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Lithium-Ion Battery State of Charge Estimation
Using One State Hysteresis Model with Nonlinear

Estimation Strategies
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Abstract—Battery state of charge (SOC) estimation is an important
parameter as it measures the total amount of electrical energy stored
at a current time. The SOC percentage acts as a fuel gauge if it
is compared with a conventional vehicle. Estimating the SOC is,
therefore, essential for monitoring the amount of useful life remaining
in the battery system. This paper looks at the implementation of three
nonlinear estimation strategies for Li-Ion battery SOC estimation.
One of the most common behavioral battery models is the one
state hysteresis (OSH) model. The extended Kalman filter (EKF),
the smooth variable structure filter (SVSF), and the time-varying
smoothing boundary layer SVSF are applied on this model, and the
results are compared.

Keywords—State of charge estimation, battery modeling, one-state
hysteresis, filtering and estimation.

I. INTRODUCTION

IN the last ten years, battery management systems (BMS)

have garnered lots of attention from many researchers.

Accurate BMS increases the life of a battery and reduces fast

ageing-effects, thermal runaways, and performance ceasing. It

is, therefore, vital and fundamental for the BMS to accurately

predict and estimate the SOC, among other critical parameters.

Several methods have been implemented for SOC estimation;

starting from very abstract models dealing with batteries as a

black-box, to very detailed electrochemical models which are

used to capture the battery internal physical behavior [1].

The most popular battery chemistry in use today is the

lithium-ion batteries [2]-[4]. Li-Ion batteries are often found

in portable electronic devices due to their lightweight and

ability to recharge relatively well. During operation, the

BMS estimate parameters that affect the battery packs and

their operating conditions [5]-[7]. A number of surveys have

been performed on BMS modeling and estimation [8]-[11].

Parameters of interest include terminal voltage (typically

measured), battery state of charge (SOC), state of health

(SOH), power and capacity fade, and instantaneous power.

These parameters must be estimated using a filtering strategy

such as the Extended Kalman filter (EKF).

In Section II, the EKF, SVSF, and VBL-SVSF filtering

methods are briefly described. Section III provides an overview

of the one state hysteresis (OSH) model. In Section IV, three
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nonlinear estimation strategies are applied on the OSH battery

model and compared. The paper then concludes in the final

section.

II. ESTIMATION STRATEGIES

This section provides an overview of the three nonlinear

estimation strategies used in this paper.

A. Extended Kalman Filter

Rudolph Kalman introduced the Kalman filter (KF) in the

1960s. Since then, KF has been one of the most commonly

used state and parameter estimation strategies. KF strategies

calculate a statistically optimal gain to correct predicted the

system state estimates [12]. For Kalman filter to be optimal

many strict assumptions must be followed, such as the system

and measurements functions must be linear and known, and

the noise must be white and Gaussian-distributed [13].

Many variations for Kalman filter have been introduced.

Andrews et al. [14] formulated the extended Kalman

filter (EKF) for the case of nonlinear systems and

measurements. The EKF method uses the first-order Taylor

series approximations to linearize the nonlinearities about the

operating point. The EKF equations are similar to the KF,

except for the linearization. The prediction phase of the EKF

begins as follows [14]:

x̂k+1|k = f
(
x̂k|k,uk

)
(1)

Pk+1|k = FkPk|kFT
k +Qk (2)

Note that the update phase is defined by the following set of

equations [14]:

ez,k+1|k = zk+1 −h
(
x̂k+1|k

)
(3)

Sk+1 = Hk+1Pk+1|kHT
k+1 +Rk+1 (4)

Kk+1 = Pk+1|kHT
k+1S−1

k+1 (5)

x̂k+1|k+1 = x̂k+1|k +Kk+1ez,k+1|k (6)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k (7)

The first-order Taylor series approximation is used to

linearize the non-linear state and measurement equations as

follows:

Fk =
∂ f (x)

∂x

∣∣∣∣
x=x̂k|k,uk

(8)
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Hk+1 =
∂h(x)

∂x

∣∣∣∣
x=x̂k+1|k

(9)

For a complete list of the nomenclature and the

corresponding definitions, please refer to the Appendix.

B. Smooth Variable Structure Filter (SVSF)

Saeid Habibi introduced the smooth variable structure filter

(SVSF) in 2007 [15]. The SVSF is a relatively new estimation

strategy with respect to the KF and EKF. The SVSF uses

the sliding mode concepts in calculating the correction gain.

Formulaically, the SVSF is a predictor-corrector estimator;

however, its gain is fundamentally different from KF gain.

The theory behind the SVSF estimation process is shown in

Fig. 1.

Fig. 1 The SVSF estimation concept

The prediction phase of the SVSF is similar to the EKF,

and can be described as follows:

x̂k+1|k = f
(
x̂k|k,uk

)
(10)

Pk+1|k = FkPk|kFT
k +Qk (11)

ez,k+1|k = zk+1 −h
(
x̂k+1|k

)
(12)

The SVSF gain is defined by (13).

Kk+1 =C+

diag
[(∣∣ez,k+1|k

∣∣
Abs + γ

∣∣ez,k|k
∣∣
Abs

)
◦ sat

(
ψ̄−1ez,k+1|k

)]

diag
(
ez,k+1|k

)−1
(13)

The update phase is defined as follows:

x̂k+1|k+1 = x̂k+1|k +Kk+1ez,k+1|k (14)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k(I −Kk+1Hk+1)
T

+Kk+1Rk+1KT
k+1 (15)

ez,k+1|k+1 = zk+1 −h
(
x̂k+1|k+1

)
(16)

Note that the SVSF gain is a function of: (i) a priori

measurement error, (ii) a posteriori measurement error, (iii)

SVSF memory, (iv) and a smoothing boundary layer term.

The smoothing boundary layer term is utilized to decrease the

magnitude of chattering created by the switching term in (13).

The existence subspace shown in Fig. 1 represents the

estimation processes’ amount of uncertainties [16]. This value

is defined in terms of modeling errors or measurement

uncertainties, and is often tuned by trial and error based on

the amount of system or measurement noise. The width of

the existence subspace β is time variant and is correlcated

to inaccuracy of the filter and battery model as well as the

measurement model [15]. The existence subspace value is not

known, however prior knowledge of the system is helpful to

set an upper limit.

C. Time-Varying Smoothing Boundary Layer (VBL SVSF)

Gadsden et al. [17] introduced the time-varying smoothing

boundary layer formulation of the SVSF in 2012 in order

to increase the estimation accuracy and avoid the chattering

effect. On the one hand, The SVSF estimation accuracy is

reduced by the chattering effect caused by the SVSF gain

definition. On the contrary, the chattering effect drastically

enhances filter robustness and stability against modeling errors

and uncertainties [15].

To obtain the VBL formulation, a correlation between the

partial derivative of the trace of a posteriori covariance and

the smoothing boundary layer term was introduced to the filter

gain derivation. The VBL-SVSF prediction phase is similar to

(10)-(12). The time-varying smoothing boundary layer (VBL)

is calculated using the following three equations:

Sk+1 = Hk+1Pk+1|kHT
k+1 +Rk+1 (17)

Ak+1 =
∣∣ez,k+1|k

∣∣
Abs + γ

∣∣ez,k|k
∣∣
Abs (18)

ψk+1 =
(
Ā−1

k+1Hk+1Pk+1|kHT
k+1S−1

k+1

)−1
(19)

The VBL-SVSF gain is then used to update the state

estimates and state error covariance matrix, as follows:

Kk+1 = H−1
k+1Āk+1ψ−1

k+1 (20)

x̂k+1|k+1 = x̂k+1|k +Kk+1ez,k+1|k (21)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k(I −Kk+1Hk+1)
T

+Kk+1Rk+1KT
k+1 (22)

ez,k+1|k+1 = zk+1 −h
(
x̂k+1|k+1

)
(23)

Both VBL-SVSF and SVSF works in a predictor-corrector

fashion, the main difference is the equations used to calculate

the filters gain. The main drawback of the SVSF is the fact

that its conservative fixed smoothing boundary layer is fixed

throughout the operation. This reduces the overall estimation

accuracy. The VBL-SVSF calculates a near-optimal value for

the boundary layer, to improve the estimation accuracy.
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III. ONE STATE HYSTERESIS MODEL

Various methods for battery modeling exist in literature.

Plett et al. [6] developed the most common used behavioral

models: the combined model, simple model, zero and one state

hysteresis models, and enhanced self-correcting model. All of

the models have the terminal voltage as an output and the SOC

as a system state. The one state hysteresis (OSH) is a popular

behavioral model and has been selected for use in this paper.

The hysteresis phenomena is very important to increase the

system performance and improve the SOC estimation accuracy

[8] The description of the one state hysteresis model shown

here may be found in details in [6].

In the OSH model, the terminal voltage is calculated as

follows:

yk = OCV (zk)− skM (zk)−Rik (24)

where sk represents the sign of the current. For some

sufficiently small and positive value ε , one has:

sk =

⎧⎨
⎩

+1

−1

sk −1

ik > ε
ik <−ε
|ik| ≤ ε

(25)

where M(zk) is a constant value and equal to half the difference

between the charge and discharge values [6]. As shown in the

previous equation, the hysteresis state is not a function of time,

but of SOC. The state-space representation of the OSH model

is defined as follows:

[
hk+1

zk+1

]
=

[
F (ik) 0

0 1

][
hk
zk

]

+

[
0 1−F (ik)

−ηiΔt
C 0

][
ik

M (z, ż)

]
(26)

yk = OCV (zk)−Rik +hk (27)

Furthermore, note that F(ik) = exp(−|ηii(t)γ/Cn|). The

parameters vector for the OSH is shown in (28) and the values

for the parameters is presented in Appendix V.

θ = [R+,R−,M+,M−,γ] (28)

IV. ESTIMATION PROBLEM AND RESULTS

This section discusses the estimation problem and the

results of applying the non-linear estimation strategies for the

purposes of estimating the Li-Ion state of charge.

A. Problem Setup

In this paper, the simulation data was collected from AVL

CRUISE software. This software is used to mimic a real-time

scenario for vehicles and power-trains modeling. The vehicle

simulation model was subjected to an urban dynamometer

driving schedule (UDDS) cycle. The vehicle velocity profile

for the UDDS cycle is shown in Fig. 2, and the corresponding

battery current profile is shown in Fig. 3. The main parameters

of interest include the terminal voltage (measurement) and the

state of charge (SOC).

Fig. 2 The UDDS velocity profile

Fig. 3 The UDDS current profile

The system and measurement noise covariance matrices

used by the EKF, and VBL-SVSF for state estimation are

defined as follows:

Q = diag
([

0.05 5×10−3
])

(29)

R = 0.1 (30)

The SVSF memory or forgetting factor is set as γ = 0.3,

and the fixed smoothing boundary layer width are set to ψ = 2

for the state estimates. These values were selected based on

designer knowledge of Q and R, and also by trial-and-error,

in an effort to improve the estimation accuracy. Note also that

the sample rate of the simulation is δT = 100 milliseconds.

B. Estimation Results

The three filters (EKF, SVSF, and VBL-SVSF) are used to

estimate the state of charge for the model discussed in Section

II.

Fig. 4 illustrates the SOC estimation results for the three

filters. The true SOC is a result of coulomb counting that is

used as the basis to compare the estimation performance for

the filters. As it is shown in Fig. 4 the VBL-SVSF has the
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best performance when compared to other filters in estimating

the SOC followed by SVSF and EKF. Particularly, the better

performance is more noticeable after the idle interval between

minutes 22 and 33. This improvement in SOC estimation

is significant because it solves the SOC estimation accuracy

problem for the battery systems of vehicles after they start

from a stop or idle condition.

Fig. 4 State of charge estimation using the three filters

Fig. 5 displays the corresponding terminal voltage estimates

using the three filters. All filters are capable of providing

estimates of terminal voltage.

Fig. 5 Battery terminal voltage estimation using the three filters

For better comparison, Fig. 6 shows the root mean squared

error (RMSE) in the state of charge calculated for three

estimators. The VBL-SVSF provides the best estimation

accuracy followed by the SVSF and EFK. The superior

performance of SVSF based estimation comes the specific

design of the corrective gain in this strategy that makes it more

robust to modeling uncertainties. Furthermore, VBL-SVSF

inherits the robustness from SVSF and estimation accuracy

from its optimal gain design.

Fig. 6 Terminal voltage RMSE using the three filters

V. CONCLUSION

This paper presented the results of applying three nonlinear

estimation strategies on a Li-Ion battery model. The one state

hysteresis model was used as a standard benchmark for three

filters: the extended Kalman filter (EKF), the smooth variable

structure filter (SVSF), and the time-varying smoothing

boundary layer formulation of the SVSF (VBL-SVSF). It was

found that the VBL-SVSF yielded the best results in terms of

the SOC estimation accuracy. This was to be expected based

on the formulation of the gain.

Future work will involve applying additional filtering

strategies, such as the unscented Kalman filter (UKF), cubature

Kalman filter (CKF), and the particle filter (PF). In addition, a

number of other popular battery models will be studied; such

as behavioural, equivalent circuit, and electrochemical models.

NOMENCLATURE

Symbol Description Unit

x State vector or values −
z Measurement (system output) vector or values −
w System noise vector −
v Measurement noise vector −
F Linearized system transition matrix −
H Linearized measurement (output) matrix −
A SVSF error vector (or matrix) −
K Filter gain matrix −
P State error covariance matrix −
Q System noise covariance matrix −
S Innovation covariance matrix −
ez Measurement (output) error vector −
γ SVSF memory or convergence rate −
ψ SVSF smoothing boundary layer −
diag[a] or ā Diagonal of some vector or matrix a −
sat() Saturation function −
|a| Absolute value of a −
ā Diagonal matrix of some vector a −
T Transpose of a vector −
+ Pseudoinverse of some non-square matrix −
◦ Denotes a Schur product −

APPENDIX

TABLE I
A LIST OF THE MODEL PARAMETERS

Parameter Value Unit

R+ 0.0022 Ω
R− 0.0018 Ω
M− 0.0105 −
M− -0.016 −
γ 0.1 −
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