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Abstract—This paper presents a mathematical model and a 

methodology to analyze the losses in transmission expansion 
planning (TEP) under uncertainty in demand. The methodology is 
based on discrete particle swarm optimization (DPSO). DPSO is a 
useful and powerful stochastic evolutionary algorithm to solve the 
large-scale, discrete and nonlinear optimization problems like TEP. 
The effectiveness of the proposed idea is tested on an actual 
transmission network of the Azerbaijan regional electric company, 
Iran. The simulation results show that considering the losses even for 
transmission expansion planning of a network with low load growth 
is caused that operational costs decreases considerably and the 
network satisfies the requirement of delivering electric power more 
reliable to load centers.   
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I. INTRODUCTION  
RANSMISSION expansion planning (TEP) is an important 
component of power system planning that should answer 
the following questions [1, 2]: 

1)  Where to build a new transmission line?  
2)  When to build it? 
3)  What type of transmission line to build? 
Taking into account the planning period, the planning 

problem can be considered like a one-stage problem, when it 
is called static planning, or the planning horizon can be 
separated in several stages, and in this case we have a 
multistage transmission expansion planning problem [3]. In 
this study, we analysis only the static planning problem but the 
methodology can be extended to the multistage planning.  

Static TEP (STNEP) is a large-scale, discrete, non-linear 
combinatorial optimization problem that different methods 
such as GRASP [4], Bender decomposition [5], HIPER [6] 
and sensitivity analysis [7] have been proposed for its solution. 
But in all of them, the problem has been solved regardless to 
effect of network losses on transmission expansion planning in 
environments with uncertainty. The most researched planning 
is called basic and centralized planning in which the 
uncertainness in demand is not considered. In other words, in 
this planning, the optimal expansion plan is determined for 
only one amount of demand.  

Recently, global optimization techniques like genetic 
algorithm [1, 8, 9], simulated annealing [10, 11], Tabu search 
[12] and decimal coded genetic algorithm (DCGA) [13, 14] 
have been proposed for the solution of STNEP problem. These 
evolutionary algorithms are heuristic population-based search 
procedures that incorporate random variation and selection 
operators.  

Although, these methods seem to be good methods for the 
solution of TEP problem, However, when the system has a 
highly epistatic objective function (i.e. where parameters 
being optimized are highly correlated), and number of  
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parameters to be optimized is large, then they have degraded 
efficiency to obtain global optimum solution and also 
simulation process use a lot of computing time. Moreover, in 
all of them, the role of losses in transmission expansion 
planning considering uncertainty in demand has not been 
studied. In order to overcome these drawbacks and regarding 
the fact that the literature about this issue is inexistent, in this 
paper, expansion planning is investigated considering network 
losses and uncertainty in demand using discrete particle swarm 
optimization (DPSO). Particle swarm optimization method 
(PSO) is a novel population based metaheuristic, which utilize 
the swarm intelligence generated by the cooperation and 
competition between the particle in a swarm and has emerged 
as a useful tool for engineering optimization [15, 16]. Unlike 
the other heuristic techniques, it has a flexible and well-
balanced mechanism to enhance the global and local 
exploration abilities. Also, it suffices to specify the fitness 
function and to place finite bounds on the optimized 
parameters.  

In this study, network losses cost, uncertainty in demand 
and also the expansion cost of related substations from the 
voltage level point of view are included in the proposed 
objective function. The studied voltage levels, in this study are 
230 and 400 kV. The results evaluation reveals that 
considering the role of network losses for solution of the 
STNEP problem under environments with uncertainty in 
demand is caused that even for low load growth coefficients, 
configurations which have higher voltage levels be more 
economic for network expansion and therefore the total 
expansion cost of network (expansion and operational costs) 
decreases considerably. 

II. THE PROBLEM FORMLATION UNDER UNCERTAINITY 
Due to evaluating effect of the network losses on STEP 

problem in a multi voltage level transmission network under 
uncertainty in demand and subsequent adding expansion cost 
of substations to expansion costs, the proposed objective 
function is defined as follows: 
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Where: 
OF: Objective function of STNEP.  
ECk: Expansion cost of network in scenario k. 
LCk: Annual losses cost of network in scenario k. 

k
ir : Loss of load for i-th bus in scenario k. 

T 
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α: A coefficient for converting loss of load to cost 
($US/MW).  
PRk: Occurrence probability of scenario k. 
CLij: Construction cost of transmission line in corridor i-j. 

k
ijn : Number of new circuits of corridor i-j in scenario k. 

SCc: Cost of c-th type transformer (related costs are given in 
Appendix A). 

k
im : Number of transformers that have been predicted for 

constructing in i-th bus under scenario k. 
CMWh: Cost of one MWh ($US/MWh).  

k
ijR : Resistance of branch i-j in scenario k.  
k

tijI , : Flow of branch i-j in t-th year under scenario k. This 
current is varied with respect to annual load growth and 
therefore depends on the time.  
Kloss: Losses coefficient.  
Ω : Set of all network busses.  
NY: Number of years after expansion to calculate the 
network losses. Its rate in all scenarios has been considered 
10 years. 
NC: Number of expandable corridors of network.   
NB: Number of network busses. 
ST: Number of types for constructed transformers. 
NS: Number of scenario. 
The calculation method of Kloss has been given in [13]. 
According to [13, 14] the problem constraints are: 

0=−+ kkkk dgfS                                 (4) 

0))(( 0 =−+− k
j

k
i

k
ijij

k
ij

k
ij nnf θθγ                       (5) 

ij
k
ijij

k

ij fnnf )( 0 +⋅≤ β                               (6) 

ij
k
ij nn ≤≤0                                        (7) 

Where, Ω∈),( ji  and: 
Sk: Branch-node incidence matrix in scenario k. 
f 

k: Active power matrix for each corridor in scenario k.             
gk: Generation vector in scenario k. 
dk: Demand vector in scenario k. 

k
iθ : Phase angle of each bus in scenario k. 
k
ijγ :Total susceptance of circuits for corridor i-j in    

scenario k.   
k
ijn : Number of constructible circuits for corridor i-j in 

scenario k. 
ijn : Maximum number of constructible circuits in corridor 

i-j. 
ijf : Maximum of transmissible active power through 

corridor i-j which will have two different rates according to 
voltage level of candidate line. 
β: A coefficient for providing security margin from loading 
of lines view point. This coefficient guaranties required 
adequacy of lines to satisfy the all of network loads at years 
after expansion. 

The goal of the STEP problem is to obtain number of lines 
and their voltage level to expand the transmission network in 
order to ensure required adequacy of the network along the 
specific planning horizon. Thus, problem parameters are 
discrete time type and consequently the optimization problem 
is an integer programming problem. For solution of this 
problem, there are various methods such as classic 
mathematical and heuristic methods. In this study, the discrete 
particle swarm optimization is used to solve the STEP 
problem due to flexibility and simple implementation. 

III. DISCERET PARTICLE SWARM OPTIMIZAION  
The PSO algorithm was introduced by Eberhart and 

Kennedy in 1995 [17]. Original PSO was inspired by the 
behavior of a flock of birds or a school of fish during their 
food-searching activities. The PSO believed to be effective in 
multi dimensional, linear and nonlinear problems. The form of 
PSO has the position vector and the velocity vector term, and it 
is represented as Xi = (xi1, xi2, . . . ,xid) and Vi= (vi1, vi2. . . vid) 
for i-th particle in d-dimensional space. By the function, 
namely, the fitness function for optimization, the best positions 
of each particle and whole particle (group) are obtained at best 
fitness function. Each of them is represented as 

1( ,..., )id i idPbest pbest pbest= , 1( ,..., )g g gdPbest pbest pbest=  
[18]. The following equations are used to calculate new 
velocities and positions of the particles for calculating the next 
fitness function value [19]: 

))(())(()()1( 2211 txPrctxPrctvtv idbestidbestidid gdid
−+−+×=+ ω    (8) 

)1()()1( ++=+ tcvtxtx ididid ,  1,2...,        d= 1,2...,Di n=     (9) 
Where n is the number of particle in a swarm, and D is the 

number of swarms, which is the dimension of the search space. 
t is the iteration number and c1, c2 are the acceleration constant. 
r1, r2 are the uniformly distributed random number between 0 
and 1, and ω is the inertia weight factor. vid (t) is the current 
velocity, and xid (t) the current position of i-th particle in d-th 
swarm. pbestid is the best position of i-th particle, and pbestgd  
is the best position of the group. The first term of (8), ωvid (t), 
provides particles' movements to roam in the search space. The 
second term, 1 1 ( ( ))

idbest idc r p x t× − , represents the individual 
movement. Third term, 2 2 ( ( ))gd idc r pbest x t× − , represents the 
social behavior in finding the global best solution. vid (t) is 
limited by max maxt

d id dv v v− ≤ ≤  , and max
dv  is proportional to 

the velocity of the convergence into the best solution. Usually, 
max

dv  is fixed in the range of the movement from the past c1 
and c2, the lower value takes the movement from the past target 
region, but the higher value takes the movement toward the 
past target region. The results of past experiments about PSO 
show that ω was not considered at an early stage of PSO 
algorithm. However, ω affects the iteration number to find an 
optimal solution. If the value of ω is low, the convergence will 
be fast, but the solution will fall into the local minimum. On the 
other hand, if the value will increase, the iteration number will 
also increase and therefore the convergence will be slow. 
Usually, for running the PSO algorithm, value of inertia weight 
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is adjusted in training process. It was shown that in PSO 
algorithm, the value of ω should be high in the first stage so 
that ω decreases gradually [20].  

Regarding the fact that parameters of the TEP problem are 
discrete time type and the performance of standard PSO is 
based on real numbers, this algorithm can not be used directly 
for solution of the TEP problem. There are two methods for 
solving the transmission expansion planning problem based on 
the PSO technique [21]: 

1) Binary particle swarm optimization (BPSO). 
2) Discrete particle swarm optimization (DPSO). 
Here, the second method has been used due to avoid 

difficulties which are happened at coding and decoding 
problem, increasing convergence speed and simplification. In 
this approach, the each particle is represented by three arrays: 
start bus ID, end bus ID and number of transmission circuits 
(the both of constructed and new circuits) at each corridor. In 
the DPSO iteration procedure, only number of transmission 
circuits needs to be changed while start bus ID and end bus ID 
are unchanged in calculation, so the particle can omit the start 
and end bus ID. Thus, particle can be represented by one array. 
A typical particle with 12 corridors is shown in Fig. 1. 

 
Xtypical = (1, 2, 3, 1, 0, 2, 1, 0, 0, 1, 1, 2) 

Fig. 1. A typical particle 
 
In Fig. 1, in the first, second, third corridor and finally 12th 

corridor, one, two, three and two transmission circuits have 
been predicted, respectively. Also, the particle’s velocity is 
represented by circuit’s change of each corridor. The value of 
ω is considered high in the first stage and then with increasing 
the iterations its value decreases gradually. Therefore, ω is used 
as the follows: 

max min
max

maxk iter
ω ω

ω ω
−

= −
×

                             (10) 

Where ωmax is the current weight factor, itermax is the 
maximum number of iteration, and k is a constant which is 
adjusted around 1.  

Finally, position and velocity of each particle is updated by 
the following equations [17]: 

))](())(()([)1( 2211 txPrctxPrctvFixtv idgdidididid −+−+×=+ ω  (11) 

)1()()1( ++=+ tvtxtx ididid                          (12) 
Where, Pid and Pgd are pbestid and gbestgd, and fix (.) is 

getting the integer part of f. When vid is bigger and smaller than 
max

dv  and - max
dv , make vid  = 

max
dv  and vid  = - max

dv , respectively. 
While, xid is bigger than upper bound of circuit number allowed 
to be added to a candidate corridor for expansion, then make xid 
equal the upper bound. While xid < 0, make xid  = 0. The other 
variables are the same to (8) and (9).  

The flowchart of the proposed DPSO algorithm is shown in 
Fig. 2. 

In this study, in order to acquire better performance and fast 
convergence of the proposed algorithm, parameters which are 
used in discrete PSO algorithm have been initialized according 
to Table 1.  

 

 
Fig. 2  Flowchart of the DPSO algorithm 

TABLE I 
VALUE OF PARAMETERS FOR DPSO  

Parameter Value 

Problem dimension 153 

Number of particles 5 

itermax 500 
C1 1 
C2 1.5 

ωmin 0.4 

ωmax 0.9 
max

dv  2 

 

IV. FITNESS FUNCTION CHOOSING 
The fitness function is one of the key elements of discrete 

particle swarm optimization (DPSOs) as it determines whether 
a given potential solution will contribute its elements to future 
generation through the selection process or not. Since the 
objective of DPSOs is to maximize the fitness, while the 
objective of transmission planning model is to minimize the 
objective function (OF) presented by Eq. (1), therefore it is 
necessary to map the objective function into the fitness 
function. The fitness function (Fit) adopted in this work is: 

OF
AFitness =                                           (7) 

Where, A is a system-dependent constant that in order to 
prevent the fitness from obtaining too small values, its value is 

Start 

The fitness function is defined and related 
variables of DPSO are selected. 

Positions and velocities of particles 
are generated randomly. 

New velocities and positions of the particles 
for calculating the next fitness function value 

are calculated from (11) and (12).

 

Fitness function is calculated. 

End

Is end condition 
satisfied? 

No 

Yes

pbestid and gbestid are determined. 

ω is specified according to (10). 
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considered big. 

V. RESULTS AND DISCUSSION 
The transmission network of the Azerbaijan regional electric 

system is used to test and evaluation of the proposed method. 
This actual network has been located in northwest of Iran and 
is shown in Fig. 3. All details of this network are given in [22].  

 

 
Fig. 3 Transmission network of the Azerbaijan regional electric 

company 
 

For considering uncertainty in STEP problem, three different 
scenarios with equal occurrence probabilities have been 
predicted for load growth. Also planning horizon is year 2019 
(10 years ahead) and network losses is calculated by DC load 
flow from planning horizon year to 10 years after it (year 
2029). Therefore, for feasibility of comparing the scenarios 
from their effect rate on network load view point, rates of 
network load at planning horizon with related load growth 
coefficients for different scenarios are given in Table 2. Value 
of coefficients α and β, and also CMWh are considered                     
107 $US/MW), 40% and 33 ($US/MWh) respectively. The 
proposed method is applied to the case study system and the 
results (lines which must be added to the network during the 
planning horizon year) are given in Tables 3 and 4. 

 
TABLE II 

PROPOSED SCENARIOS FOR CONSIDERING UNCERTAINTY IN DEMAND 

Scenario 3 Scenario 2 Scenario 1 Scenario Number 

9 7 5 Load Growth (%) 

4981 4139 3427 Load (MW) 

The first and second configurations are obtained neglecting 
and considering the network losses, respectively. By comparing 
the Tables 3 and 4, ignoring the network losses, a configuration 
with lower voltage level lines is proposed for expansion of the 
network. But if the network losses are considered, a 
configuration with higher voltage level lines is proposed for 
expansion purpose. Also, for better analyzing of proposed 
configurations, their expansion costs for different scenarios 
form load growth point of view are given in Tables 5 and 6. 

 
TABLE III 

FIRST CONFIGURATION FOR ALL SCENARIOS: NEGLECTING THE LOSSES 

Number of Circuits Voltage Level (kV) Corridor 

2 230 2-5 
2 230 3-7 
2 230 4-6 
2 230 4-8 
1 230 5-11 
1 230 5-15 
1 230 8-17 
1 230 8-18 
1 230 9-13 
1 230 9-16 

 
TABLE IV 

SECOND CONFIGURATION FOR ALL SCENARIOS: CONSIDERING THE LOSSES 

Number of Circuits Voltage Level (kV) Corridor 

2 400 1-2 
2 400 1-5 
2 400 1-16 
2 230 2-5 
1 400 2-7 
2 400 2-8 
2 400 2-13 
1 400 3-13 
2 230 4-5 
2 230 4-13 
2 400 5-6 
2 230 5-15 
2 400 5-16 
2 400 5-18 
2 400 7-8 
2 400 8-9 
1 400 8-11 
2 400 9-14 
2 400 13-14 
2 230 13-15 
2 230 16-17 

 
Comparison between Tables 5 and 6 shows that if network 

losses are neglected for solution of STEP problem, a 
configuration with lower expansion cost and higher network 
losses is obtained. But considering the network losses, a plan 
with respectively higher expansion cost and lower network 
losses is proposed for network expansion. Moreover, Tables 5 
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and 6 show that uncertainty in demand has no effect on 
expansion cost of lines while it effects on losses cost and 
expansion cost of substations. The reason is that expansion cost 
of substations from voltage level point of view and losses cost 
depend on loading of lines and substations. Thus, different load 
growths can be effect on these costs. Finally, it can be said that 
proposed configurations by discrete PSO for different scenarios 
are same and any loss of load is not exist. This fact reveals that 
proposed method has high efficiency for solution of STEP 
problem. Total expansion cost (sum of expansion and losses 
costs) of expanded network with the two proposed 
configurations for different scenarios is shown in Figs 4-6. 

 
TABLE V 

EXPANSION COSTS OF THE NETWORK FOR FIRST CONFIGURATION UNDER 
DIFFERENT SCENARIOS 

Scenario 3 Scenario 2 Scenario 1 Scenario Number 

67.1 67.1 67.1 Expansion Cost of Lines 
(million $US) 

0 0 0 Expansion Cost of 
Substations (million $US) 

4303.8 1600.6 594.7 Losses Cost (million $US) 

0 0 0 Loss of Load Cost 
(million $US) 

4370.9 1667.7 661.8 Total Expansion Cost of 
Network (million $US) 

 
TABLE VI 

EXPANSION COSTS OF THE NETWORK FOR SECOND CONFIGURATION UNDER 
DIFFERENT SCENARIOS 

Scenario 3 Scenario 2 Scenario 1 Scenario Number 

240.1 240.1 240.1 Expansion Cost of Lines 
(million $US) 

29.2 25.6 21 Expansion Cost of 
Substations (million $US) 

563.7 209.6 77.9 Losses Cost (million $US) 

0 0 0 Loss of Load Cost 
(million $US) 

833 475.3 339 Total Expansion Cost of 
Network (million $US) 
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Fig. 4 Sum of expansion costs and annual losses cost of the network 

with the two proposed configurations for scenario 1 
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Fig. 5 Sum of expansion costs and annual losses cost of the network 

with the two proposed configurations for scenario 2 
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Fig. 6 Sum of expansion costs and annual losses cost of the network 

with the two proposed configurations for scenario 3 

 
It can be seen that, for all scenarios, the total expansion cost 

of network with the second configuration is more than that of 
the first one until, about a few years after planning horizon, 
but afterward, the total expansion cost of network with first 
configuration becomes more than another one. For load 
growth of 5%, second one has investment return in 
comparison with first one about 4 years after expansion time. 
With rising load growth, investment return takes places earlier 
(for load growths of 7% and 9% this time is about 2 years and 
1 year respectively). Accordingly, it can be concluded that the 
network losses has important role in transmission expansion 
planning even for low load growths. 

VI.  CONCLUSION 
 In this paper, the effect of network losses on STEP problem 

under environments with uncertainty in demand is studied 
using discrete particle swarm optimization. The results analysis 
reveals that considering the network losses in transmission 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

870

expansion planning under different load growths is caused that 
total expansion costs and losses cost of network is decreased 
for long-term and mid-term. Also, it can be said that although 
cost of lines with higher voltage levels are more than other 
lines (lines with lower voltage levels), constructing this type of 
lines in transmission network is caused that investment cost is 
considerably saved and therefore the total expansion cost is 
calculated more exactly. Consequently, even in networks with 
low load growth, network losses plays important role in 
transmission expansion planning and subsequent determination 
of network arrangement and configuration. In addition, it can 
be concluded that the proposed algorithm is a respectively 
efficient method for solution of STEP problem. 
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