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Limit Cycle Behaviour of a Neural Controller with

Delayed Bang-Bang Feedback
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Abstract— It is well known that a linear dynamic system including
a delay will exhibit limit cycle oscillations when a bang-bang sensor
is used in the feedback loop of a PID controller. A similar behaviour
occurs when a delayed feedback signal is used to train a neural
network. This paper develops a method of predicting this behaviour
by linearizing the system, which can be shown to behave in a manner
similar to an integral controller. Using this procedure, it is possible
to predict the characteristics of the neural network driven limit cycle
to varying degrees of accuracy, depending on the information known
about the system. An application is also presented: the intelligent
control of a spark ignition engine.
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I. INTRODUCTION

A commonly encountered form of limit cycle is that which

results when a PID compensator is used in a system

with a delay and bang-bang1 sensor. This paper first develops

equations describing this classic case, particularly for the

application of fuel-air control. Next an analogous analysis

is performed for the neural controller presented in [1]. A

number of simplifying assumptions allow it to be shown that,

for small deviations around an operating point, the training

scheme operates as a integral compensator.

II. INTEGRAL CONTROLLER

The combination of a plant modelled as a gain, with a sensor

including a bang-bang element and a delay is commonly

given as an example of a system exhibiting a limit cycle.

The analysis contained in this section is closely based on

that found in [2], although similar analyses may be found

in control theory textbooks. Consider the fuel-air control of

a spark ignition engine via an integral controller, shown in

Fig. 1. The plant is modelled as a nonlinear gain representing

the fuel-air mixing function, and a delay representing the time

taken for the mixture to travel from the injection point to the

bang-bang oxygen sensor. The plant transfer function is thus

y(k) = F(tinj(k − d)) (1)

where y is the oxygen sensor output, F(.) is a nonlinear bang-

bang function, tinj is the fuel injector pulse width, k is the

index of the sample, and d is the delay (in units of injection

events).

Authors are with the Department of Mechanical Engineering, University of
Saskatchewan, Saskatoon, Canada.

1A bang-bang sensor is a two-value sensor. For example, the oxygen sensor
in a vehicle produces one voltage when the fuel-air ratio is lean and another
when it is rich, but little information in between
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Fig. 1. Block diagram of the system described in this paper (in the Laplace
domain). The switch allows the control to to chosen from either an integral
controller or a neural network controller.

A discrete time integral controller is used to control the

fuel-air ratio such that it oscillates about the stoichiometric

ratio2 which corresponds to the sensor’s transition point. The

controller is given by the function

tinj(k) =

{
tinj(k − 1) + Kir y(k) > yt

tinj(k − 1) + Kil y(k) < yt

(2)

where Kir is the rich integral gain (negative), Kil is the lean

gain, and yt is the transition point of the sensor.

The resulting waveform will be a triangular wave with the

upward slope equal to Kil and the downward slope equal to

Kir, as shown in Fig. 2. Because of the delay, the pulse width

will overshoot the stoichiometric pulse width for d samples.

Thus the rich peak of the curve will be approximately Kild

above the stoichiometric pulse width, tis, and the trough will

be −Kird below. This is an approximate value, as depending

on the conditions, each section may be d + 1 samples long

rather than d. This is true throughout the analyses in this paper.

If matching integral gains are used (i.e. Kil = −Kir) the time

taken for the pulse width to recover from the peak back to

stoichiometry will be the same as the time taken to reach the

peak, d. Thus, the period of the limit cycle will be 4d [2]. If

unsymmetrical gains are used, the period, P , can be shown to

be

P = d

(
2 +

∣∣∣∣ Kil

Kir

∣∣∣∣ +

∣∣∣∣Kir

Kil

∣∣∣∣
)

. (3)

2The stoichiometric ratio is the ratio of fuel to air such that there is just
enough oxygen to completely combust the fuel.
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as shown in Fig. 3. These unsymmetrical integral gains can

be used to bias the fuel-air ratio rich or lean. By integrating

the triangles, it can be shown that the mean deviation from

stoichiometry is given by

tinj − ts =
d

2
(Kil + Kir) (4)

and the peak to peak magnitude of the oscillations will be

max(tinj) − min(tinj) = d(Kil − Kir). (5)

Plots of (3) and (4) are presented in Fig. 4 and 5. For ease of

comparison, the root mean squared error of this curve from

the stoichiometric point is

RMSE =


 d2

3
(
2 −

Kil

Kir
−

Kir

Kil

)
[
K2

il

(
1 −

Kil

Kir

)
+ . . .

K2
ir

(
1 −

Kir

Kil

)]) 1

2

. (6)
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Fig. 2. Limit cycle behaviour in a system with symmetric parameters Kir =
−0.01 ms and Kil = 0.01 ms. Notice that the period of the waveform is
approximately 4d. The stroichiometric pulse width is 5.0 ms and the delay is
5 samples.

Therefore, if one knows the delay of the system and the

desired bias and period of oscillations for proper catalyst

operation, one can solve for Kil and Kir by using (3) and

(4) to yield

Kir =
tinj − ts

d


 P

d
− 4 ±

√
−4P

d
+

(
P
d

)2

P
d
− 4


 (7)

Kil = 2
tinj − ts

d
− Kir (8)

III. NEURAL CONTROLLER

A similar analysis can be performed on the neural controller

presented in [1]. This controller uses a type of inverse model
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Fig. 3. Limit cycle behaviour in a system with unsymmetrical integral gains
Kir = −0.03 ms, Kil = 0.01 ms. Although the delay is the same, the period
has increased. The unsymmetrical gains allow the fuel air ratio to biased, lean
in this case.
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Fig. 4. The period of oscillations for an integral controlled system has a
minimum when Kir = −Kil and increases as the ratio of integral gains
changes. This is a plot of (3).

control to determine an estimate of the stoichiometric injection

pulse width. It does this by first identifying the engine using

a two-part model.

The first part is a a non-linear, but static classifier, which

estimates whether the mixture in the intake (no delay) would

be rich or lean, given inputs of intake manifold pressure, Pm,

engine speed, Ne, and injector pulse width tinj . This part of

the model takes the form of a generalized neural network[3]

which is updated via online backpropagation training[4] with

feedback from the oxygen sensor in the exhaust. This type of

network uses the same neurons as a multilayer perceptron, but

instead of being organized in layers, it is organized in a row,

as shown in Fig. 6. Each neuron has inputs coming from the
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Fig. 5. According to (4), the mean injector pulse width may be biased, as
shown in this figure. In all cases, the bias is zero when Kir = −Kil.

outputs of the neurons to its left.

x1(Pm) x2(Ne) x3(tinj ) x4 = 1

x5 x6 x7

xN = ŷ

Fig. 6. The generalized neural network architecture uses a string of neurons
instead of layers. Each neuron has inputs coming from the neurons to its left.
The weights connecting tinj to the hidden neurons (shown with dashed lines)
are set to zero to allow the network to be inverted.

The second part of the network is a pure time delay.

Since the delay changes based on a number of factors, the

model’s estimate of the delay is taken to be a range between

a minimum and maximum value. The delay model is used to

match the delayed oxygen sensor reading to the appropriate

inputs. The training algorithm skips any point at which the

proper oxygen sensor reading is uncertain. After the training

phase is complete, the controller is required to solve the model

equations for the stoichiometric pulse width, given the current

values for Pm and Ne. By strategically zeroing weights, this

can be done algebraically. Further details of the control scheme

may be found in [1] and [5].

The learning equation for any arbitrary weight Wi, in the

neural network is

Wi(k) = Wi(k − 1) − η
dE

dWi

(9)

where η is the learning rate and the error term, E, is

E =
1

2
(ŷ − y)2 (10)

where ŷ is the network’s estimate of the bang-bang sensor’s

output y.

The error gradient can be found by starting at the equation

for the the output neuron:

ŷ = xN = sig(σ) (11)

σ = W1x1 + W2x2 + ...WN−1xN−1 (12)

where sig(.) is a unipolar sigmoidal function and xi is the

output of the ith neuron of a total of N neurons.

The gradient can be rewritten as

dE

dWi

=
dE

dŷ

dŷ

dσ

dσ

dWi

(13)

using the chain rule, and (10), (11) and (12) may be differen-

tiated as

dE

dŷ
= ŷ − y (14)

dŷ

dσ
= sig(σ)(1 − sig(σ)) (15)

= ŷ(1 − ŷ) (16)

dσ

dWi

= xi, (17)

so
dE

dWi

= (ŷ − y)ŷ(1 − ŷ)xi. (18)

An important thing to notice is that the neural network is

inverted to find its estimate of the stoichiometric pulse width,

so ŷ ≈ 0.5 for any operating point it controls. Also, since the

sensor is a bang-bang sensor, it only has two possible values

(0 or 1). Therefore, (18) may be simplified as

dE

dWi

= (±0.5)(0.5)(1 − 0.5)xi (19)

dE

dWi

= ±
1

8
xi. (20)

Now consider the effect of this change on the next injection

tinj . By inverting the network (see [1]), the scaled pulse width

is given by

x3 =
−1

W3
(W1x1 +W2x2 +W4x4 +W5x5 + . . . WN−1xN−1)

(21)

where

tinj = x3tisc + tios (22)

with tisc and tios as constant scaling factors for tinj such that

the range of x3 is constrained to the range of 0 to 1, and

x1 and x2 are network inputs: manifold pressure and engine

speed, also scaled to the range of 0 to 1. x4 is set to 1 to

provide a bias.
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If ǫ is defined as the difference ŷ − y, which would corre-

spond to the control error in a PID controller, the linearized

transfer function for the training algorithm can be expressed

by
dtinj

dǫ
, which is

dtinj

dǫ
=

N−1∑
i=1

dtinj

dx3

dx3

dWi

dWi

dǫ
(23)

if one assumes that the effect of the hidden weights is

negligible (because of their indirect influence on the output).

This linearized analysis is only valid for small deviations about

an operating point. The terms in this equation can be found

by differentiation. Substituting (19) into (9), the result is

Wi(k) = Wi(k − 1) − ηǫ
1

4
xi (24)

which is differentiated as

dWi

dǫ
= −η

1

4
xi. (25)

The differentiation of (21) can be shown to be

dx3

dWi

=
−xi

W3
. (26)

Finally, (22) can be differentiated as

dtinj

dx3
= tisc (27)

By substituting (25), (26) and (27) into (23), the result is

dtinj

dǫ
=

ηtisc

4W3

N−1∑
i=1

x2
i . (28)

Again, since the value of ŷ is constrained to 0.5 and y is

contrained to 0 or 1, ǫ must equal ±0.5. Thus if one assumes

that the system is linear for small deviations about ǫ = 0,

dǫ = ±0.5 and the rate of change of the pulse width from one

injection to the next is

dtinj = ±
ηtisc

8W3

N−1∑
i=1

x2
i . (29)

This provides good results compared to simulation data where

all the neuron outputs xi were known.

If one wishes to predict the performance of a controller, it

is necessary to estimate the values for the hidden neurons. If

one assumes that the values for x5, x6..xN−1 are uniformly

distributed between 0 and 1, the sum can be estimated[6] to

be
N−1∑
i=5

x2
i ≈

N − 5

3
. (30)

Thus, if one knows the scaled values for the intake manifold

pressure (x1), engine speed (x2) and injector pulse width (x3),

and remembering that x4 = 1, then (29) can be written as

dtinj = ±
ηtisc

8W3

(
x1 + x2 + x3 + 1 +

N − 5

3

)
. (31)

One further simplification can be made if one does not know

the operating point a priori. In this case, the values for x1, x2,

and x3 are also assumed to be uniformly distributed over the

range of 0 to 1 and the result is

dtinj = ±
ηtisc

8W3

(
1 +

N − 1

3

)
. (32)

Any of (29), (31), or (32) give reasonable results; of course,

greater accuracy may be obtained as more information is

utilized.

Note that dtinj in the above equations plays the same role as

Kil and Kir in a proportional controller and their values can be

directly compared. However the waveform is slightly different.

As mentioned above, the training scheme tries to match the

neural inputs to the proper delayed feedback value. However,

since there is uncertainty in the estimate of the delay, there

are times when the training scheme must skip a number of

points. Therefore, instead of being a triangular waveform, the

waveform has “plateaus”, level spots at each peak and valley in

tinj . Due to these points being ignored by the training scheme,

the limit cycle frequency is decreased and the mean deviation

from stoichiometry is increased. If the slope of each of these

sections is dtinj , and the range of possible delays values is

r, then the root mean squared error from the stoichiometric

pulse width will be

RMSE = ddtinj

√
4
3d + 2r

4d + 2r
(33)

and the period is

P = 4d + 2r. (34)

Note that, as with the integral controller, these values are

approximate as the length of time taken for each section can

be d + 1 samples, rather than d.

It is also possible to bias the control scheme by using

different learning rates for lean and rich operation, in the same

way as different integral gains may be used to bias the fuel-air

ratio.

IV. EXPERIMENTAL VERIFICATION

The controller described above was implemented on a 2001

GM 2500HD truck, fuelled by natural gas (further details

may be found in [7]). This truck has a Vortec 6L V8 engine,

with each bank controlled independently. The original engine

control unit (ECU) maintained control of all functions except

fuel control (i.e. spark timing, idle air control, etc.). The

controller was programmed such that the relevant parameters

could be easily adjusted to examine their effects. For each

trial, the truck was run at idle for 60 seconds and data was

recorded from the eight injectors, as well as the two heated

oxygen sensors, the intake manifold pressure transducer, and

a wide-range oxygen sensor. This data was recorded at a rate

of 200 kSamples/s. Note that the “bang-bang” heated oxygen

sensors were used for feedback and training; the wide-range

oxygen sensor’s measurements were only used for evaluation

of the controller and were not used in its algorithm. All tests

were performed with the engine, oxygen sensors and catalysts

at their operating temperature.

The first test performed was to determine the effect of the

integral gain. The controller was set up with Kir = −Kil =
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Ki and η = 0 to eliminate the effects of the neural network.

Fig. 7 shows the aggregated results of the amplitude of the

limit cycle over a variety of integral gains, along with the

theoretical curve from (6). One can see that the shape of the

curve is accurate for Ki values greater than 0.01 ms, although

there is an approximately constant bias error of 0.09 ms.

This bias may be due to fluctuations in the operating point

which may be attributed to spark timing or idle air control

oscillations. Below Ki = 0.01 ms these other fluctuations

dominate and the integral controller does not cause the same

limit cycle.
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Fig. 7. Effect of integral gain on oscillation amplitude, measured by the
standard deviation of 60 seconds of idling at each data point. The integral
gains are symmetric (Kil = −Kir = Ki). These values may be compared
to the theoretical value from (6), shown as the solid line.

Fig. 8 demonstrates the ability to bias the controller via

asymmetric integral gains. The rich integral gain was held

constant at -0.01 ms and the lean integral gain was varied.

This test was again performed at idle (the mean tinj was

approximately 4.85 ms) with the neural learning algorithm

disabled. Fig. 9 shows the period of the limit cycle oscillations,

compared to the theoretical curve from (3). Finally Fig. 10

shows an example of the resultant relative fuel-air ratio, λ,

defined as

λ =
mis

mi

, (35)

where mi is the mass of fuel injected and mis is the stroi-

chiometric pulse width. Notice the different slopes of the

increasing and decreasing portions of the trace.

The next test was performed to verify the theoretical

equations for the neural system. In this test the integral

controller was disabled and the learning rate, η, was varied.

Fig. 11 shows the effect of learning rate on the oscillation

magnitude (as quantified by the root mean squared error in

pulse width), compared to the results of (33). Fig. 12 shows a

sample waveform. Again, the results follow the shape of the

theoretical curve for η greater than 0.005, with similar errors

as in Fig. 7.
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Fig. 8. Effect of asymmetric integral gain on the mean pulse width. The rich
integral gain, Kir , is held constant at -0.01 ms while the lean gain, Kil, is
varied.
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Fig. 9. Effect of asymmetric integral gain on the period of the limit cycle
oscillations. The rich integral gain, Kir , is held constant at -0.01 ms while
the lean gain, Kil, is varied.

V. CONCLUSION

This paper developed equations showing that the training

dynamics of the neural controller can be expressed in a

linearized form. In particular, it is possible to determine the

period, amplitude and bias of the limit cycle of a particular

training scheme using “bang-bang” feedback for online train-

ing. This development demonstrates that the dynamics of the

training scheme parallel those of a classical linear integral

controller, and much of the same analysis may be performed.

Although there were some errors between the theoretical and

experimental values, the theory was verified via experiments

performed on a system used to control the fuel-air ratio of a

spark-ignition engine.
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Fig. 10. A sample of the relative air-fuel ratio waveform produced with
Kir = −0.01 ms and Kil = 0.05 ms. Note the differing slopes of the
increasing and decreasing portions of the trace.
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Fig. 11. Effect of learning rate, η, on the amplitude of oscillations.
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