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Abstract—It has been shown that a load discontinuity at the end of 

an impulse will result in an extra impulse and hence an extra amplitude 
distortion if a step-by-step integration method is employed to yield the 
shock response. In order to overcome this difficulty, three remedies 
are proposed to reduce the extra amplitude distortion. The first remedy 
is to solve the momentum equation of motion instead of the force 
equation of motion in the step-by-step solution of the shock response, 
where an external momentum is used in the solution of the momentum 
equation of motion. Since the external momentum is a resultant of the 
time integration of external force, the problem of load discontinuity 
will automatically disappear. The second remedy is to perform a single 
small time step immediately upon termination of the applied impulse 
while the other time steps can still be conducted by using the time step 
determined from general considerations. This is because that the extra 
impulse caused by a load discontinuity at the end of an impulse is 
almost linearly proportional to the step size. Finally, the third remedy 
is to use the average value of the two different values at the integration 
point of the load discontinuity to replace the use of one of them for 
loading input. The basic motivation of this remedy originates from the 
concept of no loading input error associated with the integration point 
of load discontinuity. The feasibility of the three remedies are 
analytically explained and numerically illustrated. 
 

Keywords—Dynamic analysis, load discontinuity, shock response, 
step-by-step integration 

I. INTRODUCTION 
HE shock response from a short pulse is a special class of 
the dynamic analysis [1]–[3]. Although the loading time of 

the impulse is relatively short it might still play an important 
role in the design of certain classes of structures. The classical 
method to solve differential equations of motion or Duhamel’s 
integral [2], [3] is often employed to compute the response to an 
impulse for a linear elastic system. However, they are, in 
general, not applicable to a nonlinear system. Hence, a 
step-by-step integration method [4]–[17] is often used to solve 
a nonlinear system alternatively. In the step-by-step solution of 
the shock response from an impulse, it might experience that a 
very small time step is needed for conducting the step-by-step 
integration although the impulse is in a simple form, such as a 
rectangular impulse or a rising triangular impulse. This 
difficulty has been investigated [18] and it was shown that the 
load discontinuity at the end of an impulse is responsible for 
using a very small time step. This is because this discontinuity 
at the end of an impulse will lead to an extra impulse, and then  
an extra displacement is introduced in addition to the correct  
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displacement response in the step-by-step solution of the shock 
response to the impulse. It is clear that to reduce or even 
eliminate the extra impulse is the key to overcome the load 
discontinuity problem at the end of an impulse. For this purpose, 
three remedies were proposed and will be applied to overcome 
the difficulty caused by the load discontinuity at the end of an 
impulse. Although the analytical proofs of the three remedies 
will not be presented herein for brevity the concept of each 
remedy will be thoroughly explained. In addition, the 
feasibility each remedy will be confirmed by numerical 
examples.  

II.   LOAD DISCONTINUITY 
A load discontinuity at the end of an impulse will lead to an 

extra impulse, and thus an extra displacement response. This 
result has been analytically verified and numerically confirmed 
[18]. In addition, a simple formula is also defined so that the 
relative amplitude error for the shock response from an impulse 
caused by a load discontinuity at the end of the impulse can be 
reliably estimated for a linear elastic system. In fact, the relative 
amplitude error errA  is defined as 
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where iiA  and eiA  represent the total area of the input impulse 
and the area of the extra impulse, respectively. Meanwhile, q  
is the value of the load discontinuity at the end of the impulse 
and tΔ  is the step size. This is manifested from the plot of 
figure 1. 
 

 
Fig. 1 A load discontinuity and its relative amplitude error 
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In this figure, the symbol errE  is the extra relative amplitude 
error due to the presence of the extra impulse. It is apparent that 
the area of the extra impulse is equal to the half of the product 
of the discontinuity value at the end of the impulse and the size 
of integration time step. This implies that the extra impulse is 
linearly proportional to the step size. Consequently, it is natural 
to use a small time step for a complete step-by-step integration 
procedure so that the extra impulse can be reduced. However, 
the time step used in the step-by-step integration for 
overcoming the difficulty caused by load discontinuity may be 
very small and is much smaller than that required by general 
considerations. Thus, the computational efforts significantly 
increase in a time history analysis. 

III. REMEDY 1 
In structural dynamics, the equation of motion for a system is 

formulated based on the dynamic equilibrium of force, which 
includes four types of force and are the elastic spring force, 
damping force, inertial force and external force. As a result, it 
can be expressed as 
 

( ) ( ) ( ) ( )mu t cu t ku t f t+ + =&& &  (2) 
 
where m  is the mass, c  is the viscous damping coefficient, k  
is the stiffness and f  is the external force; ( )u t , ( )u t&  and 

( )u t&&  are the displacement, velocity and acceleration. 
It is generally recognized that the maximum displacement 

response to an impulse mainly depends upon the total amount 
of the applied impulse, i.e., external momentum, and is almost 
not affected by the shape of the loading impulse. Hence, it is 
very promising to obtain the shock response by considering 
external momentum directly. For this purpose, there is a great 
motive to construct the governing equation of motion from the 
dynamic equilibrium of momentum. Similar to the derivation of 
the force equation of motion, there are four types of momentum 
and they are the elastic spring momentum, damping 
momentum, inertial momentum and external momentum. 
Hence, the momentum equation of motion is found to be 
 

( ) ( ) ( ) ( )mu t cu t ku t f t+ + =&  (3) 
 
where 
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Apparently, ( )u t  is the integral of displacement with respect 

to time once; and ( )f t  is the integral of force with respect to 
time once and is the external momentum. 

Since the external momentum is used in the formulation of 
the momentum equation of motion, the difficulty caused by the 
load discontinuity at the end of an impulse will automatically 

disappear. The time integration of the external force ( )f t  is 
schematically plotted in figure 2.  
 

 
Fig. 2 No load discontinuity in external momentum 

 
This figure reveals that the external momentum will become a 
constant after the loading duration and there is no discontinuity 
in the external momentum at the time of dt . It is clear that the 
constant external momentum is equal to the total amount of the 
input impulse iiA . This also implies that a time step larger than 
the loading duration dt  may still lead to a reliable solution 
since the total amount of the impulse is inputted into the system 
in the step-by-step solution of momentum equation of motion. 

To demonstrate that the load discontinuity at the end of an 
impulse will lead to an extra amplitude distortion in the solution 
of force equation of motion while no extra amplitude distortion 
is found in the solution of momentum equation of motion, the 
shock responses from the three different shapes of impulses for 
a single degree of freedom system are obtained from using the 
Newmark explicit method to solve the force and the momentum 
equations of motion. To avoid the difficulty arising from the 
linearization error of an inelastic system, a linear elastic system 
is considered. The three different shapes of the impulses are 
shown in figure 3. 

 
Fig. 3 Three different shapes of linear impulses 

 
The lumped mass and stiffness of the system are simply 

taken to be 10000m kg=  and 10000k = /N m . The natural 
frequency of the system is found to be 1 /rad sec . Thus, the 
period of the system 2  T secπ= . Since 1

20/dt T π=  is smaller 
than 1/4, the three short pulses can be classified as impulses. 
The numerical results for the shock responses to these three 
impulses are plotted in figure 4. 
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The exact solution is obtained from the fundamental theory 
of structural dynamics for comparison purpose. Since the value 
of 1

20/t T πΔ = , which corresponds to the  time step of 0.1tΔ =  
sec , is very small, the period distortion is insignificant based 
on accuracy consideration.  
 

 
Fig. 4 Shock responses to SDOF system using Remedy 1 

 
In figures (4-a) and (4-b), the shock responses obtained from 

using the force equation of motion (F) with 0.05tΔ =  and 
0.1 sec  are unreliable while a reliable result can still be yielded 
by using the momentum equation of motion (M) with the time 
step as large as 0.3 t secΔ = . The inaccurate solutions obtained 
from the force equation of motion with 0.05tΔ =  and 0.1 sec  
for the rising triangular and rectangular impulses are due to the 
load discontinuity at the end of the impulses. It is manifested 
from figure (4-c) that acceptable solutions can be obtained from 
the force equation of motion with 0.05tΔ =  and 0.1 sec , and 
from the momentum equation of motion with 0.3 t secΔ = . 
This is because that there is no load discontinuity at the end of 
the descending triangular impulse and thus the use of the force 
equation of motion with 0.05tΔ =  and 0.1 sec  can provide 
accurate results. It is very important to find that the use of the 
momentum equation of motion with 0.3 t secΔ = , which is 
three times of the loading duration, still gives acceptable results 
for the three impulses. This implies that the momentum 
equation of motion can effectively capture the external 

momentum although the time step used is larger than the 
loading duration. 

IV. REMEDY 2 
Since the extra impulse arising from the load discontinuity at 

the end of an impulse is linearly proportional to the step size, it 
is promising to perform a single small time step immediately 
upon the termination of the applied impulse while the other 
time steps can be still conducted by using the step size 
determined from general considerations. The basic concept of 
this remedy is illustrated in figure 5.  
 

 
Fig. 5 Single small time step to overcome load discontinuity 

 
In this figure, a time step of tΔ  is used for the complete 

step-by-step integration procedure except that the time step 
right after the end of the impulse is performed by using a small 
time step of tαΔ , where α  might be chosen to be between 0 
and 1. Thus, the extra impulse caused by the load discontinuity 
at the end of the impulse will be reduced from ( )1

2eiA q t= Δ  to 

( )1
2eiA q tα= Δ , and then the relative amplitude error is 

reduced accordingly. It is apparent that the smaller the value of 
α  is, the less the relative amplitude error is. 

To confirm the feasibility of Remedy 2, the problem solved 
in the section of Remedy 1 is also used herein and the numerical 
results are displayed in figure 6. In general, the time step of 

0.1tΔ = sec , which is equal to the loading duration, is used for 
the whole step-by-step integration procedure except that a 
small time step of ( )tα Δ , where 1α = , 0.1, and 0.01 are 
considered, is conducted for the time step right after the end of 
the impulse. In figure (6-a), the amplitude distortion is very 
significant for the case of using 1α = . This case is numerically 
equivalent to conducting step-by-step integration without using 
Remedy 2. In general, amplitude distortion is decreased with 
the decrease of α  and a very reliable solution can be obtained 
from using 0.01α =  for the rising triangular impulse. Similar 
results are also found in figure (6-b) for the rectangular 
impulse. Unlike the numerical solutions found in figures (6-a) 
and (6-b), all the shock responses to the descending triangular 
impulse are almost overlapped together for the cases of using 
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1α = , 0.1, and 0.01 as shown in figure (6-c). This is because 
that there is no load discontinuity at the end of the descending 
triangular impulse and thus it involves no extra amplitude 
distortion. 
 

 
Fig. 6 Shock responses to SDOF system using Remedy 2 

 
Consequently, to overcome the load discontinuity occurred 

at the end of an impulse it seems appropriate to recommend the 
choice of 0.01α =  or smaller for the single small time step in 
practice while the other time steps are determined from general 
considerations. This is because that the single small time step 
will lead to an insignificant amplitude distortion. 

V.   REMEDY 3 
To elucidate the input error caused by the load discontinuity 

at the end of an impulse, the possible arrangements of the input 
data for the impulse are schematically sketched in figure 7. The 
impulse can be reliably captured if the line-connected segments 
at the integration points are taken to be in the sequence of 

ˆEFFGL L . However, it is impossible to input both data of F  
and F̂  at an integration point. In general, the data sequence of 

EFGL L  is often adopted for data input in practice although 
the sequence of ˆEFGL L  might also be used. Either using the 
input sequence of EFGL L  or ˆEFGL L , an input error will 
be introduced in representing the dynamic loading. In fact, the 
input sequence of EFGL L  will lead to a positive input error, 

i.e., the area of the triangle ˆFFG , while a negative input error, 
i.e., the area of the triangle ˆEFF , is introduced if the input 
sequence of ˆEFGL L  is adopted. Apparently, the input error 
caused by the load discontinuity immediately upon termination 
of the applied impulse will lead to a displacement response 
error. 
 

 
Fig. 7 Input error caused by load discontinuity 

 
Since the maximum shock response to an impulse is almost 

linearly proportional to the total amount of the impulse, the 
amplitude distortion can be significantly reduced if the input 
error at the time instant of discontinuity is largely reduced. 
Thus, it seems very promising to cautiously adjust the input 
data at the time instant of the load discontinuity so that there is 
no input error. In order to have a zero input error at the end of 
an impulse, the adjusted dynamic loading at the integration 
point of load discontinuity can be simply taken as the average 
value of the two discontinuity values of the input data F  and 
F̂ . This is depicted in figure 8, where the common use of input 
data F  is replaced by the input data of Z . 
 

 
Fig. 8 Adjusting input data to overcome load discontinuity 
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In this figure, the area of triangle EFZ  is almost equal to the 
area of triangle ˆZFG . Hence, there is almost no input error. 
This is because that the missing input impulse of the area of 
triangle EFZ  is compensated by the extra input impulse of the 
area of triangle ˆZFG . This remedy is simple and involves no 
extra computational efforts. The input sequences of EFGL L  
and ˆEFGL L  are referred to as S1 and S2, respectively, while 
that of EZGL L  is considered as S3.  
 

 
Fig. 9 Shock responses to SDOF system using Remedy 3 

 
The feasibility of Remedy 3 is also verified by the example 

considered for Remedy 1 and Remedy 2. The problem is solved 
by the Newmark explicit method with S1, S2 and S3 for using 

0.1tΔ = sec  and numerical results are plotted in figure 9. It is 
found in figure (9-a) that the response obtained from using S1 
is larger than the theoretical solution. In fact, the amplitude of 
the theoretical solution is only 10 mm  while it is 20 mm  for the 
result obtained from S1. This is because that a positive extra 
impulse, whose amount is equal to the total amount of the rising 
triangular impulse, is introduced into the system. Hence, the 
relative amplitude error is almost equal to 1. On the other hand, 
the shock response obtained from the use of S2 leads to a zero 
solution. This is because that a negative extra impulse, whose 
amount is equal to the total amount of the input rising triangular 
impulse, is introduced into the system. Hence, a zero solution is 

achieved. Apparently, this is also manifested from the fact that 
a zero load is inputted for each time integration point. On the 
other hand, it is amazing to find that a very accurate solution 
can be obtained from S3 since it coincides with the theoretical 
solution. This figure reveals that S1 will lead to an amplitude 
growth effect and S2 will result in an amplitude decay effect 
while S3 can have a very reliable solution. These numerical 
results are highly consistent with the analytical results. 

Very similar results are shown in figure (9-b) except that less 
amplitude distortions are found for using S1 and S2 when 
compared to those shown in figure (9-a). This is confirmed by 
the relative amplitude error errA  predicted by equation (1). The 
relative amplitude errors for S1 and S2 for the rising triangular 
impulse are found to be about 1 and −1 while those for S1 and 
S2 for the rectangular impulse are found to be 0.5 and −0.5. 
Again, there is almost no amplitude distortion in figure (9-c) 
since it involves no load discontinuity. 

VI. COMPARISONS OF REMEDIES 
The previous investigations reveal that all the three remedies 

can effectively overcome the difficulty caused by the load 
discontinuity at the end of an impulse without using a very 
small time step to reduce amplitude distortion. However, it is 
still of interest to compare and discuss the differences among 
the three remedies in conducting a step-by-step integration 
procedure. As a result, the best remedy can be identified and be 
recommended for practical applications. 

Remedy 1 is to use the momentum equations of motion 
instead of the force equations of motion for time integration. 
The momentum equations of motion can be easily derived from 
dynamic equilibrium of momentums or time integration of 
force equations of motion. Since the external momentum is 
used instead of the external force in the step-by-step solution of 
momentum equations of motion, the difficulty arising from the 
load discontinuity at the end of an impulse will automatically 
disappear. However, it is needed to involve extra computational 
efforts in calculating the time integration of restoring force in 
each time step for a nonlinear system. In addition, it is also 
needed to calculate the external momentum by integrating the 
external force with respect to time once before conducting the 
step-by-step integration. On the other hand, although the load 
discontinuity problem can be easily overcome by Remedy 2, 
where a very small, single time step is performed immediately 
upon the termination of the applied impulse, it will complicate 
the programming of dynamic analysis codes. This implies that 
either Remedy 1 or Remedy 2 has its disadvantage in practice. 
It is apparent that Remedy 3 is very simple in the step-by-step 
solution of shock response. In fact, its step-by-step integration 
procedure is the same as that used for general applications. The 
only change is the loading input data at the time instant of load 
discontinuity in performing a whole step-by-step integration 
procedure. The average value of the two discontinuity values at 
the integration point of load discontinuity is applied to replace 
the use of one of them for loading input. Since Remedy 3 will 
not consume extra computational efforts and will not 
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complicate the dynamic analysis codes, it seems to be the best 
remedy for practical applications in view of computational 
aspects. 

It is worth noting that although the numerical illustrations 
presented herein are only for single degree of freedom systems 
and for linear elastic systems for brevity, all the three remedies 
are applicable to any multiple degree of freedom systems and 
any nonlinear systems. Meanwhile, although only the 
Newmark explicit method is used to conduct the step-by-step 
integration in this study, it is apparent that all the three remedies 
are also applicable to the other step-by-step integration 
methods. 

VII. CONCLUSIONS 
A load discontinuity occurred at the end of an impulse will 

lead to an extra impulse and then an extra amplitude distortion 
in the displacement response. In order to effectively overcome 
this difficulty, three remedies were introduced to compute the 
shock responses. The concept of each remedy was thoroughly 
described in this work and a numerical example was used to 
confirm the feasibility of the three remedies. Remedy 1 is to 
solve the momentum equation of motion instead of the force 
equation of motion since the external force is integrated with 
time once and hence these load discontinuity will automatically 
disappear. Remedy 2 is proposed to perform a single, small 
time step immediately upon the termination of the applied 
impulse to effectively reduce the extra impulse while the other 
time steps are conducted by using the time step determined 
from the general considerations. It is also found that the 
selection of the time step for the single, small time step 
immediately upon the termination of the applied impulse equal 
to or smaller than one-hundredth of the other time steps is good 
enough to obtain an accurate solution. Remedy 3 is to adjust the 
input data at the integration point of the load discontinuity so 
that there is no input error.  

Since Remedy 3 will not consume any extra computational 
efforts, which is generally needed for Remedy 1, and will not 
complicate the dynamic analysis codes, which is inevitable for 
Remedy 2, it might be the best remedy for practical applications 
in view of computational aspects. 
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