
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:12, 2011

1748

Abstract—This paper presents an optimal design of linear phase

digital high pass finite impulse response (FIR) filter using Improved

Particle Swarm Optimization (IPSO). In the design process, the filter

length, pass band and stop band frequencies, feasible pass band and

stop band ripple sizes are specified. FIR filter design is a multi-modal

optimization problem. An iterative method is introduced to find the

optimal solution of FIR filter design problem. Evolutionary

algorithms like real code genetic algorithm (RGA), particle swarm

optimization (PSO), improved particle swarm optimization (IPSO)

have been used in this work for the design of linear phase high pass

FIR filter. IPSO is an improved PSO that proposes a new definition

for the velocity vector and swarm updating and hence the solution

quality is improved. A comparison of simulation results reveals the

optimization efficacy of the algorithm over the prevailing

optimization techniques for the solution of the multimodal, non-

differentiable, highly non-linear, and constrained FIR filter design

problems.

Keywords—FIR Filter, IPSO, GA, PSO, Parks and McClellan

Algorithm, Evolutionary Optimization, High Pass Filter

I. INTRODUCTION

IGITAL filter is an important part of digital signal

processing (DSP). The popularity of the DSP can be

owed to the extraordinary behavior of the filters. Filters

basically serve two purposes of signal separation and signal

restoration. Signal separation is needed when a signal has been

contaminated with interference, noise or other signal. Signal

restoration is needed when a signal has been distorted in some

way. Both of these problems can be rectified by both analog

and digital filters. Though analog filters are cheap, fast and

have large dynamic ranges both in amplitude and frequency,

digital filters are vastly superior in the level of performance

that can be achieved. A digital filter takes a digital input, gives

a digital output, and consists of digital components. On the

other hand an analog filter operates directly on the analog

input and is built entirely with analog components, such as

resistors, capacitors, and inductors. In analog filters limitations

are imposed by the electronic components such as accuracy

and stability of the resistors and capacitors, whereas no such

restrictions are there in the digital filter.  Due to the definite

nature of the coefficients of the digital filters, they are able to

achieve much more complex and selective designs. With the

digital filter one can achieve the target of a lower pass band

ripple, faster transition, and higher stop band attenuation.

Digital filter may be more expensive than an equivalent

analog filter due to their increased complexity, but they make
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many practical designs that are impractical or impossible as

analog filters. Thus digital filter outperforms analog filter in

many aspects.

Digital filter usually comes in two categories FIR and IIR.

A finite impulse response (FIR) filter is a type of digital filter

whose impulse response is of finite duration, since the impulse

response settles to zero within a finite amount of time.

Whereas an IIR filter has impulse response function that is

non-zero over an infinite length of time. The impulse response

never dies out [1]. FIR filter has a number of useful properties,

which gains a lot of preferences over the IIR filter. FIR filter

requires no feedback, which makes its implementation

simpler. The lack of feedback ensures that the impulse

response will be finite [2]. Since there is no required feedback,

all the poles are located at the origin and thus are located

within the unit circle. FIR filters have only zeros (no poles),

hence also known as all-zero filters. FIR filters also known as

feed forward or non recursive, or transversal filters.  FIR

filters are inherently stable. FIR filters can be easily designed

to have linear phase by making the coefficients symmetric.

There is a great flexibility in shaping their magnitude

response. They are easy and convenient to implement. FIR

filters are dependent upon linear-phase characteristics,

whereas IIR filters are used for applications which are not

linear. FIR’s delay characteristic is much better but they

require more memory. IIR filters are dependent on both input

and output whereas FIR filters are only dependent on the

input. IIR filters can become difficult to implement, and also

delay and distortion adjustments can alter the poles and zeros,

which make the filters unstable, whereas FIR filters always

remain stable. FIR filters are used for tapping of a higher-

order, and IIR filters are better for tapping of lower-orders,

since IIR filters may become unstable with tapping higher

orders.

Traditionally, there are many well known methods of filter

design such as the window method, frequency sampling

method and the optimal filter design methods. The windowing

method simply consists of truncating or windowing a

theoretically ideal filter impulse response by some suitably

chosen window function. The window method for digital filter

design is fast, convenient, robust but generally suboptimal. A

window is a finite array of coefficients selected to satisfy the

desirable requirements.

There are various kinds of window functions (Butterworth,

Chebyshev, Kaiser, and Hamming) available depending on the

filter specifications to be met like ripples in pass band and stop

band, stop band attenuation and transition width. Its major

disadvantage is the lack of precise control of the critical

frequencies such as pass band cutoff frequency and stop band

cutoff frequency. These values, in general, depend on the type

of the window and the filter length. Remez Exchange

algorithm proposed by Parks and McClellan, is used for the
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design of exact linear phase weighted Chebyshev FIR filter

[3]. Further a computer program has been developed for the

design of FIR digital filter by Parks McClellan [4]. The basic

problem which limits the use of this particular method is that

the relative values of the amplitude error in the frequency

bands are specified by means of the weighting functions and

not by deviations themselves. The program has to be iterated

many times in order to meet the filter specifications in terms

of stop band deviation, cutoff frequency and filter length [5].

Filter designing is a multimodal optimization problem, thus

making it a quite interesting and innovative research field [6].

Now a day, FIR filter is designed with the evolutionary

techniques, which provides far better control of parameters

and more nearly approximate ideal filter [7]. Different

heuristics and stochastic optimization methods have been

developed, which have proved themselves quite efficient for

the design of FIR filter like GA [7-9], simulated annealing

[10], Tabu Search [11] and artificial bee colony optimization

[12] etc. FIR filter has also been designed using differential

evolution [13].

GA proves itself to be far more efficient in terms of

obtaining local optimum while maintaining its moderate

computational complexity but they are not very successful in

determining the global minima in terms of convergence speed

and solution quality [14].

In this paper, the benefits of designing the FIR filter using a

more stochastic technique known as Particle Swarm

Optimization has been explored. The PSO proves itself to be

far more efficient than the previously discussed techniques in

many aspects. Particle Swarm Optimization is an evolutionary

optimization technique developed by Eberhart et al. [15]. The

merits of PSO lie in its simplicity to implement as well as its

convergence can be controlled via few parameters. Several

works have already been done in order to explore the

flexibility of FIR filter design provided by PSO. The

comparison of GA and PSO has been already made [16].

Several modifications of the already existing PSO technique

have been made so that its efficiency can be increased. PSO is

used with the differential evolution [17] to obtain a hybrid

optimization algorithm. The inertial weights and acceleration

coefficients are the parameters of PSO whereas scaling factor

and the recombination probability are the parameters of DE.

With the use of this method, the optimization algorithm

becomes insensitive to the parameters of PSO as well as DE.

In [18], the hybrid differential evolution approach (HDE),

which is derived from both differential evolution and PSO is

used. The inertial weight concept and the neighbor topology of

PSO are used with the concept of the DE, which avoids the

trapping of the solution in local minima as well as it speeds up

the convergence process. In DEPSO, new offspring is created

by the mutation of global best, which is taken as one of the

parent and Gaussian distribution is used [19]. PSO based on

velocity differential mutation is used for avoiding the local

minima [20]. In this paper velocity is mutated rather than the

particle’s position. PSO uses the concept of mutation to

increase the convergence speed and the global search ability.

Quantum-behaved Particle Swarm Optimization (QPSO)

which was proposed by Sun, is a novel algorithm based on the

PSO and quantum model [21]. In this concept each particle

has a quantum behavior. In quantum mechanics, a particle,

instead of having position and velocity, has a wave function.

By using this concept, one cannot find the positions and

velocities of the particles of search space exactly so the

algorithm gets modified accordingly.  Discrete Particle Swarm

Optimization method along with the concept of Quantum

evolution can be used for combinatorial optimization problem

[22]. In this method slight modification in the velocity update

is done so that it can update adaptively and can avoid local

minima. A new Quantum based PSO which uses hyper-chaotic

discrete system equation, as hc-QPSO is also used [23]. The

main concept in confining all the particles in identical particle

system is to remove the seasonal fluctuation, which helps in

better updating of the particle’s position. Averaging out the

search length is used to avoid the local minima and a 2-

dimensional hyper chaotic sequence theory is used. QPSO is

used for the design of FIR filters [24]. This algorithm reduces

the computational time, converges to the global optima and

proves to be more efficient than the other evolutionary

techniques like GA and PSO. The new concept of Quantum

infused PSO is also utilized for the design of digital filters

[25].The global best is selected by comparing the global best

obtained from the conventional PSO and the offspring

obtained from the QPSO. By merging the two techniques of

PSO and QPSO, the best of both the methods can be extracted

so as to obtain better results.

PSO is used for the design of FIR digital filters by using

LMS and Minimax strategies for different populations and

number of iterations [26]. PSO is not only being used for filter

design but also for various other optimization purposes like in

electrical systems, antenna etc. PSO with little amount of

modification as constrained PSO (CPSO) is used for the

designing of a nonlinear MIMO system identification, where

two types of kernels one linear and another Gaussian is used.

For parameter optimization, CPSO is used to obtain optimal

free parameters [27]. PSO is also used for the design of two

folded reflected array antenna for 77 GHz, by optimizing

maximum power in the direction of main beam as well as

obtaining proper antenna diagram from the reflector

configuration [28]. Beam forming system which uses adaptive

array antennas is very useful in mobile communication. K.A.

Papadopoulos proposes PSO and GA approaches for the

optimization of multiple constraints like beam direction,

suppression of side lobes and null placement and control [29].

Basically this is a multi-objective problem but all the

objectives have been converted to a single one with the help of

weighting factors, whose proper selection poses an important

task [30]. PSO is used to determine the control parameters of

proportional-integral (PI) or proportional-integral derivative

(PID) for speed control of a field oriented control (FOC)

induction motor. PSO in this case proves to be advantageous

in terms of improving the step response characteristics in

speed control as well as speed tracking of a FOC induction

motor [31].

In this paper, a new method for the design of FIR filters has

been discussed known as Improved Particle Swarm

Optimization (IPSO) [32]. The basic concept of the

conventional PSO has been modified so as to overcome the

drawbacks encountered in the conventional PSO such as

premature convergence and stagnation problem. The
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simulation results discussed latter in this paper makes the

scenario completely clear, thus justifying the superiority of the

IPSO over the conventional PSO. The ability of the PSO as a

multimodal optimization problem and its flexibility can be

seen as its use is not only restricted for DSP but in many other

fields as well [33-37].

The rest of the paper is arranged as follows. In section II,

the FIR high pass filter design problem is formulated. Section

III briefly discusses the algorithms of RGA, conventional PSO

and the IPSO algorithm. Section IV describes the simulation

results obtained for high pass FIR digital filter using PM

algorithm, RGA, PSO and the proposed IPSO approach.

Finally, section V concludes the paper.

II. HIGH PASS FIR FILTER DESIGN

The main advantage of the FIR filter structure is that it can

achieve exactly linear-phase frequency responses. That is why

almost all design methods described in the literature deal with

filters with this property. Since the phase response of linear-

phase filters is known, the design procedures are reduced to

real-valued approximation problems, where the coefficients

have to be optimized with respect to the magnitude response

only.

A digital FIR filter is characterized by,

n
N

n

znhzH

0

, n=0, 1… N (1)

where N is the order of the filter which has (N+1) number of

coefficients. h(n) is the filter’s impulse response. The values

of h(n) will determine the type of the filter e.g. low pass, high

pass, band pass etc. The values of h(n) are to be determined in

the design process and N represents the order of the

polynomial function. This paper presents the even order FIR

filter design with h(n) as positive even symmetric. The

number of coefficients h(n) is N+1. But, because the h(n)

coefficients are symmetrical, the dimension of the problem is

halved. Thus, (N/2+1) number of h(n) coefficients are actually

optimized, which are finally concatenated to find the required

(N+1) number of filter coefficients. An ideal filter has a

magnitude of one on the pass band and a magnitude of zero on

the stop band. Error fitness is the error between the frequency

responses of the ideal filter and the designed approximate

filter. In each iteration of any optimization algorithm, error

fitness values of particle vectors are calculated and used for

updating the particle vectors with new coefficients h(n). The

final particle vector obtained after a certain number of

iterations or after the error fitness is below a certain limit is

considered to be the optimal result, yielding an optimal filter.

Various filter parameters which are responsible for the optimal

filter design are the stop band and pass band normalized

frequencies ps , , the pass band and stop band ripples (

p and s ), the stop band attenuation and the transition width.

These parameters are mainly decided by the filter coefficients

which are evident from transfer function in (1). Several

scholars have investigated and developed algorithms in which

N, δp, and δs are fixed while the remaining parameters are

optimized [6]. Other algorithms were originally developed by

Parks and McClellan (PM) [3] in which N, wp, ws, and the

ratio δp/δs are fixed.

In this paper, evolutionary optimization algorithms RGA,

conventional PSO and IPSO are individually applied to obtain

the actual designed filter response as close as possible to the

ideal response.

Now for (1), the particle i.e. the coefficient vector {h0, h1…

hn}, which is optimized, is represented in (N/2+1) dimension

instead of (N+1) dimension.

The frequency response of the FIR digital filter can be

calculated as,

njw
N

n

jw kk enheH
0

; (2)

where N

k
w

k

2

;
kjw

eH is the Fourier transform complex

vector. This is the FIR filter’s frequency response. The

frequency is sampled in [0, ] with N points. Different kinds

of error fitness functions have been used in different

literatures. An error function given by (3) is the approximate

error used in Parks–McClellan algorithm for filter design [3].

j

i

j

d eHeHGE (3)

where j

d eH is the frequency response of the designed

approximate filter; j

i eH is the frequency response of the

ideal filter; G is the weighting function used to provide

different weights for the approximate errors in different

frequency bands. For ideal HP filter, j

i eH is given as,

otherwise1

;00 c

j

i foreH (4)

where
c

is the cut-off frequency. The major drawback of PM

algorithm is that the ratio of δp/δs is fixed. To improve the

flexibility in the error function to be minimized, so that the

desired level of δp and δs may be specified, the error function

given in (5) has been considered as fitness function in many

literatures [13] [14] [37].  The error fitness to be minimized

using the evolutionary algorithms, is defined as:

sp EEJ
sp

maxmax
1

(5)

where p and s are the ripples in the pass band and stop

band; and p and s are pass band and stop band normalized

cut-off frequencies, respectively. Since the coefficients of the

linear phase positive symmetric even order filter are matched,

the dimension of the problem is halved. This greatly reduces

the computational complexity of the algorithms.

A. Real Coded Genetic Algorithm (RGA)

Standard genetic algorithm (also known as real coded GA)

is mainly a probabilistic search technique, based on the

principles of natural selection and evolution. At each

generation it maintains a population of individuals where each

individual is a coded form of a possible solution of the

problem at hand called chromosome. Chromosomes are

constructed over some particular alphabet, e.g., the binary

alphabet {0, 1}, so that chromosomes’ values are uniquely

mapped onto the real decision variable domain. Each

chromosome is evaluated by a function known as fitness
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function, which is usually the fitness function or the objective

function of the corresponding optimization problem. Steps of

RGA as implemented for optimization of h(n) coefficients are

[34-35]:

Initialization of real chromosome strings of np population,

each consisting of a set of (N/2+1) number of h(n)

coefficients.

Decoding of strings and evaluation of error fitness of each

string.

Selection of elite strings in order of increasing error

fitness values from the minimum value.

Copying of the elite strings over the non-selected strings.

Crossover and mutation to generate off-springs.

Genetic cycle updating and repeat from the step of

evaluation error fitness value of each string.

The iteration stops when the maximum number of genetic

cycles is reached. The grand minimum error fitness value, its

corresponding chromosome string or the desired optimal

solution vector h(n) having positive symmetric (N/2+1)

coefficients are obtained. Finally, (N+1) number of

coefficients is formed to obtain the optimal frequency

spectrum.

B. Conventional Particle Swarm Optimization (PSO)

PSO is a flexible, robust population-based stochastic search

/ optimization technique with implicit parallelism, which can

easily handle with non-differential objective functions, unlike

traditional optimization methods. PSO is less susceptible to

getting trapped on local optima unlike GA, Simulated

Annealing etc. Eberhart et al. [15-16] developed PSO concept

similar to the behavior of a swarm of birds. PSO is developed

through simulation of bird flocking in multi-dimensional

space. Bird flocking optimizes a certain objective function.

Each particle (bird) knows its best value so far (pbest). This

information corresponds to personal experiences of each

particle. Moreover, each particle vector h(n) knows the best

value so far in the group (gbest) among pbests. Namely, each

particle tries to modify its position using the following

information:

• The distance between the current position and the pbest.

• The distance between the current position and the gbest.

Similar to GA, in PSO techniques also, real-coded particle

vectors of population np are assumed. Each particle vector

consists of components or sub-strings as required number of

normalized filter coefficients, depending on the order of the

filter to be designed.

Mathematically, velocities of the particle vectors are modified

according to the following equation:

k

i

k

k

i

k

i

k

i

k

i

SgbestrandC

SpbestrandCVwV

22

11

1

(6)

where
k

i
V is the velocity of i

th
particle vector at k

th
iteration; w

is the weighting function;
1

C and
2

C are the positive weighting

factors;
1

rand and
2

rand are the random numbers between 0

and 1;
k

i
S is the current position of i

th
particle vector h(n) at

k
th

iteration;
k

i
pbest is the personal best of the i

th
particle at

the k
th

iteration;
k

gbest is the group best of the group at the

k
th

iteration. The searching point in the solution space may be

modified by the following equation:

11 k

i

k

i

k

i VSS (7)

The first term of (6) is the previous velocity of the particle

vector. The second and third terms are used to change the

velocity of the particle vector. Without the second and third

terms, the particle vector will keep on ‘‘flying’’ in the same

direction until it hits the boundary. Namely, it corresponds to a

kind of inertia represented by the inertia constant, w and tries

to explore new areas.

C. Improved Particle Swarm Optimization (IPSO)

The global search ability of conventional PSO is very much

enhanced with the help of the following modifications. This

modified PSO is termed as IPSO [32].

i) The two random parameters
1

rand and
2

rand of (6) are

independent. If both are large, both the personal and social

experiences are over used and the particle is driven too far

away from the local optimum. If both are small, both the

personal and social experiences are not used fully and the

convergence speed of the technique is reduced. So, instead of

taking independent rand1 and rand2, one single random

number
1

r is chosen so that when
1

r is large,
1

1 r is small

and vice versa. Moreover, to control the balance of global and

local searches, another random parameter
2

r is introduced.

For birds flocking for food, there could be some rare cases that

after the position of the particle is changed according to (6), a

bird may not, due to inertia, fly toward a region at which it

thinks is most promising for food. Instead, it may be leading

toward a region which is in the opposite direction of what it

should fly in order to reach the expected promising regions.

So, in the step that follows, the direction of the bird’s velocity

should be reversed in order for it to fly back into promising

region.
3

rsign is introduced for this purpose. Both cognitive

and social parts are modified accordingly. Other modifications

are described below.

ii) A new variation in the velocity expression (6) is made by

splitting the cognitive component (second part of (6)) into two

different components. The first component is called good

experience component. That is, the particle has a memory

about its previously visited best position. This component is

exactly the same as the cognitive component of the

conventional PSO. The second component is given the name

bad experience component. The bad experience component

helps the particle to remember its previously visited worst

position. The inclusion of the worst experience component in

the behavior of the particle gives additional exploration

capacity to the swarm. By using the bad experience

component, the bird (particle vector) can bypass its previous

worst position and always try to occupy a better position.

Finally, with all modifications, the modified velocity of the i
th

particle vector at the (k+1)
th

iteration is expressed as (8).

k

i

k

i

k

i

k

k

i

k

i

k

i

k

i

pworstSrcr

SgbestrCr

SpbestrCrVrsignrV

112

122

11232

1

**)1(

11

1

(8)

where
3

rsign is a function defined as:
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0.05rre       whe1

05.0r     where1

3

33
rsign

k

i
V is the velocity of the i

th
particle vector at the k

th
iteration;

1
r ,

2
r and

3
r are the random numbers between 0 and 1;

k

i
S is

the current position of the i
th

particle at the k
th

iteration;

k

i
pbest and

k

i
pworst are the personal best and the personal

worst of the i
th

particle, respectively ;
k

gbest is the group best

among all pbests for the group. The searching point in the

solution space is modified by the equation (7) as usual. The

steps of IPSO are given in Table I.

TABLE I

STEPS OF IPSO

Step 1: Initialization: Population (swarm size) of particle

vectors, nP=120; maximum iteration cycles=200; number of

filter coefficients (h(n)), filter order, N=20;  fixing values of

C1, C2 as 2.05; minimum and maximum values of filter

coefficients, hmin=-2,  hmax= 2; number of samples=128;

1.0p , 01.0s ; initialization of the velocities of all

the particle vectors.

Step 2: Generate initial particle vectors of filter coefficients

(N/2+1) randomly with limits; Computation of initial fitness

values of the total population, nP.

Step 3: Computation of population based minimum error

fitness value and computation of the personal best solution

vectors (pbest), group best solution vector (gbest).

Step 4: Updating the velocities as per (8); updating the particle

vectors as per (7) and checking against the limits of the filter

coefficients; finally, computation of the updated error fitness

values of the particle vectors and population based minimum

error fitness value.

Step 5: Updating the pbest vectors, gbest vector; replace the

updated particle vectors as initial particle vectors for Step 4.

Step 6: Iteration continues from Step 4 till the maximum

iteration cycles or the convergence of minimum error fitness

values; finally, gbest is the vector of optimal filter coefficients

(N/2+1); Form complete (N+1) coefficients by copying

(because the filter has linear phase) before getting the optimal

frequency spectrum.

III. RESULTS AND DISCUSSIONS

A. Analysis of Magnitude Response of High Pass FIR Filters

The simulation results discussed in this section clearly

justifies the superiority of this new method IPSO over the

other traditional methods like RGA and conventional PSO.

The simulations have been performed in the MATLAB

environment. For the purpose of designing high pass FIR

filter, the order of the filter has been taken as 20, which

ensures that the length of the coefficient vector will be 21. The

sampling frequency has been fixed to fs=1Hz. For all the

simulation works carried out, the number of sampling points

taken is 128. In order to extract the best results out of all the

iterations, all the algorithms are made to run for 40 times.

Table II shows the parameters chosen in order to run different

evolutionary algorithms. The proper selection of these

parameters plays an important role in the convergence profile

of the respective algorithm. First column shows the parameters

chosen to run the RGA. The crossover rate has been fixed to 1.

Two point crossover has been done. Gaussian Mutation is

used with the mutation rate of 0.01. The selection probability

is kept as 1/3.

TABLE II

RGA, PSO, IPSO PARAMETERS

Parameters RGA Conventional

PSO

IPSO

Population size 120 25 25

Iteration Cycle 800 350 200

Crossover rate 1 - -

Crossover Two Point

Crossover

- -

Mutation rate 0.01 - -

Mutation Gaussian

Mutation

- -

Selection Roulette - -

Selection Probability 1/3 - -

C1 - 2.05 2.05

C2 - 2.05 2.05

min

iv - 0.01 0.01

max

iv - 1.0 1.0

wmax - 1.0 -

wmin - 0.4 -

Table III shows the optimized coefficients of FIR high pass

filter of order 20. This table justifies the statement that the

IPSO is more efficient in optimizing the filter coefficients.

Table IV shows the maximum stop band attenuations

achieved by all three evolutionary algorithms for the design of

FIR high pass filter of order 20.

In designing the FIR high pass filter using the evolutionary

methods, the focus is kept on optimizing the stop band

attenuation as far as possible. Table IV clearly shows that the

target of achieving the maximum stop band attenuation is

attained by IPSO easily. The comparisons have been made in

order to clear the point between Park McClellan, RGA,

conventional PSO and IPSO.

The maximum stop band attenuation achieved by IPSO is

29.59dB as compared to 28.52 dB of conventional PSO,

27.85dB of RGA and 23.24 dB of PM. Table V shows the

maximum stop band attenuation (dB), maximum pass band

ripple (normalized), maximum stop band ripple (normalized)

and transition width for all the aforementioned optimization

algorithms. This table makes the complete comparison

between all the methods in respect of all the specifications

required for the design of FIR high pass filter.
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TABLE III

OPTIMIZED COEFFICIENTS OF FIR HIGH PASS FILTER OF ORDER 20

h(N) RGA Conventional

PSO

IPSO

h(1)=h(21) 0.017500201326591 0.016684532700955 0.014051882288068

h(2)=h(20) -0.034664703361583 -0.037026662035285 -0.034948107822049

h(3)=h(19) 0.039675441442365 0.036919859322288 0.041566245350805

h(4)=h(18) -0.011039969232810 -0.013338708349390 -0.018209649407699

h(5)=h(17) -0.029877373263831 -0.030173799057269 -0.024453045297124

h(6)=h(16) 0.060407393938230 0.060619921506844 0.056569079961636

h(7)=h(15) -0.045357174244925 -0.041732050291725 -0.048853500210415

h(8)=h(14) -0.036529016628391 -0.033569883346433 -0.032039242781614

h(9)=h(13) 0.151333684873435 0.153153102550027 0.149742172523051

h(10)=h(12) -0.256137892428781 -0.255126724552754 -0.260703666822173

h(11) 0.300174715164156 0.300174715164156 0.305283906116923

TABLE IV

COMPARISON SUMMARY OF STOP BAND ATTENUATION OF FIR HIGH PASS FILTER OF ORDER 20

Filter Type Maximum Stop-band Attenuation (dB)

PM RGA Conventional

PSO

IPSO

High Pass 23.24 27.85 28.52 29.59

TABLE V

SUMMERY OF IPSO RESULTS WITH OTHER ALGORITHMS FOR FIR HIGH PASS FILTER OF ORDER 20

Algorithm High Pass filter

Maximum

stop band

attenuation

(dB)

Maximum

pass band

ripple

(normalized)

Maximum

stop band

ripple

(normalized)

Transition

width

Execution

time per

100 cycles

PM 23.24 0.069 0.06888 0.0845 -

RGA 27.85 0.137 0.04049 0.0896 3.6733

PSO 28.52 0.132 0.03752 0.0898 2.6125

IPSO 29.59 0.147 0.03316 0.0924 2.9872

Fig. 1 Magnitude (dB) Plot of the FIR High Pass Filter of Order 20

From the table it can be easily brought to the notice that the

required stop band ripple (normalized) is the minimum in the

case of IPSO. It is 0.03316 in the case of IPSO as compared to

0.03752 in the case of PSO, 0.04049 in RGA and 0.06888 as

in the case of PM. The table also shows that the target of

achieving the required transition width is also achieved by

IPSO. IPSO is also time economical, as one can see that the

time required is also less as compared to RGA. Thus IPSO

proves itself to be efficient in optimizing each and every

specification required for the design of FIR high pass filter.

Fig. 1 shows the complete comparison of the magnitude

responses obtained by PM, RGA, conventional PSO and

IPSO. From this figure one can get completely convinced of

the benefits of using IPSO. The curve drawn in red shows the

magnitude response given by IPSO. This shows the much

better magnitude response achieved by IPSO in terms of stop

band attenuation, pass band ripple and the transition width

than all other optimization techniques.
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A. Comparative effectiveness and convergence profiles of

RGA, conventional PSO and IPSO

The algorithms can be compared in terms of the

convergence speeds also. Fig. 2 shows the plot of minimum

error fitness values against the number of iteration cycles

when RGA is employed. The total number of iteration cycle

taken for this plot is 800. Fig. 3 shows the plot of minimum

error values against the number of iteration cycles when PSO

is employed. The total number of iteration cycles taken for this

plot is 350. This figure shows the good convergence achieved

by conventional PSO than RGA and the lesser value of error

fitness is also attained.

Fig. 4 shows the plot of minimum error values against the

number of iteration cycles when the proposed IPSO is

employed. In this case the maximum number of iteration

cycles taken is 200. Near global convergence is nicely

achieved by this new optimization technique. IPSO achieves

good convergence and lesser value of minimum error in far

lesser number of iteration cycles.  IPSO saves computational

time as well as cost and hence it is a more efficient and smart

way of optimization for the design of FIR high pass filter.

Thus it can be very well said that the IPSO outperforms the

traditional method of RGA and conventional PSO in each and

every requirement needed for the design of FIR high pass

filter. The convergence profiles have been shown for the filter

order of 20.

Fig. 2 Convergence Profile for RGA in case of FIR High Pass

Filter of Order 20

From the figures drawn for this filter, it is seen that the

IPSO algorithm is significantly faster than the conventional

PSO algorithm for finding the optimum filter. The IPSO

converges to a much lower fitness in lesser number of

iterations. Further, PSO yields suboptimal higher values of

error fitness but IPSO yields near optimal (least) error fitness

values. With a view to the above fact, it may finally be

inferred that the performance of IPSO technique is better as

compared to RGA and conventional PSO in designing the

optimal FIR High Pass filter. All optimization programs are run

in MATLAB 7.5 version on core (TM) 2 duo processor, 3.00

GHz with 2 GB RAM.

Fig. 3 Convergence Profile for conventional PSO in case of FIR

High Pass Filter of Order 20

Fig. 4 Convergence Profile for IPSO in case of FIR High Pass

Filter of Order 20

IV. CONCLUSION

This paper presents a novel and accurate method for

designing linear phase digital FIR high pass filter by using

evolutionary optimization based on IPSO. For the sake of

comparison, Park McClellan and other evolutionary

techniques as RGA, conventional PSO are applied

individually. Extensive simulation results justify that the

proposed algorithm IPSO outperforms Park McClellan, RGA

and conventional PSO in the accuracy of the magnitude

response of the filter as well as in the convergence speed and

is thus adequate for use in other related design problems.
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