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Abstract—In this article, a method is presented to effectively 

estimate the deformed shape of a thick plate due to line heating. The 
method uses a fifth order spline interpolation, with up to C3 
continuity at specific points to compute the shape of the deformed 
geometry. First and second order derivatives over a surface are the 
resulting parameters of a given heating line on a plate. These 
parameters are determined through experiments and/or finite element 
simulations. Very accurate kriging models are fitted to real or virtual 
surfaces to build-up a database of maps. Maps of first and second 
order derivatives are then applied on numerical plate models to 
evaluate their evolving shapes through a sequence of heating lines. 
Adding an optimization process to this approach would allow 
determining the trajectories of heating lines needed to shape complex 
geometries, such as Francis turbine blades. 
 
Keywords—Deformation, kriging, fifth order spline 

interpolation, first, second and third order derivatives, C3 continuity, 
line heating, plate forming, thermal forming. 

I. INTRODUCTION 

ETAL forming by line heating is attractive due to the 
process flexibility. The design and manufacture of tools 

in the other processes, such as stamping, pressing and bending 
take time and are very costly. Since line heating uses the 
temperature effect to deform the plates without tooling design 
and external forces, the small production batch becomes less 
costly. Francis turbine blades are made of high strength steel 
and are usually manufactured using a punch and die process. 
Since every turbine is different from one plant to another, a 
new tooling is required each time when a new project is 
launched [1]. Therefore, Francis turbine blades that have 
complex shapes are made in small production batch. 
Traditionally, the blades are shaped by hot stamping of thick 
plates, but due to the high tooling cost and low production 
rate, the manufacturing cost is dramatically high. On the other 
hand, shipbuilders have used efficiently a thermal gradient 
process to form hulls. However, the choices for selection of 
the heating trajectories are predominately based on the skills 
of the workers. As such, to transfer this approach to the 
manufacturing of hydroelectric assemblies, researchers have 
studied the effect of a specific heat trajectory on the resulting 
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shape to automate this forming process but advanced 
techniques for finding the appropriate trajectories require 
substantial and complex calculations. Because of the huge 
dimension of hull, shipbuilders cannot afford these expensive 
press tooling. They developed an alternative contactless way 
of shaping plates taking advantage of the gradient of 
temperature created through the plate thickness by a heating 
source [2]. The process consists of increasing locally and 
quickly the temperature of one side of the plate with a heating 
source, such as a torch, to induce plastic strains in the plate. 
During cooling, the plate starts to deform such that the 
material in the heated region bends locally, and results in 
permanent deformation in the plate. An experienced and 
skilled worker could manage to shape a flat plate into a hull by 
repeating the process at specific locations over the surface of 
the workpiece. The research on metal forming process by line 
heating started by experiments in the early 1980’s following 
by numerical modeling based on finite element method. For 
example, Machida et al. carried experimentally local heating 
on a plate [3]. McCarthy reported experimental results of the 
effects of main parameters on the deformation of forming by 
laser line heating [4]. Furthermore, Arnet and Vollertsen 
investigated experimentally the effects of main parameters on 
the bending angle of convex shape by laser forming [5]. 
Lately, numerical investigations have been carried out. 
Kyrsanidi et al. developed a three-dimensional model for laser 
line heating [6]. Yu et al. developed a numerical model based 
on finite element method for laser line heating that reduced the 
CPU time by zone remeshing approach [7]. As this process is 
complex and the deformation of single pass is usually very 
small, heating lines and number of pass are required to be 
planed before running the numerical simulations, experiments 
and production. In addition, the process automation becomes 
important to increase the productivity and reduce the 
operator’s labor [8]. Automating the process to achieve a very 
accurate geometry can be overwhelming in terms of time and 
costs considering the countless experimental steps needed. 
Therefore, analytical investigations become important and are 
increased recently. Liu et al. developed an analytical approach 
to determine the scanning path for the laser heating lines 
design from the strain field of the curved plate [9]. Chen and 
Chu assessed the relationship between the stress and the 
temperature distributions resulting from a line heating source 
moving along the axial direction of a cylinder [10]. Son et al. 
developed an analytical model for determining the plate 
deformation with the heat input, material properties and plate 
thickness in metal forming by line heating [11]. Reutzel et al. 
developed a differential geometry approach based on 
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fundamental coefficients to predict deformation induced by 
multi heat line [12]. 

One approach, presented in this paper, is to use the known 
parameters of a given heating line and to apply them at 
different location on a numerical model. The evolution of the 
plate shape can then be followed without having to realize 
physically expensive experiments until a satisfying 
methodology is reached. First, for a given set of line heating 
parameters, a deformed shape is achieved, either by finite 
element simulation or experiment. A kriging model [13] is 
then fitted to the deformed geometry. The kriging method is 
used because it ensures the resulting model to pass precisely 
through the recorded location of actual data points or exactly 
through the node locations of a deformed mesh. The kriging 
model allows then to compute accurately the first and second 
derivatives for the two parametric variables of the surface all 
over the surface of the numerical model. Maps of first and 
second order derivatives are then used with a fifth order spline 
model with C3 continuity constraints at each data point of the 
model to compute the resulting shape. Following the detailed 
methodology of the approach, 1D and 2D examples will be 
presented. 

II. METHODOLOGY 

A. Dual Kriging Interpolation 

This method was initially developed by Krige [14] for 
mining exploitation in the 1950’s. The kriging method was 
named after Matheron [15], who conducted a rigorous study of 
the work of Krige. A huge advantage of the kriging method in 
comparison with the least squares method is that it allows 
surfaces to pass through all the data points of a model. In 
addition, surface equations are continuous and derivable, i.e. 
the kriging method is a very interesting approach for reverse 
engineering problems like the one presented in this paper. The 
coordinates of all points on the surface are firstly recorded in a 
structured database (see Fig. 1), row by row, and column by 
column. Each point is in the form of P (s, t) where s and t 
denote normalized parameters. The parameterization can be 
discrete or a function of a distance between successive points 
in Euclidean coordinate system. 

 

 

Fig. 1 Kriging interpolation of a 3D surface 
 
Three parametric functions, x (Xi), y (Xi) and z (Xi), which 

describe the surface are based on dual kriging interpolation, 
such that they fit all the three dimensional Xi points. Each 
function is decomposed into the sum of two terms, in the form 

of a (Xi) + b (Xi), where a (Xi) represents the average 
behavior, called the drift, and b (Xi) is an error term called the 
fluctuation. 

The observations ui of a phenomenon, at data points Xi 
along a row, can be interpolated using the basic dual kriging 
model in the following form [16], [17]: 
 

 ���� = ∑ ��	��X��
� + ∑ ������ − �����

�               (1) 
 
where X denotes the 3D coordinates of a point where the 
phenomenon is evaluated, ai is one coefficient of the M 
function pi(X) that represents the drift, and bj is one coefficient 
of the N function K(|X–Xj|) that represents the fluctuation 
(also called the generalized covariance). |X–Xi| is the 
Euclidean distance between X and the data point Xi. M 
denotes the number of functions needed to form the drift, and 
N denotes the number of the data points along a row (or a 
column) of data points. 

By using the normalized coordinates s and t to write the x, y 
and z along rows and columns, two parametric equations for 
each coordinate can be obtained by dual kriging. For example, 
for a column k: 
 

����� = ∑ ���	��s��
� + ∑ ������� − �����

�          (2) 
 
and for a row m 
 

����� = ∑ ���	��t��
� + ∑ ������� − �����

�           (3) 
 
where k (k = 1 to IP) denotes the number of columns, and m 
(m = 1 to JP) denotes the number of rows. The coefficients asi, 
bsj, ati and btj are obtained by solving the equations xmk = 
xk(sm) = xm(tk) at each data point. Finally it can be shown that: 
 

���, �� = ����s�� ����t��        (4) 
 
and similar functions are used for y(s,t) and z(s,t). These 
functions allow the construction of a structured grid over a 
surface [13]. 

Fig. 2 presents the kriging surface of a finite element (FE) 
model of a plate deformed by a line heating passing across its 
mid length. With xyzi the nodes of the mesh, it is well 
noticeable that the kriging model passes exactly by every node 
of the deformed plate. 

 

 

Fig. 2 Kriging of a FE model of a line heated plate 

B. Fifth Order Spline Interpolation 

Line heating of plates generated mainly bending distortion, 
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and usually very small deformation occurs. Consequently, a 
great number of line heating are necessary to achieve a 
specific geometry. The idea is then to superpose a sequence of 
line heating over the work piece to get the intended shape. A 
rather simple approach for studying the step by step shape 
forming is to apply the same parameters extracted from the 
deformed plate after one single line heating pass. These 
parameters form a map of the first and second derivatives of 
the deformed shape. Applying sequentially, and at different 
locations, several line heating passes to an initial flat blank 
will progressively shape the flat plate into a 3D surface. 

Bending is related to the radius curvature that can be 
computed from the second derivative and the first one at each 
point. For very small deflection, one can even assume that the 
radius of curvature can be approximated with the inverse of 
the second derivative. Then, in order to compute the new 
shape of a flat geometry after one or several line heating 
passes, the slope and the inverse of the radius of curvature 
must be imposed at each point. A piecewise 3rd order spline 
passing through a set of n point implies that the second order 
derivatives are equal at each interior point. Solving the system 
for the slopes at the interior points leads to a C2 model which 
cannot describe the distorted shape since curvatures are an 
implied consequence of the solved system and cannot be 
imposed. 

To ensure that slopes and curvatures can be imposed, a fifth 
order spline is used to link every pair of neighbor’s points over 
the entire surface. The C3 model can now be solved, implying 
that the 3rd order derivatives are equal at each point. Solving 
the parametric system for the new coordinates of the plate will 
lead to the shape of the distorted geometry. Fig. 3 shows two 
points Pi and Pj for which the slopes (xi', yi', xj', yj') and second 
derivatives (xi'', yi'', xj'', yj'') are known. 

 

 

Fig. 3 Fifth order parametric spline 
 
A fifth order parametric polynomial is represented by (5). 

 
���� = �! + ��� + �"�" + �#�# + �$�$ +  �&�&   (5) 

 

where s is a normalized parameter, i.e. 0 ≤ s ≤ 1. The first and 
second derivatives with respect to s are then given by: 
 

�' = �� + 2�"� + 3�#�" + 4�$�# +  5�&�$             (6) 
 

�'' = 2�" + 6�#� + 12�$�" +  20�&�#              (7) 
 

The boundary conditions at each point lead to: 
 

��� = 0� = �� , �'�� = 0� = ��
' ,  �''�� = 0� = ��

''        (8) 
 

��� = 1� = �� , �'�� = 1� = ��
' ,  �''�� = 1� = ��

''        (9) 
 

Solving for the ai, bi and ci with similar equations for y and 
z, will give the fifth order spline drawn from Pi to Pj as shown 
in Fig. 3. 

A piecewise 5th order spline passing through a set of n 
points implies now that the third order derivatives are equal at 
each interior point. Solving the system for the curvatures at the 
interior points leads to a C3 model. At an interior point Pi, in 
between neighbors points Pi-1 and Pi+1, the rate of curvature is 
given by: 
 

��
''' = �'''�� = 1� for the interval Pi-1 to Pi    (10) 

 
��

''' = �'''�� = 0� for the interval Pi to Pi+1    (11) 
 

Equaling (10) to (11) lead to a system of n-2 linear 
equations for the unknown curvatures. Typically: 

Curvature at the first point P1: 
 

3��
'' − �"

'' = −��
'''/3−12��

'  −8�"
' − 20�� + 20�"        (12) 

 
Curvature at an interior point Pi: 

 
−��1�

'' + 6��
'' − ��2�

'' = 8��1�
' − 8��2�

' + 20��1� − 40�� + 20��2� 
(13) 

 
Curvature at the end point Pn: 

 
�31�

'' − 3�3'' = −�3'''/3 −8�31�
' −12�3' − 20�31� + 20�3    (14) 

 
Assuming that the slopes x' and the curvatures x'' at each 

data point are known, it is now possible to compute the 
coordinates of the points Pi, and then to evaluate the effect of 
sequence of heating lines on a geometry. If third order 
derivative at end points are unknown, they are simply taken as 
zero. Note that at least one coordinate of a data point should 
be given to ensure a non-singular system of equations. 

 

 

Fig. 4 y coordinates computed with a fifth order spline 
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III. 1D APPLICATION 

A. Computing y Coordinates of a Rolled Plate 

First of all a test has been made with a plate rolled 
according to different radius of curvature. Since the parametric 
equation of the rolled shaped is easy to derived, first and 
second order derivatives can be derived too. The first and 
second derivatives are then applied for different radius, step 
by step from an initial flat plate. Results are shown in Fig. 4. 

B. Correcting x Coordinates of a Rolled Plate 

It is clear that y coordinates are computed correctly but 
since the plate is roll bent, x coordinates do not represent 
correctly the deformed shape. Although the plate encounters 
plastic deformation, its mid plane remains elastic. Then the 
length of the plate should remain constant, and then the initial 
distance between two consecutive points should remain 
constant too. In order to keep constant the distance from one 
point to another, a parabola is used to fit three consecutive 
points Pi, Pj and Pk and then the arc length s of the curve along 
these three points is computed with (15) where a, b and c are 
the constants of the parabola y(x) = ax2 + bx + c passing 
through Pi, Pj and Pk and β = dy/dx = 2ax + b. 
   

� = 4 51 + 6"7� = 89:;25;<2�=2;5;<2�
$>                    (15) 

 
Pj and Pk are then moved along the parabola until the arc 
length between two consecutive points equals the initial 
distance separating them when the plate was flat. Fig. 5 shows 
the results with the corrected values for x. The new computed 
coordinates now match very well with the theoretical ones. 
 

 

Fig. 5 Rebuilt shape with x coordinates corrected 

IV. 2D APPLICATION 

The algorithms presented for curves are now extended to 
surfaces. The system is now solved for all data points Pij 
located at the intersection of a row i (s parameter) and a 
column j (t parameter). Results are presented in Figs. 6-11 for 
a typical pillow shape built using bicubic Bezier splines. A 
second example is shown in Figs. 12-17 for a blade shape 
surface. For these two cases, the assumption of deformation by 
bending without membrane stress is kept. Note that 
corrections have been applied to re-compute the x and y 
coordinates to satisfy a constant distance from point to point 
along an s or a t profile. 

 

Fig. 6 Representation of a pillow surface using bicubic Bezier splines 
 

 

Fig. 7 Pillow shape: map of first derivatives as a function of 
parametric coordinate s (rows) 

 

 

Fig. 8 Pillow shape: map of first derivatives as a function of 
parametric coordinate t (columns) 

 

 

Fig. 9 Pillow shape: map of second derivatives as a function of 
parametric coordinate s (rows) 
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Fig. 10 Pillow shape: map of second derivatives as a function of 
parametric coordinate t (columns) 

 

 

Fig. 11 Resulting pillow shape rebuilt surface using first and second 
order derivatives at data points 

 

 

Fig. 12 Representation of a blade surface using bicubic Bezier splines 
 

 

Fig. 13 Blade shape: map of first derivatives as a function of 
parametric coordinate s (rows) 

 

Fig. 14 Blade shape: map of first derivatives as a function of 
parametric coordinate t (columns) for z coordinates 

 

 

Fig. 15 Blade shape: map of second derivatives as a function of 
parametric coordinate s (rows) for z coordinates 

 

 

Fig. 16 Blade shape: map of second derivatives as a function of 
parametric coordinate t (columns) for z coordinates 

 

 

Fig. 17 Resulting blade shape rebuilt surface from first and second 
order derivatives at data points 

 
Figs. 7-10 and Figs. 13-16 display the variation of first and 

second derivatives all over the surface for a given case, but 
only for z coordinates. Similar maps are computed for x and y 
coordinates (not shown here for brevity) and are used to re-
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compute the new locations of the data points and consequently 
the achieved deformed shape. Figs. 11 and 17 show that the 
rebuilt surface has been adjusted by keeping constant the 
initial distance in between data points of the flat plate, using a 
similar algorithm as presented in the previous section.  

V. CONCLUSION 

A methodology using kriging interpolation and a fifth order 
piecewise spline, ensuring C3 continuity at every data points, 
has been developed for computing the geometry of a plate 
submitted to a set of heating lines. The initial parameters of 
the deformed geometry, which are the maps of first and 
second derivatives all over the surface, are applied to an initial 
flat plate and the resulting distorted shape is then computed. 
An algorithm has been also applied to keep the initial distance 
in between data points considering the assumption that the 
plate mainly encounters bending without significant 
membrane stresses. The algorithm can now be applied to 
determine how a surface could be distorted, knowing locally 
the effects of a given heating line on the slopes and the second 
derivatives. Further work, including experiments, will be 
developed for optimizing the set of heating line to achieve a 
targeted shape. 
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