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Abstract—Linear cryptanalysis methods are rarely used to improve
the security of chaotic stream ciphers. In this paper, we apply linear
cryptanalysis to a chaotic stream cipher which was designed by
strictly using the basic design criterion of cryptosystem – confusion
and diffusion. We show that this well-designed chaos-based stream
cipher is still insecure against distinguishing attack. This distinguish-
ing attack promotes the further improvement of the cipher.
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I. INTRODUCTION

IN recent years, chaos has been used to design ciphers.
Chaotic systems are defined on real numbers and character-

ized by sensitive dependence on initial conditions and param-
eters, random-like behavior, which are desirable to ciphers.
The early chaotic ciphers were designed by directly using
the chaotic maps. These ciphers often suffer from security
weakness. The well-known cryptographic techniques were not
effectively used to improve the security of the ciphers. On one
hand, while the typical cryptographic operations are performed
on binary numbers, the derived chaotic ciphers often consist of
complicated operations on real numbers, thus the well-known
cryptographic techniques are difficult to use. On the other
hand, the existed well-known attacks such as differential and
linear cryptanalysis were rarely considered in the design of
chaotic ciphers to improve the security.

For enhanced security, Kocarev first presented that the
chaotic ciphers should be designed by using strict crypto-
graphic techniques [1]. Then, several chaotic block ciphers
were designed to resist differential and linear cryptanalysis
[2, 3]. In [4, 5], chaotic substitution boxes (S-boxes) were
investigated by using differential and linear cryptanalysis.
Recently, Masuda et al. used the structures of modern block
cipher to design chaotic block ciphers [6]. However, since all
these efforts focused on the design of chaotic block ciphers,
the developed methods can not be easily used when designing
chaotic stream ciphers.

In this paper, linear cryptanalysis is applied to a chaos-
based stream cipher, which was designed by strictly using
the basic design criterion of cryptosystem – confusion and
diffusion and passed main security evaluation criterion [7].
The linear cryptanalysis leads to a distinguishing attack on the
cipher. We find that the key stream generated by the cipher can
be easily distinguished from a truly random sequence, which
means that the stream cipher is insecure in the strict sense of
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security [8]. This distinguishing attack promotes the further
improvement of the cipher. In this way, our work highlights
the importance of strict cryptographic techniques in the design
and cryptanalysis of chaotic stream cipher and illustrates the
approaches to use them.

II. DESCRIPTION OF THE CIPHER

The cipher that will be analyzed in this paper is based on
coupled map lattice (CML) consisting of skew tent maps [7].
Since CML is discretized to operate on binary numbers by
explicitly using the structure for confusion and diffusion, the
security of this cipher can be easily evaluated by using proper
cryptographic techniques. The key streams of the cipher pass
various randomness tests. The period length of key stream is
very large (more than 264). Additionally, the cipher was proved
to be secure against guess-and-determine attacks. Thus, the
cipher has some desirable properties. We briefly describe the
stream cipher below.

The cipher is a synchronous stream cipher which uses a
128-bit key. The internal state of the cipher contains a 128-bit
state variable Xn and a 128-bit counter Cn at time n. Xn and
Cn are divided into eight 16-bit substrings respectively: Xn =
x7,n‖x6,n‖ · · · ‖x0,n and Cn = c7,n‖c6,n‖ · · · ‖c0,n, where ‖
denotes concatenation of two bit sequences. The cipher works
in two phases: first, the state variable X and the counter C are
initialized using the key by the key setup algorithm, then the
state-update function is repeatedly iterated and the key streams
are generated. Since our distinguishing attack is just based on
the analysis of the state-update function and the key stream
generation process, we just describe these parts in this paper.
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Fig. 1. The state-update function.
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A. The state-update function

The state-update function is shown in Fig. 1. It is designed
as follows

Xn+1 = F (Xn) ⊕ Cn (1)

where ′′⊕′′ denotes bitwise XOR. For the substrings of the
internal state Xn and Cn, the state-update function can be
written as

x0,n+1=y0,n ⊕ c0,n

=(S7(x7,n) � S0(x0,n) � S1(x1,n)) ⊕ c0,n,

x7,n+1=y7,n ⊕ c7,n

=(S6(x6,n) � S7(x7,n) � S0(x0,n)) ⊕ c7,n,

xj,n+1=yj,n ⊕ cj,n

=(Sj−1(xj−1,n) � Sj(xj,n) � Sj+1(xj+1,n)) ⊕ cj,n,

j = 1, 2, · · · , 6 (2)

where ′′�′′ denotes addition modulo M = 216. xj,n and
cj,n denote the j-th state variable substring and the counter
substring at time n respectively. yj,n is the output of the
function F . Sj : [0,M − 1] → [0,M − 1] is a substitution
function, which is obtained by iterating a function Tj six times
as follows

Sj(t) = T 6
j (t + 1) − 1, t ∈ [0,M − 1]. (3)

Tj is the discretized skew tent map defined as

Tj(τ) =

⎧
⎨

⎩
�Mτ

Aj
� 1 ≤ τ ≤ Aj

	M(M−τ)

M−Aj

 + 1 Aj < τ ≤ M

(4)

where the parameters are A0 = 16409, Aj+1 = Aj − 2, j =
0, 1, · · · , 6.

In the state-update function, a counter is used to expand the
cycle length of the key streams. Its value is updated at each
iteration as follows

C = C + 1 mod 2128. (5)

B. Key stream generation and encryption/decryption

After each iteration of the state-update function, 64-bit key
streams sn = s3,n‖s2,n‖s1,n‖s0,n are generated as follows

sj,n = xj+4,n ⊕ xj,n, j = 0, 1, 2, 3. (6)

In the encryption phase, the plaintext is transformed into
the ciphertext by the bitwise XOR of the key stream sn and
the plaintext. The decryption is accomplished by applying the
enciphering a second time.

III. LINEAR CORRELATIONS BETWEEN CONSECUTIVE KEY
STREAMS

In this section, we apply linear cryptanalysis to the stream
cipher. Here, the linearity refers to bitwise XOR denoted by
”⊕”. In our linear cryptanalysis, we try to find the linear
correlations between bits in sn and sn+1 expressed as

s[i1]
n ⊕ s[i2]

n ⊕· · ·⊕ s[iu]
n ⊕ s

[j1]
n+1 ⊕ s

[j2]
n+1 ⊕· · ·⊕ s

[jv ]

n+1 = 0. (7)

where s
[iu]
n represents the iu-th bit of sn. When numbering bits

of variables, the least significant bit is denoted by 0 throughout
this paper. If the equation of the form (7) is found, then the
distinguisher can be constructed by using the concept of linear
cryptanalysis [9, 10].

Consider that if we randomly select values for u+v bits and
place them into equation (7), the probability that the expression
holds, denoted by p, will be exactly 1/2. However, for the key
streams generated by the cipher, p will have a value different
from 1/2. The bias from 1/2 of p, denoted by ε = |p − 1/2|,
determines the effectiveness of the linear approximations. The
higher the magnitude of ε, the fewer key streams, i.e., the
fewer number of iterations of the cipher are required for the
constructed distinguisher [9].

To find equation of the form (7), we first analyze the linear
approximations of S-boxes and modular addition respectively.
Then we concatenate these approximations to obtain the linear
approximations of the state-update function. To simplify the
notation, we will denote s

[i1]
n ⊕s

[i2]
n ⊕· · ·⊕s

[iu]
n by s

[i1,i2,···,iu]
n

in the following description.

A. Linear approximation of S-boxes

For the S-box S : [0, 2l − 1] → [0, 2l − 1], all the linear
approximations between the input bits and output bits can be
expressed as follows

l−1⊕

h=0

(x[h] • θ[h])) = (
l−1⊕

g=0

S(x)[g] • η[g])) (8)

where 0 ≤ θ ≤ 2l−1, 0 ≤ η ≤ 2l−1. • denotes a bitwise AND
operation and x[h] is the h-th bit of x. In this paper, we just
consider linear equations (8) containing single output bit, since
such linear equations will make the constructed distinguisher
involve fewer counter bits, thus make the distinguisher easy
to apply (see section 4). That is to say, we select η = 2i (i =
0, 1, · · · , l − 1) in (8), where i is the output bit position. In
this case, linear equation (8) can be rewritten as

S(x)[i] =
l−1⊕

h=0

(x[h] • θ[h]). (9)

We can compute the bias of the linear approximations of
S-boxes with the method proposed in [10]. For each i, we
compute the bias of linear equations for all possible values of
θ, then we get the largest ε for the selected i. In Table 1, we
show the largest bias, denoted by εS0,i, against the output bit
position i for the S-box S0. The results are very similar for
the other S-boxes in the cipher. We will use these results to
estimate the bias of linear approximations between consecutive
key streams.

TABLE I
MAXIMUM VALUE OF THE PROBABILITY BIAS OF S0 .

i 0 1 2 3 4 5 6 7
εS0,i 0.0223 0.0236 0.0424 0.0160 0.0340 0.0397 0.0427 0.0353

i 8 9 10 11 12 13 14 15
εS0,i 0.0401 0.0482 0.0500 0.0544 0.0683 0.1195 0.1289 0.1190
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B. Linear approximation of modular addition

The modular addition used in the cipher is

f(a, b, c) = a + b + c mod 216 (10)

where a, b, c are integers in the interval [0, 216−1]. According
to [11], for each output bit position i ≥ 2, one of the best linear
approximations is

f [i] = a[i] ⊕ b[i] ⊕ c[i] , i = 0, 1, · · · , 15. (11)

The probability bias of these linear approximations are

εm,i =

⎧
⎪⎪⎨

⎪⎪⎩

1/2 i = 0
0 i = 1
i−1∑
v=1

2−2v−1 2 ≤ i ≤ 15
. (12)

C. Linear correlations between sn and sn+1

We concatenate the linear approximations of S-boxes and
modular addition to construct the equation of the form (7).
According to (6), the key streams at time n + 1 are

sj,n+1 = xj+4,n+1 ⊕ xj,n+1

= yj+4,n ⊕ cj+4,n ⊕ yj,n ⊕ cj,n

= yj+4,n ⊕ yj,n ⊕ cj+4,n ⊕ cj,n

= oj,n ⊕ cj+4,n ⊕ cj,n,

j = 0, 1, 2, 3. (13)

In equation (13), we denote yj+4,n⊕yj,n by oj,n for compact-
ness. Further, we define on = o3,n‖o2,n‖o1,n‖o0,n. We will
create the effective linear approximations between sn and sn+1

in two phase: first, we construct the linear approximations
between on and sn, then the counter is taken into account
and linear equations of the form (7) are created.

1) Linear correlations between on and sn: We start by
considering bits in o0,n. Following the state-update function
(see Fig. 1), the i-th bit in o0,n can be written as

o
[i]
0,n=y

[i]
4,n ⊕ y

[i]
0,n

=(S5,n � S4,n � S3,n)[i] ⊕ (S1,n � S0,n � S7,n)[i](14)

where Sj,n denotes Sj(xj,n), which is the output of the S-box
Sj . By using the linear approximation of modular addition
(equation (11)) two times, we obtain the following equation:

o
[i]
0,n = S

[i]
5,n ⊕ S

[i]
4,n ⊕ S

[i]
3,n ⊕ S

[i]
1,n ⊕ S

[i]
0,n ⊕ S

[i]
7,n. (15)

Then, the linear approximations of the S-boxes (equation (9))
are applied six times and the following linear approximations
between bits in o0,n and sn are obtained:

o
[i]
0,n=x

[u1,u2,···,un1
]

5,n ⊕ x
[v1,v2,···,vn2

]

4,n ⊕ x
[w1,w2,···,wn3

]

3,n

⊕x
[u1,u2,···,un1

]

1,n ⊕ x
[v1,v2,···,vn2

]

0,n ⊕ x
[w1,w2,···,wn3

]

7,n

=s
[v1,v2,···,vn2

]

0,n ⊕ s
[u1,u2,···,un1

]

1,n ⊕ s
[w1,w2,···,wn3

]

3,n . (16)

Note that, as is demonstrated in equation (16), the linear
approximations of the S-boxes Sj and Sj+4 should involve
the same input bits. In this case, o

[i]
0,n can be approximated by

linear equations just containing bits of sn.

Now, we have constructed linear approximations between
bits in o0,n and sn. Similarly, linear approximations between
bits in oj,n (j = 1, 2, 3) and sn can be found. They are written
as follows. For compactness, the linear approximations of S-
boxes are not written out. For all these equations, the approxi-
mations of S-boxes are used six times and the approximations
of modular addition are used two times.

o
[i]
1,n = S

[i]
6,n ⊕ S

[i]
5,n ⊕ S

[i]
4,n ⊕ S

[i]
2,n ⊕ S

[i]
1,n ⊕ S

[i]
0,n. (17)

o
[i]
2,n = S

[i]
7,n ⊕ S

[i]
6,n ⊕ S

[i]
5,n ⊕ S

[i]
3,n ⊕ S

[i]
2,n ⊕ S

[i]
1,n. (18)

o
[i]
3,n = S

[i]
0,n ⊕ S

[i]
7,n ⊕ S

[i]
6,n ⊕ S

[i]
4,n ⊕ S

[i]
3,n ⊕ S

[i]
2,n. (19)

In fact, other linear approximations between on and sn can
be formed by linear combination of the equations obtained.
When combining the equations, the output bit of the S-boxes
will be canceled out. Therefore, linear approximations of the
S-boxes will be used fewer times. On the other hand, linear
approximations of modular addition will be used more times.
For example, by linear combination of equation (15) and (17),
we get the following linear equation.

o
[i]
1,n ⊕ o

[i]
0,n = S

[i]
6,n ⊕ S

[i]
3,n ⊕ S

[i]
2,n ⊕ S

[i]
7,n. (20)

Linear combination of arbitrary two equations of (15), (17),
(18), (19) leads to a similar linear approximation. For all
such kind of linear approximations, the approximations of S-
boxes are used four times and the approximations of modular
addition are used four times.

Further, linear approximations between on and sn can be
gotten by linear combination of arbitrary three equations of
(15), (17), (18), (19). As an example, linear approximation by
combining (15), (18), (19) is described as follows

o
[i]
0,n ⊕ o

[i]
2,n ⊕ o

[i]
3,n = S

[i]
3,n ⊕ S

[i]
7,n. (21)

In these linear approximations, the approximations of S-boxes
are used two times and the approximations of modular addition
are used six times.

We denote the times that linear approximations of modular
addition and the S-boxes are used by Lm and LS respectively.
Then the linear approximations between bits in on and sn can
be sorted by (Lm, LS): (Lm, LS) = (2,6), (4,4) and (6,2). We
will compute the probability bias of these three kinds of linear
approximations and then select the largest one. According to
Piling-Up Principle [10], the probability bias of the linear
approximations between bits in on and sn can be estimated as

εi = 27(εm,i)
Lm(εS,i)

LS (22)

where i (i = 0, 1, · · · , 15) represents the position of the output
bit involved in the linear approximations. εm,i and εS,i are
the probability bias of approximations of modular addition
and the S-boxes respectively. Since the S-boxes in the cipher
behave similarly, we just use the largest probability bias of
S-box S0 as an estimation of the probability bias of other S-
boxes. That is to say, in our computation, εS,i = εS0,i. By
using (22), we compute εi for all the three kinds of linear
approximations between bits in on and sn and for all different
i. Then we get the best linear approximations with the largest
bias. The results show that εi gets the largest value, about
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2−10, when (Lm, LS) = (6, 2) and i = 0. Thus we obtain
the best approximations between bits in on and sn, which are
expressed as follows.

o
[0]

0,n ⊕ o
[0]

2,n ⊕ o
[0]

3,n = S
[0]

3,n ⊕ S
[0]

7,n. (23)

o
[0]

0,n ⊕ o
[0]

1,n ⊕ o
[0]

2,n = S
[0]

1,n ⊕ S
[0]

5,n. (24)

o
[0]

0,n ⊕ o
[0]

1,n ⊕ o
[0]

3,n = S
[0]

0,n ⊕ S
[0]

4,n. (25)

o
[0]

1,n ⊕ o
[0]

2,n ⊕ o
[0]

3,n = S
[0]

2,n ⊕ S
[0]

6,n. (26)

The probability bias of these best linear approximations is
estimated to be about 2−10. In fact, since we require that the
linear approximations of the S-boxes Sj and Sj+4 involve
the same input bits (see equation (16)), the actual value of
the probability bias will be smaller. For example, by further
analysis and computation of equation (23), the following linear
approximations between bits in on and sn is found. The
probability that this equation holds is about 0.5004575, i.e.,
the probability bias is about εmax = 0.0004575 (≈ 2−11).

o
[0]

0,n ⊕ o
[0]

2,n ⊕ o
[0]

3,n = S
[0]

3,n ⊕ S
[0]

7,n

= x
[8,7,6]
7,n ⊕ x

[8,7,6]
3,n ⊕ 1

= s
[8,7,6]
3,n ⊕ 1. (27)

Since this linear approximation make the distinguisher much
easier to apply when the counter is taken into account, it will
be used to construct the distinguisher.

2) Linear correlations between sn and sn+1: In this part,
we take the counter into consideration and construct the linear
correlations between consecutive key streams sn and sn+1.

By using (13), equation (23), (24), (25), (26) can be written
as

s
[0]

0,n+1 ⊕ s
[0]

2,n+1 ⊕ s
[0]

3,n+1 = S
[0]

3,n ⊕ S
[0]

7,n ⊕ c
[0]

[4,0,6,2,7,3],n (28)

s
[0]

0,n+1 ⊕ s
[0]

1,n+1 ⊕ s
[0]

2,n+1 = S
[0]

1,n ⊕ S
[0]

5,n ⊕ c
[0]

[4,0,5,1,6,2],n (29)

s
[0]

0,n+1 ⊕ s
[0]

1,n+1 ⊕ s
[0]

3,n+1 = S
[0]

0,n ⊕ S
[0]

4,n ⊕ c
[0]

[4,0,5,1,7,3],n (30)

s
[0]

1,n+1 ⊕ s
[0]

2,n+1 ⊕ s
[0]

3,n+1 = S
[0]

2,n ⊕ S
[0]

6,n ⊕ C
[0]

[5,1,6,2,7,3],n (31)

Where c
[0]

[r1,r2,···,r6],n
represents c

[0]
r1,n ⊕ c

[0]
r2,n ⊕ · · · ⊕ c

[0]
r6,n for

compactness. It is noted that the number 1 is added modulo
2128 to the counter value after each iteration of the state-update
function. Therefore, to make the above linear approximations
hold with the expected probability, we must predict the counter
value correctly. In other words, we should select the linear
approximations with the counter bits easily predicted.

The probability bias of these linear approximations is about
εmax = 2−11. Following the results in [9], the number of
iterations of the cipher needed for the distinguisher is some
small multiple of 1/(εmax)2 ≈ 222 (see also section 4). In
this case, we find that the counter bits involved in equation
(28) are easily predicted. According to (7), the least significant
bit c

[0]

0,n in equation (28) is complemented after each iteration.
The other counter bits keep unchanged with a probability of
about 1− 222/232 = 0.99 in consecutive 222 iterations of the
cipher, i.e., they are nearly fixed for our distinguisher. Thus,
we can predict all the counter bits just by guessing a single

bit. By using (27), equation (28) can be written as

s
[0]

0,n+1 ⊕ s
[0]

2,n+1 ⊕ s
[0]

3,n+1 = s
[8,7,6]
3,n ⊕ c

[0]

[4,0,6,2,7,3],n ⊕ 1. (32)

This equation can be further written in the form of (7) as

s
[48,32,0]
n+1 ⊕ s[56,55,54]

n = 1 ⊕ C
[0]

[4,0,6,2,7,3],n. (33)

The probability that this equation holds is about 0.5004575,
i.e., the probability bias of this equation is about εmax =
0.0004575.

IV. THE DISTINGUISHER AND ITS ERROR PROBABILITY

In this section, we construct the distinguisher by using the
linear correlations between consecutive key streams sn and
sn+1.

A. The derived distinguisher

Following the methods to construct distinguisher [9, 10],
we can derive our distinguisher by using equation (33). The
distinguisher is described as follows.

Step 1 The stream cipher is iterated N times. The sequence
zn is computed as

zn = s
[48,32,0]
n+1 ⊕ s[56,55,54]

n ⊕ Gn, n = 1, 2, · · · , N (34)

where

Gn =

{
1 n = 1, 3, 5, · · ·
0 n = 2, 4, 6, · · · (35)

That is to say, the counter bits C
[0]

[4,0,6,2,7,3],n is guessed to be
0 at the start n = 1.

Step 2 The number of zeros and ones in the sequence
zn, denoted by N0 and N1, is counted. Then the logarithmic
likelihood ratio (LLR) [9] is computed as

LLR(zn)

=

{
N0log2

0.5+εmax

0.5 + N1log2
0.5−εmax

0.5 N0 ≥ N/2

N0log2
0.5−εmax

0.5 + N1log2
0.5+εmax

0.5 N0 < N/2
(36)

where εmax = 0.0004575.
Step 3 We decide whether the sequence is random or

generated by the stream cipher by the value of LLR(zn).
If LLR(zn) ≥ 0, then we assume the sequence is from the
cipher. If LLR(zn) < 0, the sequence is random.

B. The error probability of the algorithm

The distinguisher can make two types of mistakes: it can
either output LLR(zn) ≥ 0 when the sequence zn is random
or output LLR(zn) < 0 when the sequence zn is from the
cipher. The two types of error probabilities are denoted by
α and β respectively. Then overall error probability of the
distinguisher is Pe = 1

2
(α + β).

According to (36), the logarithmic likelihood ratio can be
rewritten as

LLR(zn)

=

{
LLR1 = (D − B)N0 + BN N0 ≥ N/2
LLR2 = (B − D)N0 + AN N0 < N/2

(37)
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where D = log2
0.5+εmax

0.5 and B = log2
0.5−εmax

0.5 . We
consider the first type of mistake. In this case, the sequence
zn is random, i.e., P (zn = 0) = P (zn = 1) = 0.5. By
using central limit theorem, N0 can be assumed to be normally
distributed with mean N/2 and variance N/4 for large N .
Then LLRk (k = 1, 2) can be approximately normal with
mean (D+B)N/2 and variance N(D−B)2/4. The first type
of error probability α is

P (LLR(zn) ≥ 0)

=P (LLR(zn) ≥ 0, N0 ≥ N/2)

+P (LLR(zn) ≥ 0, N0 < N/2)

=P (LLR1 ≥ 0, N0 ≥ N/2) + P (LLR2 ≥ 0, N0 < N/2)

=P (LLR1 ≥ 0, LLR1 ≥ (D + B)N/2)

+P (LLR2 ≥ 0, LLR2 ≥ (D + B)N/2). (38)

Note that (D + B)N/2 < 0, then

α = P (LLR1 ≥ 0) + P (LLR2 ≥ 0) = 2P (LLR1 ≥ 0). (39)

The second type of mistake happens when the distinguisher
outputs LLR(zn) < 0 for the sequence zn generated by the
cipher. In this case, zn can follow two different probability
distributions: P (zn = 1) = 0.5− εmax or P (zn = 1) = 0.5+
εmax. For the first distribution, LLR1 can be approximately
normal with mean (D−B)N(0.5−εmax)+BN and variance
N(D − B)2(0.25 − (εmax)2), LLR2 can be approximately
normal with mean (B−D)N(0.5−εmax)+AN and variance
N(D − B)2(0.25 − (εmax)2). With the analysis similar to
equation (38), we obtain the error probability:

β1 = P (LLR(zn) < 0)

= P (0 > LLR1 ≥ (D + B)N/2)

+P (0 > LLR2 > (D + B)N/2). (40)

For the second distribution P (zn = 1) = 0.5 + εmax, the
corresponding error probability β2 can be computed similarly.
Then the second type of error probability can be computed as
β = (β1 + β2)/2.

TABLE II
ERROR PROBABILITY FROM THEORETICAL ANALYSIS FOR SOME

SELECTED N .

N (εmax)−2 2(εmax)−2 4(εmax)−2 8(εmax)−2

α 31.7% 15.7% 4.6% 0.5%
β 15.7% 7.9% 2.3% 0.2%
Pe 23.7% 11.8% 3.45% 0.35%

TABLE III
ACTUAL ERROR RATES OF OUR DISTINGUISHER FOR SOME SELECTED N .

N (εmax)−2 2(εmax)−2 4(εmax)−2 8(εmax)−2

Eα/100 33/100 16/100 4/100 0/100

Eβ/100 17/100 9/100 2/100 0/100

(Eα + Eβ)/200 50/200 25/200 6/200 0/200

Thus we get the overall error probability of the distinguisher
Pe(N) = 1

2
(α + β). It is a function of N , the number of

consecutive key streams used in the distinguisher. We calculate

Pe(N) for some selected values of N . The results are shown
in Table 2. It can be found that the Pe(N) tends to close to
zero when N increases. We perform experiments to ensure
the effectiveness of our distinguisher. For some selected N ,
we apply our distinguisher to key streams generated randomly
and by the cipher respectively. Then we decide whether the
key streams tested is from the cipher or it is perfectly random.
The experiment is repeated 100 times for each selected N .
Then the times that error occurs, Eα and Eβ , are counted.
Then, the actual two types of error rates are Eα/100 and
Eβ/100. The actual overall error rate is (Eα + Eβ)/200.
The results are shown in the Table 3. It is found the actual
error rates agree well with the theoretical results. When the
number of consecutive key streams generated by the cipher,
N ≥ 8(εmax)−2 ≈ 225, our algorithm can distinguish the
cipher streams from perfectly random streams with the error
rate nearly equal to 0.

V. AN IMPROVEMENT OF THE CIPHER

In this section, we make an improvement to the original
stream cipher to resist the distinguishing attack described
above. As is demonstrated, since the state-update function of
the cipher has good linear approximations and the counter bits
are easily predicted, the cipher is susceptible to distinguishing
attacks. There are two methods to improve the original stream
cipher. The first one is to modify the counter system such
that it is difficult to predict the counter bits. An example
applying this method can be found in [12]. The improvement
of the counter will not affect the encryption speed significantly.
However, since the effective linear approximations of the state-
update function still exist, this improvement seems unreliable.
A better improvement is to iterate the state-update function
several times to avoid effective linear approximations. That is
to say, the state-update function is improved as

Xn+1 = FR(Xn) ⊕ Cn (41)

where F is the original state-update function excluding the
counter (see Fig. 1.) and R is the iterating times. Since the
the best linear approximations of F have the probability bias of
2−11, the probability bias of the best linear approximations of
FR, denoted by εF R , should be larger than εF R = 2R−12−11R

due to Piling-Up Principle [10]. If we select R = 3, then
εF R = 2−31. The number of consecutive key streams required
to apply the distinguishing attack is about qε−2

F R = q262,
where q is a small positive integer [9]. For the cipher, the
lower bounds of the cycle length is 264. That is to say,
to avoid using key streams repeatedly, the cipher will not
be iterated more than 264 times with the same seed key in
the application. Therefore, the distinguishing attack proposed
above is infeasible to the improved cipher when the iterating
times R = 3.

VI. CONCLUSION

In conclusion, in this brief, we have applied linear crypt-
analysis to a chaos-based stream cipher, which was designed
by following the basic design criterion of cryptosystem –
confusion and diffusion and have some desirable properties. A
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distinguishing attack on the cipher is presented and this attack
promotes the improvement of the cipher. Our work implies
that the strict cryptographic tools should be more effectively
used in the design and cryptanalysis of chaotic stream ciphers.
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