB WiMAX

Rd_addr
(DVB)

i_addr
(WiMAX)

Wr_addr
(DVB)

Sub-
Mode

CTC

SUB and
Compare

C
TC

CTC

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

759

Fig. 6. The convolutional interleaving provides half the
latency as compared to block interleaving and also
consumes less memory size. Recently convolutional
interleavers have been analyzed to work with Turbo Codes
[14] – [17], which make them more versatile, thus general
and re-configurable convolutional interleaver architecture
can be of significance. The improvement in performance of
turbo codes using convolutional interleavers provides the
motivation to integrate the functionality of convolutional
interleaver with block interleavers to increase the flexibility
for working with turbo codes. This section presents the
hardware implementation of convolutional interleaver which
will be integrated with block interleavers in next section.

Due to large consumption of silicon area, the
implementation of the convolutional interleaver or de-
interleaver using first-in-first-out (FIFO) register cells
would be very hardware inefficient. To achieve a hardware
efficient solution, RAM based implementation is proposed.
The memory partitioning is made in such a way that by
applying appropriate read/write addresses in a cyclic way, it
exhibits the branch behavior as required by convolutional
interleaver. RAM write and read addresses are generated by
the hardware shown in Fig. 7. The hardware components
used here are almost the same as used by interleaver design
for WiMAX, thus providing the basis for multiplexing the
hardware blocks for re-use. The main difference is the use of
11 registers to keep track of next write addresses for each
branch, which is the idea of using cyclic pointers instead of
using FIFO shift registers. For each branch the
corresponding write address is provided by the concerned
pointer register and next write address (which is also called
current read address) is computed by using an addition and a
comparison with the branch boundaries. The branch
boundaries are computed on the fly using an adder and a
multiplier in connection with a branch counter.

For implementing convolutional de-interleaver same
hardware is used by implementing the branch counter in
reverse order (decrementing by 1). In this way same branch
boundaries are used, and the only difference is that the sync
byte in the data is now synchronized with the largest branch
size as shown in Fig. 6. Keeping the same branch
boundaries for de-interleaver, the width of pointer register
becomes fixed. This gives an additional benefit that the
width of pointer register may be optimized efficiently, i.e.
instead of using all pointer register of width 11 bit we can
use smaller width for the lower branches and larger width
for the upper branches.

V. COMPLETE HARDWARE

Fig. 8 presents the flow graphs for the computation of
interleaved addresses for memory read and write for the
interleaver types covered in sections 2 – 4. The combined
flow graph illustrating flow sharing between different
implementations is presented in Fig. 9. In order to fulfill the
shared flow, in a multiplexed way, the complete hardware
for the data interleaving or de-interleaving for multiple
standards is divided into sub-blocks like control FSM block,
address generation block and memory organization block.
These blocks are briefly described in the following sub-
sections.

A. Control FSM

An eight state control FSM shown in Fig. 10 is used to
synchronize the flow for address computation. The control
FSM serves different initialization requirements for different
standards at startup. In the initialization phase for
WiMAX/WLAN, the controller computes the number of
rows for a particular block size in state S1, while for DVB
the pointer registers are initialized in state S5 to their
respective start points. States S2 – S4 are shared for channel
interleaving and duo-binary turbo code interleaving,
whereas state S2 also serves for synchronization with the
external world. After initialization, the FSM keeps track of
block size by employing row and column count, thus
providing the block synchronization required for each
standard. State S6 and S7 are used for sync detection in case
of DVB interleaver. Once sync pattern is detected, state S4
is again used for branch counting and branch
synchronization.

B. Address Computation Circuitry

The address computation is achieved for different
standards by multiplexing the hardware covered in sections
2 – 4. Some additional multiplexers and glue logic is used to
support the re-configurability for different standards and
different modulation schemes. The hardware multiplexed
circuit for combined address computation is shown in Fig.
11(a). Here, the multiplier can further be optimized to only
one adder, but it is kept there to make the design general for
any branch size and any number of columns in the block
interleaver. The address computation circuitry also involves
a lookup table implementing the decoding logic for operand
selection and a register file consisting of 12 pointer
registers. The pointer registers are mainly used for DVB,
thus not sharing with other types of implementations. The
computation intensive blocks in the address computation
circuitry are 4 adders/subtractors, a multiplier and a
comparator. Except one subtractor which is only used for
CTC interleaver, all the rest of the blocks are being shared
by different interleaver implementations. This provides a
highly multiplexed architecture with good hardware
utilization for different interleaver implementations.

Fig. 10. Control FSM for combined hardware interleaver.

S0

S1

S5

S2

S3
i ++

S4
i ++

S6 S7

Init R0 ~ R11 No Sync

DVB

W
iM

AX

If (Rxd) < K

Find Total
Rows

Wait
Start Pulse

If (Rxd) >= K

int

de-int
int

de-in
t

int

de-int

i < K

i < K

Syn
c detecte

d

C
he

ck
S

yn
c

(if
D

V
B

)

S
yn

c
P

re
se

nt

Sync Not Present

CTC

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

760

C. Memory Organization

The interleaved address for block interleaver and
read/write address for convolutional interleaver computed
by the address generation circuitry are combined according
to the configuration input for specific standard to make the
final read/write address for the memory. The total data
memory size required is 1536 byte. This limit is set by
maximum block size of 1536 bytes for WiMAX, i.e. 64-
QAM and 16 sub-channels. If we have the luxury to use
dual port memory which can read and write in a single clock
cycle, then we can use one big memory of 1536 bytes, but
keeping in view hardware in-efficiency for the
implementation of dual port memory, and to make the
memory size raise to the power 2, we split the memory into
two memories with size 512 bytes and 1024 bytes.

Fig. 11(b) shows the memory organization with address
selection logic. By applying the delay line of 5 clock cycles
in the path of read address and control signal for the
selection of the output data, we make it possible that data
write and read should not be performed for the same
memory in a single clock cycle. This provided the basis to
use relatively bigger memories for DVB interleaver and thus
the hardware cost overheads associated with use of small
memories are also avoided. The memory utilization for
DVB in comparison with use of small memories is shown in
Fig. 12. The memory with size of 512 bytes as shown in Fig.
12(c) can be reduced to 256 bytes if proposed architecture is
only intended to be used for DVB or the target block size for
WiMAX is upto 1280 bytes.

VI. IMPLEMENTATION RESULTS

The hardware shown in Fig. 11 provides the complete re-
configurable hardware interleaver design for multiple
standards. The RTL code for this hardware is written in
Verilog HDL and the correctness of the design is verified by
two approaches. First by comparing the data from hardware
with that of the interleaved data generated through

MATLAB and then by checking the data in order, by
cascading two hardware blocks, first configured as
interleaver and second configured as de-interleaver.

Fig. 11. (a) Address generation hardware for combined interleaver, (b) Memory organization for the hardware interleaver.

Fig. 12. Memory utilization for DVB (a) Generalized structure,
(b) Structure proposed in [7], (c) Our proposed structure.

(a) (b)

1

0

0

1

Dec. Logic

0/1/2
R[3:0]

Ist Br.
Depth

d(wmx)

Total Br
R

C

Controller Reg. File

Mode
(wimax /

DVB)

Int /
de-int
(0/1)

K
11

Wimax
Parameters

11

11

11

8

5
Data Valid Signal

R

+/-

+/- 1

0

mode

0
1
2P0

K

0
1
2

0
1
2

logic

0

1

2

3

1
Q1

Q2

Q3

+

-

1
0

1

0

A==B

K

1 0

0

1

11

mode

M1
(512x8)

0
1

0
1

11

11

11

Idx
count(i)

1

0

0

1

1

0

0

1

10

10

8
Data
Out

D
el

ay
B

uf
D

el
ay

B
uf

Delay Buf

8

8

mode

mode

11

Rd Addr
(DVB)

Wr Addr
(DVB)

i_addr
(WiMAX)

Data_in

1

0

de-int

de-int

0

1

(mode & Br.==0)

M2
(1024x8)

Lo
gi

c

mode

10
10

9
9

8

Swap (Ai,Bi)
If (i%2 == 0)Idx[0]

(i%4)

msb

m
sb

11
255186

10
255169

9
255152

8
255135

7
127118

6
127101

5
12784

4
12767

3
6350

2
6333

1
3116

6,9
255254

5,10
255254

4,11
255254

2,8
255169

1,3
12767

7
127118

6~11
1023866

1~5
511254

(a)

(b)

(c)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

761

After validating the correctness of design, the design
was synthesized for 0.12µm standard CMOS technology and
then layout was generated using SoC Encounter. Core size
of the proposed architecture is 0.18 ݉݉ଶ which is lower
than the reference designs as shown in Table 1. The major
gain in terms of silicon cost is due to efficient and shared
implementation of address computation circuitry and by
sharing the data memory as shown in Fig. 13. Although
direct comparison of area with commercially available
FPGA implementations [18] – [20] is not possible, but
looking at the memory requirements our design remains
efficient. The available literature reveals that these
commercial implementations use dual port memory support
from block RAMs available on target FPGA platforms,
which is not a good choice for chip implementations.
Further, it also reveals that they do not compute the row or
column permutations on the fly; instead they take row or
column permutation tables in the form of a configuration file
as input and use them to generate the final interleaved
address. In this way, the complexity for on-the-fly
computation of permutation patterns is avoided but it
requires extra memory to store the permutation patterns.

Chip core layout for the proposed architecture is shown in
Fig. 14. The design can run upto 140 MHz without any
pipelining and consumes 3.5mW power in total. Introducing
pipeline stages can further enhance the performance to make
it a good choice for future high speed communication
systems. The interleaved data from block interleaver for
WiMAX/WLAN is provided in every clock cycle. However,
if the block size is selected in such a way that it is not
exactly equal to the size of row-column matrix, then zero
padding is used for the un-used spaces and these zeros are

pruned out while reading the data from matrix after all
permutations. If pruning is needed then maximum of two
clock cycles are needed to get a valid data output from
interleaver/de-interleaver.

VII. CONCLUSION

A very low silicon cost hardware interleaver for
WiMAX/WLAN and DVB is presented which supports the
mapping of vital types of interleavers like channel
interleaver, CTC block interleaver and convolutional
interleaver onto a single architecture. The realization of low
cost solution for interleaver address generation is made
possible by reducing the algorithmic complexity by re-

TABLE I
HW USAGE COMPARISON FOR INTERLEAVER IMPLEMENTATION

No. Implementation Data Memory Structure
Total Memory

Size Total Size
Operating
Frequency

1.
RAM for WiMAX
(big off-chip Mem.

required)

16.9K bit for addressing table
+ 12.2K bit for Data 28.5 Kbit --- ---

2.

RAM for DVB (General
Structure)

Extra Sync. Circuitry
Needed

32 x 8b x 1
64 x 8b x 2

128 x 8b x 4
256 x 8b x 4

13.25 Kbit --- ---

3. Xilinx Virtex-5 [18] Block RAM
2048 x 9b x 1 18 Kbit 210 LUTs

+ memory
262/360 MHz

Speed Grade -1/-3

4. Altera FLEX-10KE [19] 8 Embedded Array Blocks
each 2048 bits 16 Kbits 392 LEs

+ memory 120 MHz

5. Lattice ispXPGA [20] 8 Block RAMs
512 x 9b x 8 36 Kbits 284 LUTs

+ memory 132 MHz

6. Ref. Design [4] 256 x 8b x 6 12 Kbit 0.60 mm2 100 MHz
7. Ref. Design [5] 256 x 8b x 6 12 Kbit 0.484 mm2 150 MHz

8. Ref. Design [6] 12 x 24b x 6
108 x 36b x 8 32 Kbit 0.72 mm2 200 MHz

9. Ref. Design [7] 128 x 8b x 2
256 x 8b x 4 10 Kbit --- ---

10. Our Design 512 x 8b x 1
1024 x 8b x 1 12 Kbit 0.18 mm2 140 MHz

Fig. 13. Cost comparison for hardware multiplexing.

0.1

0.2

0.3

0.4

0.5

0.6
A : No MUX

(Memory for both Address and Data)
B : No MUX

(Separate ADG Core, Separate DM)
C : Partial MUX

(Separate ADG Core, Shared DM)
D : Full MUX

(Shared ADG, Shared DM)

A B C D

A
re

a
(m

m
2
)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

762

structuring the interleaving algorithms to avoid complex
functions. Transformation of 1-D interleaver functions into
2-D space provided the major breakthrough to reduce the
hardware cost. At the same time, the hardware overheads
due to small memory banks are minimized by using
relatively larger memories. The final results presented in
Table 1, show the silicon efficiency in comparison with
reference designs. Reduced complexity encourages enabling
on-the-fly computation of permutation patterns for
interleaver.

The presented architecture consumes 3.5mW power at a
frequency of 140 MHz, thus providing sufficient
performance for high speed communication. It also provides
a generalized platform to map different block interleavers
with different block sizes and also to map different
convolutional interleavers having upto 12 branches and
requiring a total memory less than or equal to 1536 bytes.
Performance, low silicon cost and re-configurability for
multiple standards make this architecture a suitable
candidate to be adapted in many multimode communication
systems.

ACKNOWLEDGMENT

The authors would like to thank Anders Nilsson, Eric Tell, and
Erik Alfredsson of Coresonic AB, Linköping, Sweden, Johan Eilert
and Di Wu of LiU, Linköping, Sweden, for some helpful
discussions on interleaver design and tool setup.

REFERENCES

[1] IEEE 802.16e–2005: “IEEE Standard for local and metropolitan area
networks, Part 16: Air Interface for Fixed Broadband Wireless Access
Systems – Amendment 2: Medium Access Control Layers for
Combined Fixed and Mobile Operations in Licensed Bands.”

[2] ETSI EN 300-744 V1.5.1: “Digital Video Broadcasting (DVB);
Framing Structure, Channel Coding and Modulation for Digital
Terrestrial Television,” Nov. 2004.

[3] IEEE 802.11-2007: “Standard for local and metropolitan area
networks, Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Sepcifications,” Revision of IEEE Std.
802.11-1999.

[4] Y. N. Chang and Y. C. Ding: “A Low-Cost Dual Mode De-interleaver
Design,” Int. conf. on Consumer Electronics, 2007.

[5] Y. N. Chang: “A Low-Cost Dual Mode De-interleaver Design,” IEEE
Transaction on Consumer Electronics, vol. 54, no. 2, May 2008, pp.
326 – 332.

[6] Y. W. Wu and P. Ting: “A High Speed Interleaver for Emerging
Wireless Communications,” Proc. of International Conf. on Wireless
Networks, Communications and Mobile Computing, vol. 2, June
2005, pp. 1192 – 1197.

[7] J. B. Kim, Y. J. Lim and M. H. Lee: “A low complexity FEC Design
for DAB,” Proc. of IEEE Int. Symposium On Circuits and Systems,
May 2001, vol. 4, Sydney, Australia, pp. 522 – 525.

[8] G. D. Forney: “Burst-Correcting Codes for the Classic Bursty
Channel,” IEEE Transaction on Communication Tech., Oct-1971,
Vol. COM-19, No. 5, pp. 772 – 781.

[9] J. L. Ramsey: “Realization of Optimum Interleavers,” IEEE
Transaction on Information Theory, May-1970, Vol. IT-16, No. 3, pp.
338 – 345.

[10] C. Berrou, A. Glavieus, and P. Thitimajshima: “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” Proc. of IEEE
ICC, May 1993, vol. 2, pp. 1064 - 1070.

[11] Ji-Hoon Kim and In-Cheol Park: “Duo-binary circular turbo decoder
based on border metric encoding for WiMAX,” Proc. of IEEE
ASPDAC, March 2008, pp. 109 – 110.

[12] Cheng-Hung Lin, Chun-Yu Chen and An-Yeu Wu: “High-
Throughput 12-Mode CTC Decoder for WiMAX Standard,” Proc. of
IEEE VLSI-DAT, April 2008, pp. 216 – 219.

[13] C. Berrou, M. Jezequel, C. Douillard, and S. Kerouedan: “The
advantages of non-binary Turbo codes,” Proc. of IEEE Info. Theory
Workshop, Sept. 2001, pp. 61–63.

[14] S. Vafi and T. Wysocki: “Weight distribution of turbo codes with
convolution interleavers,” IET Communications, 2007, Vol. 1(1), pp.
71 – 78.

[15] E. K. Hall and S. G. Wilson: “Stream-Oriented Turbo Codes,” IEEE
Transaction on Information Theory, July-2001, Vol. 47, No. 5, pp.
1813 – 1831.

[16] S. Vafi and T. Wysocki: “On the Performance of Turbo Codes with
Convolutional Interleavers,” Proc. of Asia-Pacific Conference on
Communications, Oct. 2005, pp. 222 – 226.

[17] S. Vafi and T. Wysocki: “Performance of convolutional interleavers
with different spacing parameters in turbo codes,” Proc. of 6th
Australian Communication Theory Workshop, Feb. 2005, pp. 8 –12.

[18] Xilinx Inc.: “Interleaver/De-Interleaver,” Product Specification, v5.1,
DS250, March 2008.

[19] Altera Inc.: “Symbol Interleaver/De-Interleaver Core,” Mega Core
Function User’s Guide, ver. 1.3.0, June 2002.

[20] Lattice Semiconductor Inc.: “Interleaver/De-Interleaver IP Core,”
Core User’s Guide, ipug_61_02.5, August, 2008

R. Asghar is working on a Ph.D. degree at the
Department of Electrical Engineering of Linköping
University, Sweden. He received M.Sc. degree in
Physics from Quaid-i-Azam University, Islamabad,
Pakistan, and M.S. degree in Computer Engineering
from Center for Advanced Studies in Engineering
(CASE), Islamabad, affiliated with University of
Engineering and Technology, Texila, Pakistan. His
research activity is mainly focused on flexible and re-
configurable forward error correction sub-systems
for baseband processor platform.

D. Liu is Professor and the Director of Computer
Engineering at the Department of Electrical
Engineering of Linköping University, Sweden. He
got technology doctor degree from Linköping
University Sweden in 2005. He is IEEE senior
member. He published more than 100 papers and
holds 5 US patents. The focus of his research is high
performance low power ASIP (application specific
instruction set processors) and integration of on-chip
multi-processors for communications and media
signal processing. Dake has experiences also in

design of communication systems, Radio frequency CMOS integrated circuits.
Dake Liu is the co-founder and CTO of FreehandDSP AB Stockholm Sweden.
Dake Liu is currently the co-founder and CTO of Coresonic AB Linköping
Sweden. Dake Liu was a senior ASIC designer and low power design specialist
in Ericsson Microelectronics, Stockholm since 1995 to 1998.

Fig. 14. Layout snapshot of proposed interleaver architecture.

