
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

753

 

 

 Abstract—A hardware efficient, multi mode, re-configurable 
architecture of interleaver/de-interleaver for multiple standards, 
like DVB, WiMAX and WLAN is presented. The interleavers 
consume a large part of silicon area when implemented by using 
conventional methods as they use memories to store permutation 
patterns. In addition, different types of interleavers in different 
standards cannot share the hardware due to different construction 
methodologies. The novelty of the work presented in this paper is 
threefold: 1) Mapping of vital types of interleavers including 
convolutional interleaver onto a single architecture with flexibility 
to change interleaver size; 2) Hardware complexity for channel 
interleaving in WiMAX is reduced by using 2-D realization of the 
interleaver functions; and 3) Silicon cost overheads reduced by 
avoiding the use of small memories. The proposed architecture 
consumes 0.18mm2 silicon area for 0.12µm process and can 
operate at a frequency of 140 MHz. The reduced complexity helps 
in minimizing the memory utilization, and at the same time 
provides strong support to on-the-fly computation of permutation 
patterns. 
 
Keywords—Hardware interleaver implementation, WiMAX, 

DVB, block interleaver, convolutional interleaver, hardware 
multiplexing. 

I. INTRODUCTION 

HE focus of this research is to enable the hardware re-
use for FEC subsystems. Among FEC subsystems, 

interleavers and de-interleavers appeared to be the most 
silicon consuming. This is due to the silicon cost of the 
addressing/permutation tables used in the conventional 
approaches. Due to rapidly changing technology trends, 
many consumer products require the adaptation of different 
interleaving standards. Therefore a re-configurable 
architecture supporting multiple radio communication 
standards with minimal hardware cost is always beneficial. 
This paper presents a flexible and low cost hardware 
interleaver architecture, which covers the block interleavers 
for channel interleaving and duo-binary turbo codes adopted 
in IEEE 802.16e [1] and the convolutional interleaver as 
specified in ETSI EN 300-744 [2].  

System level overview for IEEE 802.16e called WiMAX 
is shown in Fig. 1(a) and for ETSI EN 300-744 called DVB 
is shown in Fig. 1(b). WiMAX uses the block interleaver for 
channel interleaving and duo-binary turbo code interleaving. 

 
R. Asghar is with Department of Electrical Engineering, Linköping 

University, SE-58183, Linköping, Sweden (phone: +46 (0)13 28 2313; fax: 
+46 (0)13139 282 ; e-mail: rizwan@ isy.liu.se). 

D. Liu is with Department. of Electrical Engineering, Linköping 
University, SE-58183, Linköping, Sweden (e-mail: dake@ isy.liu.se). 

In block interleavers, the data is written sequentially in a 
memory and read in a random order after applying certain 
permutations. The block interleaver can also be considered 
as a row-column matrix. In this case, data is written row-
wise in a memory configured as a row-column matrix and 
then read column-wise after applying certain intra-row and 
inter-row permutations. On the other hand, the convolutional 
interleavers use multiple first-in-first-out (FIFO) cells with 
different widths and depths to disperse the adjacent 
information. In addition to different structures of block 
interleaving and convolutional interleaving, they also 
impose different latency measures. All these mismatches 
between different types of interleavers make it hard to 
implement them on a single architecture. Recently [4] [5] 
has proposed an architecture to implement the de-interleaver 
for WiMAX and DVB in a single chip using 0.6 mm2  and 
0.484 mm2 area respectively. A fast interleaver design 
covering 802.16 and 802.11 has been proposed in [6] with 
some extra hardware cost. An FPGA implementation of 
DVB interleaver is described in [7] with emphasis on 
minimizing memory utilization. The architecture given in 
[4] [5] and [7] use six small memories each having size of 
255 byte or less, which turns out to be hardware inefficient 
due to significant overheads of small memories. Some 
commercial implementations for interleaver/de-interleavers 
are also available from major FPGA vendors like Xilinx, 
Altera and Lattice Semiconductor. The architecture insights 
for these implementations are not disclosed and they are 
provided as IP Blocks. However, the available literature 
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Fig. 1.  Overview of encoding in (a) WiMAX channel,  
(b) DVB channel. 
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[18]–[20] explains the memory configuration, performance 
and area utilization in terms of logic elements (LEs) or 
lookup-tables (LUTs). 

Our proposed architecture uses two single port memories 
of size 512 bytes and 1024 bytes, thus minimizing the 
overheads due to small memories. It enables the hardware 
re-use for different types of interleavers to compute the 
interleaved addresses for writing/reading the data to/from 
memory, in order to achieve the low cost solution. Low cost 
solution is also supported by realizing the 1-dimensional 
permutation functions provided for WiMAX channel 
interleaver into 2-dimentional functions, where it is easy to 
realize the interleaver as a row-column matrix. Section 2 of 
this paper presents the 2-D transformation steps for 
WiMAX/WLAN channel interleaver and section 3 describes 
the interleaver construction for duo-binary turbo codes. The 
convolutional interleaver construction is provided in section 
4 while section 5 presents the complete hardware solution 
for re-configurable interleaver. Section 6 and 7 provide the 
implementation results and conclusion respectively. 

II. WIMAX/WLAN CHANNEL INTERLEAVER 

WiMAX uses Read-Solomon and convolutional encoding 
followed by an interleaver as shown in Fig. 1(a) to detect 
and correct errors to improve the performance of the 
communication system. Different interleaving patterns apply 
for different modulation schemes BPSK/QPSK, 16-QAM 
and 64-QAM. The channel interleaving in WiMAX/WLAN 
[3] is based on a block interleaver, which is expressed in the 
form of a set of two equations for two steps of permutations. 
The first step ensures that adjacent coded bits are mapped 
onto non-adjacent subcarriers, while the second step ensures 
that adjacent coded bits are mapped alternately onto less or 
more significant bits of constellation, thus avoiding long 
runs of lowly reliable bits.  

The first permutation ݉௞ for index ݇ is defined by: 

( )%cbps
k

N k
m k d

dd
= ⋅ +⎛ ⎞ ⎢ ⎥

⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
 (1)

Here ௖ܰ௕௣௦ is the block size corresponding to number of 
coded bits per allocated sub-channels per OFDM and typical 
value for d used in WiMAX is 12 and 16. The operator % is 
defined as the modulo function computing the remainder 
and the operator ۂݔہ is the floor function i.e. rounding 
towards zero. The second permutation ݆௞ for index ݇ is 
given by:  

%kk
k k cbps

cbps

mm dj s m N s
Ns

⋅= ⋅ + + −
⎛ ⎞⎛ ⎞⎢ ⎥⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

(2)

The parameter ݏ is defined as ݏ ൌ ݈ܿ݁݅൫ ௖ܰ௣௖/2൯, where 
௖ܰ௣௖ is number of coded bits per sub-carrier, i.e., 1, 2, 4 or 6 

for BPSK, QPSK, 16-QAM or 64-QAM respectively and 
݈ܿ݁݅ operation is rounding towards infinity. The de-
interleaver, which performs the inverse operation, is also 
defined by the two permutations. Let ݊ be the index of 
received bits within the received block of ௖ܰ௕௣௦ bits. The 
first permutation ݉௡ for index ݊ is defined by: 

%n
cbps

nn dm s n s
Ns

⋅= ⋅ + +
⎛⎛ ⎢ ⎥ ⎞ ⎞⎢ ⎥
⎜⎜ ⎟ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝⎝ ⎣ ⎦ ⎠ ⎠

 (3)

The second permutation ݇௡ for index ݊ is given by: 

( )1 n
cbpsn n

cbps

m
dNk d m

N
⋅−= ⋅ − ⋅

⎛ ⎢ ⎥ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎣ ⎦ ⎠

 (4)

The range of ݊ and ݇ for eq. (1) to (4) is defined as 0, 1, 
2, . . . . ሺ ௖ܰ௣௕௦ െ 1ሻ. If we try to implement the two steps of 
permutations by direct computation then they are found to 
be quite hardware inefficient. This is due to the presence of 
complex functions like floor function and modulo function.  

The alternate is to consider the two steps as one step and 
find the correlation between input and output which should 
be hardware efficient. We present here the idea of realizing 
the one dimensional equations into a joint 2-dimensional 
expression. It is not necessary to transform both set of 
equations to 2-D space and implement separately, as they 
are inverse of each other. Thus only one set of equations can 
be transformed for efficient hardware implementation and 
same can be used for other by just swapping the order of 
read and write of data into memory. The following sub-
sections present the transformation steps for all kinds of 
modulation schemes used in WiMAX/WLAN.  

A.  BPSK / QPSK 

Due to ݈ܿ݁݅ operation the parameter ݏ is 1 for both BPSK 
and QPSK. Defining ܰ ൌ ௖ܰ௕௣௦ eq. (3) simplifies to  
݉௡ ൌ ݊ ൅ 0 ൌ ݊, and therefore eq. (4) becomes:    

( )( )1n
d n

k d n N
N

⋅
= ⋅ − ⋅−

⎢ ⎥
⎢ ⎥⎣ ⎦

 

n
N d nd n

k d n
d NN

⋅⋅
= ⋅ +− ⋅⎛ ⎞ ⎢ ⎥⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎣ ⎦⎠

 

n n nk d β γ= ⋅ +  (5)

Where  

and
/

n n
N d n d n n

n
d N N N d

β γ
⋅ ⋅

= − ⋅ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Due to the presence of floor function, it is difficult to 
work out a complete algebraic solution for these equations, 
however looking at the behavior of different terms and 
verifying for all possible block sizes, we try to re-structure 
the equations. MATLAB is used for verification of new 
structures at all stages. For a simple illustration, an example 
case of BPSK with 2 sub channels and d ൌ 16, N ൌ 32, is 
taken and behavior of  β୬ is analyzed against the index ݊. 

2
2

n
n

nβ = − ⋅⎢ ⎥
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( )0 0 0%2n nn β β= → = → =  

( )1 1 1%2n nn β β= → = → =  

( )3 0 2%2n nn β β= → = → =  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

( )1 %2n nn n nβ β= → = → =  

After checking all cases for BPSK and QPSK (i.e. sub-
channels 1,2,4,8,16), ߚ௡ can be generalized as: 

( )%n
N

n
d

β =  

Thus for BPSK or QPSK case, eq. (5) can now be written 
as : 

( )%n
N d n

k d n
d N

⋅
= ⋅ +⎢ ⎥

⎢ ⎥⎣ ⎦
 (6)

Introducing 2 dimensions ݅ and ݆ (i.e. a two dimensional 
array), for which ݆ increments when ݅ expires, the ranges for 
݅ and ݆ can easily be selected as mentioned below: 

( ) ( )0,1, ...... ' '1 %
N N

i which satisfies against n if i n
d d

= =− (7)

0,1, ....... ( 1) ' '
/

n
j d withbehavior against n j

N d
= − = ⎢ ⎥

⎢ ⎥⎣ ⎦  (8)

The interleaver can now be realized as a 2D row-column 
matrix with size ݅ ൈ ݆. Total number of columns is ݀, 
defined by the limit on ݆ and total number of rows is ܰ/݀. 
Eq. (6) can be written in the form: 

,n i jk k d i j≡ = ⋅ +  (9)

Here ݅ and ݆ are row and column counters respectively but 
at the same time, they also provide the inter-row and inter-
column permutations. The case of BPSK and QPSK is the 
simplest one as it does not carry any specific inter-row or 
inter-column permutation pattern due to the parameter ݏ ൌ
1. That is why we end up with a relatively simple hardware 
needing just one addition and a multiplication as shown in 
Fig. 2(a), but it provides the basis for analysis for 16-QAM 
and 64-QAM which are more complicated. 

B.  16-QAM 

The parameter ݏ is 2 for 16-QAM therefore eq. (3) and 
eq. (4) can be written as: 

2 % 2
2n

d nnm n
N

⎛ ⎞⎛ ⎞⋅⎢ ⎥⎢ ⎥= ⋅ + +⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
 (10)

nn
n n

N d md m
k d m

d NN

⋅⋅
= ⋅ +− ⋅⎛ ⎞ ⎢ ⎥⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎣ ⎦⎠

 (11)

Two terms can again be defined as ߚ௡ and  ߛ௡ . 

and
.n n

n n n
N d m d m

m
d N N

β γ
⋅

= − ⋅ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (12)

Therefore n n nk d β γ= ⋅ +  

After verifying for all the range for WiMAX, the 
parameter ߛ௡ can be written as: 

. .

/
n

n
d m d n n

j
N N dN

γ = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦  (13)

However, it does not mean that ݉௡ is equal to ݊ all the 
time. This is valid only due to the presence of floor function 
around it. Using definitions in eq. (10) and eq. (13), ߚ௡ can 
be re-written as: 

2 % 2
2n

Nd n d nn n
dN N

β ⋅ ⋅
= ⋅ + + − ⋅⎛ ⎞⎛ ⎞⎢ ⎥ ⎢ ⎥⎢ ⎥

⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
(14)

Now we try to re-arrange this equation to find some new 
structure which is similar to eq. (9). For illustration purposes 
some steps for the 16-QAM example case with ݀ ൌ 16 and 
ܰ ൌ 64 are given below: 

 

Fig. 2.  HW realization for channel interleaving in WiMAX (a) 
BPSK-QPSK, (b) 16-QAM, (c) 64-QAM. 

 

Fig. 3.  Examples of data interleaving for (a) 16-QAM, N=64;  
(b) 64-QAM, N=96. 
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( ) ( )
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( 1) 1 % 2 % 21

n i jr ij j

i i ii
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≡ = +−
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×
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Where ݅ and ݆ are defined with ranges as mentioned in eq. 
(7) and eq. (8) i.e. 

%
/

N ni and jn
d N d

⎛ ⎞ ⎢ ⎥
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

= =  

Verifying for all the cases in 16-QAM, we reach to a new 
structure for ߚ௡ as given in eq. (15). This structure is not as 
simple as that of BPSK/QPSK case. The reason is the 
presence of permutation pattern in 16-QAM case. 
Considering the 2 dimensions ݅ and ݆, the 2D transformation 
of interleaver for 16-QAM can be described as: 

, ,n i j i jk k d r j≡ = ⋅ +  (16)

The parameter ݎ௜,௝ provides an intra-row permutation 
pattern sequence for selective columns, such that a 
permutation is applied for all alternate columns ሺ2ݕ ൅ 1ሻ௧௛ 
and no permutation is applied for each 2ݕ௧௛ columns, where 
ݕ ൌ 1,2, … … … … ݀/2. Considering total number of rows as 
ܴ, the required inter-row permutation for row number 
݅ ሺ0,1,2 … … … ܴ െ 1ሻ is ݅ ൅ 1 and ݅ െ 1 for each 2݅௧௛ and 
ሺ2݅ ൅ 1ሻ௧௛ row respectively. Looking at eq. (16), the generic 
structure for 16-QAM is same as that of eq. (9) except the 

additional complexity for selective row permutation. The 
structure of eq. (16) is easy to implement with a row and 
column counter ݅ and ݆. The terms with modulo function can 
be controlled by just the LSB of corresponding variable and 
the rest can be managed by a lookup table (LUT) or an 
adder. As number of rows in the block can be many (upto 96 
for WiMAX) thus use of LUT is not efficient here. Instead 
we can use a 7 bit adder, which can also give the benefit of 
generalizing the implementation. The hardware realization 
for interleaver address generation for 16-QAM in WiMAX 
is shown in Fig. 2(b). 

C.  64-QAM 

As number of coded bits per sub-carrier are 6 for 64-
QAM transmission, thus using the parameter s ൌ 3, eq. (3) 
is written as:    

3 % 3
3n
n d nm n

N
⎛ ⎞⎛ ⎞⋅⎢ ⎥ ⎢ ⎥= ⋅ + +⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

 (17)

Defining the two terms ߚ௡ and  ߛ௡ as given in eq. (12) and 
eq. (13) we can write expression for ߚ௡ for 64-QAM as: 

3 % 3
3n

Nn d n d nn
dN N

β ⋅ ⋅
= ⋅ + + − ⋅⎛ ⎞⎛ ⎞⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
(18)

Again applying the same re-structuring exercise as we did 
for 16-QAM case, we reach to an even more complicated 
2D-structure for ߚ௡. Due to increased complexity for 
permutation patterns for 64-QAM the intermediate steps 
carry much longer terms, thus we directly present the final 
structure for ߚ௡. 
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Fig. 4.  CTC Encoder with Interleaver. 
 

Fig. 5.  Hardware for CTC Interleaver. 

CTC
Interleaver

S1 S2 S3

A
B

A
B

Y1,W1

Y2,W2

Systematic part

Parity
part

0

1

2

3

R

i_addr

N
msb

1

0

–
+

N
msb

1

0

–
+Q3

Q2
Q1
‘1’

P0

‘0’

i%4



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

757

 

 

Here ݅ and ݆ are row and column count respectively, with 
the ranges mentioned in eq. (7) and eq.(8). The new 
parameters ݅Ԣ and ݆Ԣ are defined as below: 

( )' % 3 and ' % 31i j ji= =+  

The term ߚ௡ for 64-QAM provides the selective inter-row 
permutation for every ሺ3݆ ൅ 1ሻ௧௛ and ሺ3݆ ൅ 2ሻ௧௛ column. 
The permutation for all these columns is within 3 rows and 
afterwards it is repeated. Considering total number of rows 
as ܴ, the inter-row permutation in ሺ3݆ ൅ 1ሻ௧௛ columns for 
row number ݅ ሺ0,1,2 … … … ܴ െ 1ሻ is ݅ ൅ 1, ݅ ൅ 1, ݅ െ 2 for 
3݅௧௛, ሺ3݅ ൅ 1ሻ௧௛ and ሺ3݅ ൅ 2ሻ௧௛ row respectively. The inter-
row permutation for ሺ3݆ ൅ 2ሻ௧௛ columns is ݅ ൅ 2, ݅ െ 1 and 
݅ െ 1 for 3݅௧௛, ሺ3݅ ൅ 1ሻ௧௛ and ሺ3݅ ൅ 2ሻ௧௛ row respectively. 
Examples of address permutations for 16-QAM and 64-
QAM with small block sizes are shown in Fig. 3, which also 
correspond to the permutation patterns described here. 

Combining the interleaver structure for all the cases, the 
2D single step generic interleaver function ݇௜,௝ can be 
described as: 

, ,i j i jk d r j= ⋅ +  (20)

Where ݎ௜,௝ ൌ ݅ for BPSK/QPSK and it is defined by eq. 
(15) and eq. (19) for 16-QAM and 64-QAM respectively. 
Although eq. (19) looks very long and complicated, but 
eventually, we get a hardware efficient solution. 
Additionally we stick to the generic interleaver hardware for 
all types of modulation schemes. The implementation of 
modulo terms ݆%3 and ሺ݅ ൅ 1ሻ%3 and some other terms 
inside braces are easier to generate through a very small 
lookup table. Other permutation values with addition and 
subtraction can be implemented with the help of a 
multiplexer and an adder. The hardware realization for 64-
QAM interleaver is shown in Fig. 2(c). 

III. INTERLEAVER FOR DUO-BINARY TURBO CODES 

The turbo codes [10] invented in 1993 captured great 
importance due to exhibiting near Shannon-limit 
performance. Recently, double binary turbo codes 
(convolutional turbo codes, CTC) have received a great 
attention as they are adopted in several mobile radio systems 
such as DVB and WiMAX. They can offer many advantages 
like performance, over the classical single-binary turbo 
codes [11]. Fig. 4 shows the block diagram for the duo-
binary encoder including an interleaver. In CTC the 
information is treated as pair of bits and the two output 
parts, systematic output and parity output are almost un-
correlated due to the presence of interleaver. The interleaver 
for CTC is a two step interleaver and is defined for a 
particular block size ܰ. Parameters for block size, 
modulation scheme and coding rate are provided in WiMAX 
standard [1], and are designated as ଴ܲ, ଵܲ, ଶܲ and ଷܲ. Two 
steps of interleaving are described below: 

Step 1:  
Let the incoming sequence be 
଴ݑ ൌ ሾሺܣ଴, ,଴ሻܤ ሺܣଵ, ,ଵሻܤ ሺܣଶ, ,ଶሻܤ . . . . ሺܣேିଵ,  ,ேିଵሻሿܤ
for ݅ ൌ 0 . . . . . ܰ െ 1, 
if  ሺ݅%2ሻ ൌ ,௜ܣሺ  ݄݊݁ݐ  1 ௜ሻܤ ൌ ሺܤ௜,   .௜ሻܣ

The new sequence is 
ଵݑ ൌ ሾሺܣ଴, ,଴ሻܤ ሺܤଵ, ,ଵሻܣ ሺܣଷ, ,ଷሻܤ . . . . ሺܤேିଵ,  ேିଵሻሿܣ

Step 2:  
The function ܲሺ݆ሻ provides the address of the couple 
from the sequence ݑଵ that shall be mapped onto address 
j of the interleaved sequence. ܲሺ݆ሻ is defined by the set 
of four expressions with a switch selection as follows: 
for ݆ ൌ 0 . . . . . . . ܰ െ 1, 
switch ሺ݆ % 4ሻ:  

case 0: ܲሺ݆ሻ ൌ ሺ ଴ܲ .  ݆ ൅ 1ሻ % ܰ 
case 1: ܲሺ݆ሻ ൌ ቀ ଴ܲ .  ݆ ൅ 1 ൅ ே

ଶ
൅  ܲ1ቁ  % ܰ 

case 2: ܲሺ݆ሻ ൌ ሺ ଴ܲ .  ݆ ൅ 1 ൅ ܲ1ሻ % ܰ 
case 3: ܲሺ݆ሻ ൌ ቀ ଴ܲ .  ݆ ൅ 1 ൅ ே

ଶ
൅  ܲ3ቁ  % ܰ 

The four equations given in step 2 can be written in 
combined form as: 

( )0 .( ) %jP j QP j N+=  (21)

Where 

1

2

3

1 ; ( %4 0)
1 / 2 ; ( %4 1)
1 ; ( %4 2)
1 / 2 ; ( %4 3)

j

if j
N P if j

Q
P if j
N P if j

=

+ + =
=

+ =

+ + =

⎧
⎪
⎨
⎪
⎩

 

Let 

0 0. % 0j P j Nβ β= → =  

Then recursively: 

( )01 %jj P Nββ + +=  

Fig. 6.  Convolutional interleaver and de-interleaver in DVB. 

Fig. 7.  Hardware for RAM read/write address generation for 
convolutional (de) interleaver in DVB. 
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Now if we know ߚ௝ by recursive computation, ܲሺ݆ሻ can 
be computed from the following equation. 

( )( ) %j jQP j Nβ +=  (22)

By looking at the range of parameters ߚ௝ and ܳ௝, their 
sum cannot be larger than 2ܰ. Thus ܲሺ݆ሻ can be computed 
by using addition and subtraction with compare and select 
logic, as shown in Fig. 5 where the values for  ܳ௝ are 
provided through a lookup table. Same type of hardware is 
used in the recent work [12] and [13] to implement the 
interleaver for complete CTC decoder design. Our objective 
is to integrate this hardware with other interleaver structures 
in a multiplexed way to achieve a flexible and 
reconfigurable interleaver which can support the WiMAX 
standard, in case the turbo code is used. 

IV. CONVOLUTIONAL INTERLEAVER FOR DVB 

The convolutional interleaver used in DVB is based on 
the Forney approach [8] which is compatible with Ramsey 
type III approach [9]. In order to distribute burst errors, 
which are not corrected by Viterbi decoder in receiver, a 
convolutional interleaver is used in transmitter between RS 
encoding and convolutional encoding as shown in Fig. 1(b). 
Thus a de-interleaver has to be incorporated in the receiver 
before the RS-decoder, to be able to decode the packets. The 
convolutional interleaver for DVB consist of  ܫ ൌ 12 
branches and each branch j is composed of first-in-first-out 
(FIFO) shift registers with depth ݆ ൈ ܯ where ,ܯ ൌ 17 for 
DVB. The packet of 204 bytes consisting of one sync byte 
ሺ0 ൈ 0 ݎ݋ 47 ൈ  8ሻ is entered into the interleaver in aܤ
periodic way. For synchronization purpose the sync bytes 
are always routed to ܾ0 ݄ܿ݊ܽݎ of interleaver as shown in 

 
 

Fig. 8.  Flow Graph for (a) Channel Interleaving in WiMAX, (b) CTC Interleaving, 
(c) The read/write address computation for DVB. 

 

Fig. 9.  Flow Graph for combined interleaver (Gray blocks 
show the flow overlap and hardware sharing between 
different interleavers). 
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Fig. 6. The convolutional interleaving provides half the 
latency as compared to block interleaving and also 
consumes less memory size. Recently convolutional 
interleavers have been analyzed to work with Turbo Codes 
[14] – [17], which make them more versatile, thus general 
and re-configurable convolutional interleaver architecture 
can be of significance. The improvement in performance of 
turbo codes using convolutional interleavers provides the 
motivation to integrate the functionality of convolutional 
interleaver with block interleavers to increase the flexibility 
for working with turbo codes. This section presents the 
hardware implementation of convolutional interleaver which 
will be integrated with block interleavers in next section. 

Due to large consumption of silicon area, the 
implementation of the convolutional interleaver or de-
interleaver using first-in-first-out (FIFO) register cells 
would be very hardware inefficient. To achieve a hardware 
efficient solution, RAM based implementation is proposed. 
The memory partitioning is made in such a way that by 
applying appropriate read/write addresses in a cyclic way, it 
exhibits the branch behavior as required by convolutional 
interleaver. RAM write and read addresses are generated by 
the hardware shown in Fig. 7. The hardware components 
used here are almost the same as used by interleaver design 
for WiMAX, thus providing the basis for multiplexing the 
hardware blocks for re-use. The main difference is the use of 
11 registers to keep track of next write addresses for each 
branch, which is the idea of using cyclic pointers instead of 
using FIFO shift registers. For each branch the 
corresponding write address is provided by the concerned 
pointer register and next write address (which is also called 
current read address) is computed by using an addition and a 
comparison with the branch boundaries. The branch 
boundaries are computed on the fly using an adder and a 
multiplier in connection with a branch counter.  

For implementing convolutional de-interleaver same 
hardware is used by implementing the branch counter in 
reverse order (decrementing by 1). In this way same branch 
boundaries are used, and the only difference is that the sync 
byte in the data is now synchronized with the largest branch 
size as shown in Fig. 6. Keeping the same branch 
boundaries for de-interleaver, the width of pointer register 
becomes fixed. This gives an additional benefit that the 
width of pointer register may be optimized efficiently, i.e. 
instead of using all pointer register of width 11 bit we can 
use smaller width for the lower branches and larger width 
for the upper branches. 

V. COMPLETE HARDWARE 

Fig. 8 presents the flow graphs for the computation of 
interleaved addresses for memory read and write for the  
interleaver types covered in sections 2 – 4. The combined 
flow graph illustrating flow sharing between different 
implementations is presented in Fig. 9. In order to fulfill the 
shared flow, in a multiplexed way, the complete hardware 
for the data interleaving or de-interleaving for multiple 
standards is divided into sub-blocks like control FSM block, 
address generation block and memory organization block. 
These blocks are briefly described in the following sub-
sections. 

A.  Control FSM 

An eight state control FSM shown in Fig. 10 is used to 
synchronize the flow for address computation. The control 
FSM serves different initialization requirements for different 
standards at startup. In the initialization phase for 
WiMAX/WLAN, the controller computes the number of 
rows for a particular block size in state S1, while for DVB 
the pointer registers are initialized in state S5 to their 
respective start points. States S2 – S4 are shared for channel 
interleaving and duo-binary turbo code interleaving, 
whereas state S2 also serves for synchronization with the 
external world. After initialization, the FSM keeps track of 
block size by employing row and column count, thus 
providing the block synchronization required for each 
standard. State S6 and S7 are used for sync detection in case 
of DVB interleaver. Once sync pattern is detected, state S4 
is again used for branch counting and branch 
synchronization. 

B.  Address Computation Circuitry 

The address computation is achieved for different 
standards by multiplexing the hardware covered in sections 
2 – 4. Some additional multiplexers and glue logic is used to 
support the re-configurability for different standards and 
different modulation schemes. The hardware multiplexed 
circuit for combined address computation is shown in Fig. 
11(a). Here, the multiplier can further be optimized to only 
one adder, but it is kept there to make the design general for 
any branch size and any number of columns in the block 
interleaver. The address computation circuitry also involves 
a lookup table implementing the decoding logic for operand 
selection and a register file consisting of 12 pointer 
registers. The pointer registers are mainly used for DVB, 
thus not sharing with other types of implementations. The 
computation intensive blocks in the address computation 
circuitry are 4 adders/subtractors, a multiplier and a 
comparator. Except one subtractor which is only used for 
CTC interleaver, all the rest of the blocks are being shared 
by different interleaver implementations. This provides a 
highly multiplexed architecture with good hardware 
utilization for different interleaver implementations. 

 

Fig. 10.  Control FSM for combined hardware interleaver. 
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C.  Memory Organization 

The interleaved address for block interleaver and 
read/write address for convolutional interleaver computed 
by the address generation circuitry are combined according 
to the configuration input for specific standard to make the 
final read/write address for the memory. The total data 
memory size required is 1536 byte. This limit is set by 
maximum block size of 1536 bytes for WiMAX, i.e. 64-
QAM and 16 sub-channels. If we have the luxury to use 
dual port memory which can read and write in a single clock 
cycle, then we can use one big memory of 1536 bytes, but 
keeping in view hardware in-efficiency for the 
implementation of dual port memory, and to make the 
memory size raise to the power 2, we split the memory into 
two memories with size 512 bytes and 1024 bytes.  

Fig. 11(b) shows the memory organization with address 
selection logic. By applying the delay line of 5 clock cycles 
in the path of read address and control signal for the 
selection of the output data, we make it possible that data 
write and read should not be performed for the same 
memory in a single clock cycle. This provided the basis to 
use relatively bigger memories for DVB interleaver and thus 
the hardware cost overheads associated with use of small 
memories are also avoided. The memory utilization for 
DVB in comparison with use of small memories is shown in 
Fig. 12. The memory with size of 512 bytes as shown in Fig. 
12(c) can be reduced to 256 bytes if proposed architecture is 
only intended to be used for DVB or the target block size for 
WiMAX is upto 1280 bytes.  

VI. IMPLEMENTATION RESULTS 

The hardware shown in Fig. 11 provides the complete re-
configurable hardware interleaver design for multiple 
standards. The RTL code for this hardware is written in 
Verilog HDL and the correctness of the design is verified by 
two approaches. First by comparing the data from hardware 
with that of the interleaved data generated through 

MATLAB and then by checking the data in order, by 
cascading two hardware blocks, first configured as 
interleaver and second configured as de-interleaver.  

 

Fig. 11.  (a) Address generation hardware for combined interleaver, (b) Memory organization for the hardware interleaver. 

Fig. 12.  Memory utilization for DVB (a) Generalized structure,  
(b) Structure proposed in [7], (c) Our proposed structure. 
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After validating the correctness of design, the design 
was synthesized for 0.12µm standard CMOS technology and 
then layout was generated using SoC Encounter. Core size 
of the proposed architecture is 0.18 ݉݉ଶ which is lower 
than the reference designs as shown in Table 1. The major 
gain in terms of silicon cost is due to efficient and shared 
implementation of address computation circuitry and by 
sharing the data memory as shown in Fig. 13. Although 
direct comparison of area with commercially available 
FPGA implementations [18] – [20] is not possible, but 
looking at the memory requirements our design remains 
efficient. The available literature reveals that these 
commercial implementations use dual port memory support 
from block RAMs available on target FPGA platforms, 
which is not a good choice for chip implementations. 
Further, it also reveals that they do not compute the row or 
column permutations on the fly; instead they take row or 
column permutation tables in the form of a configuration file 
as input and use them to generate the final interleaved 
address. In this way, the complexity for on-the-fly 
computation of permutation patterns is avoided but it 
requires extra memory to store the permutation patterns. 

Chip core layout for the proposed architecture is shown in 
Fig. 14. The design can run upto 140 MHz without any 
pipelining and consumes 3.5mW power in total. Introducing 
pipeline stages can further enhance the performance to make 
it a good choice for future high speed communication 
systems. The interleaved data from block interleaver for 
WiMAX/WLAN is provided in every clock cycle. However, 
if the block size is selected in such a way that it is not 
exactly equal to the size of row-column matrix, then zero 
padding is used for the un-used spaces and these zeros are 

pruned out while reading the data from matrix after all 
permutations. If pruning is needed then maximum of two 
clock cycles are needed to get a valid data output from 
interleaver/de-interleaver. 

VII. CONCLUSION 

A very low silicon cost hardware interleaver for 
WiMAX/WLAN and DVB is presented which supports the 
mapping of vital types of interleavers like channel 
interleaver, CTC block interleaver and convolutional 
interleaver onto a single architecture. The realization of low 
cost solution for interleaver address generation is made 
possible by reducing the algorithmic complexity by re-

TABLE I 
HW USAGE COMPARISON FOR INTERLEAVER IMPLEMENTATION 

No. Implementation Data Memory Structure 
Total Memory 

Size Total Size 
Operating 
Frequency 

1. 
RAM  for WiMAX 
(big off-chip Mem.  

required) 

16.9K bit for addressing table 
+ 12.2K bit for Data 28.5 Kbit --- --- 

2. 

RAM for DVB (General 
Structure) 

Extra Sync. Circuitry 
Needed 

32 x 8b x 1 
64 x 8b x 2 

128 x 8b x 4 
256 x 8b x 4 

13.25 Kbit --- --- 

3. Xilinx Virtex-5 [18] Block RAM 
2048 x 9b x 1 18 Kbit 210 LUTs 

+ memory 
262/360 MHz 

Speed Grade -1/-3 

4. Altera FLEX-10KE [19] 8 Embedded Array Blocks  
each 2048 bits 16 Kbits 392 LEs  

+ memory 120 MHz 

5. Lattice ispXPGA [20] 8 Block RAMs 
512 x 9b x 8 36 Kbits 284 LUTs 

+ memory 132 MHz 

6. Ref. Design [4] 256 x 8b x 6 12 Kbit 0.60 mm2 100 MHz 
7. Ref. Design [5] 256 x 8b x 6 12 Kbit 0.484 mm2 150 MHz 

8. Ref. Design [6]  12 x 24b x 6 
108 x 36b x 8 32 Kbit 0.72 mm2 200 MHz 

9. Ref. Design [7]  128 x 8b x 2 
256 x 8b x 4 10 Kbit --- --- 

10. Our Design 512 x 8b x 1 
1024 x 8b x 1 12 Kbit 0.18 mm2 140 MHz 

 

 
Fig. 13. Cost comparison for hardware multiplexing. 
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structuring the interleaving algorithms to avoid complex 
functions. Transformation of 1-D interleaver functions into 
2-D space provided the major breakthrough to reduce the 
hardware cost. At the same time, the hardware overheads 
due to small memory banks are minimized by using 
relatively larger memories. The final results presented in 
Table 1, show the silicon efficiency in comparison with 
reference designs. Reduced complexity encourages enabling 
on-the-fly computation of permutation patterns for 
interleaver. 

The presented architecture consumes 3.5mW power at a 
frequency of 140 MHz, thus providing sufficient 
performance for high speed communication. It also provides 
a generalized platform to map different block interleavers 
with different block sizes and also to map different 
convolutional interleavers having upto 12 branches and 
requiring a total memory less than or equal to 1536 bytes. 
Performance, low silicon cost and re-configurability for 
multiple standards make this architecture a suitable 
candidate to be adapted in many multimode communication 
systems. 
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