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Abstract—In this work, we present a Bayesian non-parametric
approach to model the motion control of ATVs. The motion control
model is based on a Dirichlet Process-Gaussian Process (DP-GP)
mixture model. The DP-GP mixture model provides a flexible
representation of patterns of control manoeuvres along trajectories
of different lengths and discretizations. The model also estimates the
number of patterns, sufficient for modeling the dynamics of the ATV.
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I. INTRODUCTION

DERIVING an explicit dynamic model for an Articulated

Tracked Vehicles (ATVs) is a challenging task [1]. This

task requires an accurate analysis of all the forces acting on

the robot. Most of these forces are due to the interaction

between the robot and the environment and can not be

directly measurable due to the lack of suitable tactile sensors.

Therefore, exact dynamics is not straightforward, since it is not

possible to predict the exact motion of the vehicle only on the

basis of the velocities of all the active mechanical components.

Nevertheless, an effective dynamics approximation of the

vehicle is crucial for both motion planning and control for

real-time autonomous navigation.

In this work, we present a Bayesian non-parametric

approach to model the motion control of ATVs (see Fig.

1). The main idea is to estimate the control manoeuvres

to be applied to the robot to track a given trajectory from

the previously observed trajectories of the robot, the terrain

features associated with each trajectory and the control

commands sent to the robot to follow such trajectories. The

motion control model is based on a Dirichlet Process-Gaussian

Process (DP-GP) mixture model [2], [3]. The DP-GP mixture

model provides a flexible representation of patterns of

control manoeuvres along trajectories of different lengths

and discretizations. This representation allows us to group

trajectories sharing either patterns of control manoeuvres or

path segments. Finally, the model estimates the number of

patterns, sufficient for modeling the dynamics of the ATV.

II. RELATED WORK

Dynamic modeling is a key component of compliant and

force control for complex robots, especially for actively

articulated tracked robots [1]. However, due to unknown and

hard to model non-linearity, analytic models of the dynamics

for such systems are often only rough approximations.

Nowadays, machine learning techniques are commonly
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Fig. 1 Actively Articulated Tracked Vehicle Absolem, designed by
c©Bluebotics [4] for USAR applications: This platform is equipped with the

KINOVA Jarm Arm for pick and place opeartions

applied to significantly improve model-based control [5].

In this regard, a number of methods have been proposed

combining contextual policy search (CPS) [6] with prior

knowledge [7] and regression [8], [9]. CPS is a popular means

for multi-task reinforcement learning in robotic control [6].

CPS learns a hierarchical policy, in which the lower-level

policy is often a domain-specific behavior representation such

as dynamical movement primitives (DMPs) [10]. Learning

takes place on the upper-level policy that defines a distribution

over the parameters of the lower-level policy for a given

context. This context encodes properties of the environment

or the task. CPS is typically based on local search based

approaches such as regression. Locally Weighted Projection

Regression (LWPR), introduced in [11], is a local model

which approximates non-linear mappings in high-dimensional

space. Its computational complexity depends linearly on

the amount of the training instances. A drawback of this

approach is the large number of free parameters which

are hard to optimize. In [7], the authors introduced prior

knowledge in order to increase the generalization properties

of LWPR. A large portion of the literature is focused

on employing kernel-based methods for the estimation of

the inverse dynamics mapping by employing approaches,

such as Gaussian Process Regression (GPR) and Support

Vector Regression (SVR) [12]. Local Gaussian Process (LGP),

introduced in [8], handles the problem of real-time learning by

building local models on similar inputs, based on a distance

metric and uses the Cholesky decomposition for incrementally

updating the kernel matrix. In [13], the authors propose

a real-time algorithm, dubbed SSGPR, which incrementally
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updates the model using GPR as learning method. The

model is capable of learning non-linear mappings by using

random features mapping for kernel approximation whose

hyper-parameters are automatically updated. For the special

case of relatively low-dimensional search spaces combined

with an expensive cost function, which limits the number of

evaluations of the cost functions, global search approaches,

like Bayesian optimization are often superior, for instance

for selecting hyper-parameters [14]. Bayesian optimization has

been used for non-contextual policy search in robot grasping

[15] and for locomotion tasks [16], [17]. The proposed

approach for learning patterns of control manoeuvres for

the tracked vehicle in Fig. 1 resorts to the main concepts

underlying CPS. However, it differs from it by representing

both the upper-level and the lower-level policies with a unified

hierarchical model, defined by DP-GP mixture model where

the number of upper-level policies sufficient for describing

robot motions is also learned from data. Gibbs sampling [18]

and a hybrid Monte Carlo technique [19] are applied to obtain

estimates of the concentration upper-level policies and of the

the hyper-parameters of the lower-level policies, respectively.

A similar approach has been used for modeling non-linear

dynamics of moving targets [2], [3].

III. THE MOTION CONTROL MODEL OF THE ATV

Let us consider the ATV moving within a three-dimensional

environment, negotiating rubbles, stairs and adapting each

active sub-track to complex terrain surfaces. We assume that

the robot is endowed with a 3D SLAM algorithm, which, over

time, provides an estimation q(t) ∈ SE(3) of the robot pose

within the map, with respect to a global reference frame. A

trajectory τ is a sequence of robot poses {q(t)}Tt=1, which

denote a path between two different points of the environment

(e.g., the sequence of robot poses along a staircase, which

interconnects the basement of a building to its first floor). A

descriptor ϕ(t) ∈ R
d of the terrain features at a particular

pose q(t) of a trajectory is a vector of real values specifying

a measure of the heights z of the points of the 3D map, built by

the SLAM algorithm. A 3D voxel grid is centered and oriented

according to the pose q(t). The dimensions of the voxel grid

is fixed according to the size of the ATV. We denote with φ
the set of all the terrain descriptors {ϕ(t)}Tt=1, obtained by

sliding the voxel grid along the entire trajectory.

We denote with c a sequence of control manoeuvres u(t) ∈
R

n, for all t = 1, . . . , T (e.g., linear and angular velocity of

the robot body, angular velocities of sub-tracks), applied to

the ATV in order to suitably steer the robot along a trajectory

and simultaneously adapt its morphology to the terrain. This

said, let us assume that the robot has followed several paths

τ1, . . . , τN of different lengths, starting and ending to different

locations in the map, possibly sharing either the same sequence

of control manoeuvres or path segments. Let τj , φj and cj be

the j-th tracked trajectory, the j-th set of terrain descriptors

and the j-th sequence of control commands, respectively.

The dynamics of the ATV can be modeled by the following

non-linear system:

uj(t) = fi (qj(t),ϕj(t)) , j = 1, . . . , N. (1)

Here fi : R
6 × R

d �→ R
n are unknown continuous functions

that code specific patterns of control manoeuvres such as

falling down all the sub-tracks of the ATV for nose line

climbing, lifting up the sub-tracks for riser climbing or for

rotational motion within narrow passages. We refer to fi (·) as

a the i-th pattern of control manoeuvres.

We assume that each pattern is drawn from a set F =
{f1, . . . , fM} of unknown continuous functions, whose number

M is also unknown. Note that, there is no bijection between

the set F of patterns and the set of all the tracked trajectories.

In fact, one or more trajectories followed by the robot within

the map of the environment may be described by the same

pattern, while some pattern in F may not describe any tracked

trajectory. Thus, in order to model the motion control of the

ATV we have to determine the set F as well as the relation

between the patterns fi ∈ F , the trajectories τj , the set of

terrain descriptors φj and the sequences of cj of control

commands.

According to (1), each function fi (·) projects both the

robot pose qj(t) and the terrain descriptors ϕj(t) of the

j-th trajectory to the control commands uj(t), at time t.
Therefore, each fi (·) can be viewed as a spatial phenomenon

that can be modeled by a Gaussian Process GPi, for any

i = 1, . . . ,M , q ∈ SE(3) and ϕ ∈ R
d [20]. Each GPi

is completely specified by a mean function mi(x̃) and a

positive semi-definite covariance function ki(x̃p, x̃q), with

x̃ ..=
[
q� ϕ�]�. In this work, we assume that each GPi

has the standard squared exponential covariance function:

ki(x̃p, x̃q)=σ2
i exp

{
− 1

2 (x̃p − x̃q)
�
Λ−1

i (x̃p − x̃q)
}
+

δ(x̃p, x̃q)σ
2
wi

Here δ(x̃p, x̃q) is the Kronecker delta function. Λi
..=

diag
([

l2i,1, . . . , l
2
i,6+d

])
depends on the characteristic

length-scales parameters li,h. The term σwi
represents

within-pose variation (e.g., due to noisy measurements); the

ratio of σwi and σi weights the reflective effects of noise

and influences from nearby poses. The above exponential

covariance function encodes similarities between the tracked

trajectories. If we denote with Σi the covariance matrix of

each GPi, with terms Σp,q = ki(x̃p, x̃q), then, for each

x̃ ∈ R
6 × R

d, fi(x̃) ∼ GPi(mi,Σi), namely, GPi is the

distribution of the control commands over the workspace

specified by the i-th function fi(·) ∈ F . Now, we have to build

a relation that links a sequence cj of robot control commands

to a pattern fi(·). This relation has to be also able to capture

differences resulting from trajectories τj ending into different

locations within the 3D map.

Let us consider a discrete random variable gj ranging over

a set I = {1, . . . ,M} of indices. The event {gj = i}
represents the association of the sequence cj , applied to the

robot to track the trajectory τj , having terrain descriptors set

φj , with the i-th pattern fi ∈ F , as shown in (1). We assume

that gj ∼ Categorical(π), with π =
[
π1 . . . πM

]
prior

probabilities of every possible outcome of gj , for any cj , τj
and φj , with j = 1, . . . , N . Given these prior probabilities, the

probability of the j-th sequence of control commands, given
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Fig. 2 Bayesian network of the motion contol model of the ATV

the j-th tracked trajectory and of the observed j-th terrain

descriptors set φj is given by the following mixture model

Pr(u
1:Tj

j |q1:Tj

j ,ϕ
1:Tj

j ) =

=
∑M

i=1 Pr(gj = i|π)Pr(u
1:Tj

j |q1:Tj

j ,ϕ
1:Tj

j , {mi,Σi})
However, we can not know a priori how many patterns of

control manoeuvres are sufficient for modeling the dynamics

of the ATV. To cope with this issue we resort to a Dirichlet

process (DP) mixture model to create an infinite mixture of

patterns of control manoeuvres and to place a prior over

the number of patterns. In this work, we choose a Gaussian

process GP0(μ0,Σ0) as the base distribution of the DP. On the

other hand, the support set of the process is chosen to be the set

of all the admissible sequences of control commands for the

robot. According to this model, the prior probability that a pair

τj , φj generates a sequence cj of control commands, through

an existing pattern fi(·) is Pr(gj = i|g−j , α) = ni

N−1+α . On

the other hand, the probability that a pair τj , φj is projected to

a cj , through a new pattern fi(·) is Pr(gj = M +1|g−j , α) =
α

N−1+α . Here, g−j refers to the pattern assignments for the

remaining trajectories, α is the concentration parameter of the

DP, ni is the number of pairs τj , φj assigned to fi(·), N
is the total number of observations and M is the number of

the observed fi(·). To close, the dynamics of the articulated

tracked robot can be represented by the following probabilistic

motion control model

π ∼ GEM(α)

mi ∼ GP0(μ0,Σ0)

Σi ∼W−1(W0, ν0)

gj |π ∼ Categorical(π)

fgj (x̃)|gj , {mgj ,Σgj} ∼ GPgj (mgj ,Σgj ), ∀x̃ ∈ R
6 × R

d

with i = 1, . . . ,∞ and j = 1, . . . , N . The associated

Bayesian network is illustrated in Fig. 2. In this model, an

Inverse-Wishart distribution of parameters W0, ν0 is given to

the covariance Σi. Both the parameters σgj and σwgj
are given

inverse gamma priors with hyper-hypers a and b (separately

for the two variances). We also give independent log normal

prior to the length-scales Λgj [18].

Fig. 3 Trajectories generated for training the motion control model over a
simulated harsh terrain. Terrain surface is represented through a mesh

IV. MODEL PARAMETERS LEARNING

The algorithm for learning the parameters of the Dirichlet

Process-Gaussian Process (DP-GP) mixture model of the robot

motion control is similar to the approach proposed in [18],

[21]. Let us consider a set D = {ut
j , (q

t
j ,ϕ

t
j)}Tj ,N

t=1,j=1 of

observed trajectories, terrain features and control commands

(see Fig. 3). These trajectories have been generated by

manually steering the robot within different simulated

disaster scenarios (e.g., climbing stairs, overcoming obstacles,

traversing harsh terrains).

We resort to our knowledge about the robot as well as

about its locomotion capabilities to fix in advance an initial

value of the number M of patterns of control manoeuvres.

Thus, we initialize the mixture model with M components.

At each Gibbs sweep, estimates of the assignments of patterns

of control manoeuvres to sequences of control commands, as

well as the GP parameters are obtained by sampling from the

following distributions:

Pr(gj = i|u1:Tj

j , α, {mi,Σi}) ∝
∝

{
ni

N−1+α
L(gj = i;u

1:Tj

j ) if i � M
α

N−1+α

∫ L(gj = i;u
1:Tj

j )B(mi,Σi)dmidΣi if i = M + 1

and

Pr(mi,Σi|u1:Tj

j , gj ,m−i,Σ−i) ∝ ∏
j|gj=i L(gj = i;u

1:Tj

j )

B(mi,Σi)

Here L(gj = i;u
1:Tj

j ) = Pr(u
1:Tj

j |q1:Tj

j ,ϕ
1:Tj

j , {gj =
i}, {mi,Σi}) is the likelihood of the i-th pattern under

the sequence of control commands u
1:Tj

j . B(mi,Σi) =

Pr(mi,Σi|u1:Tj

j ,μ0,Σ0,W0, ν0). m−i and Σ−i refer to

the parameters of the GPi associated to the remaining

trajectories. Then, the DP concentration α is sampled using

standard Gibbs sampling techniques [18]. Finally, an hybrid

Monte Carlo technique is applied to obtain estimates of the

hyper-parameters σi, σwi
and Λi of each GPi [19]. Fig. 4

shows the number of control manoeuvres along trajectories

which have been estimated by the learning algorithm with

respect the number of Gibbs sweeps. Here the initial guess

M on the number of components has been set equal to 12.

Fig. 5 shows the relative Root Mean Square error (RMS) of

the DP-GP model in imitating the motion patterns. This error

is computed comparing the estimated target model to the real

underlying motion patterns [3].
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Fig. 4 Number of control manoeuvres along trajectories which have been
estimated by the learning algorithm with respect the number of Gibbs

sweeps
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Fig. 5 Relative Root Mean Square error (RMS) of the DP-GP model in
imitating the motion patterns over the number of Gibbs sweeps

The learned robot motion control model can be used to

predict a pattern of control manoeuvres, given both a trajectory

τj and the associated terrain features descriptors φj [2].

V. FUTURE WORK

In this work, we described the probabilistic model of the

motion control of ATVs based on a Dirichlet Process-Gaussian

Process (DP-GP) mixtures. This model is prevailing because

it permits the number of patterns of control manoeuvres to be

inferred directly from data and thus bypass the difficult model

selection problem on the pattern number. However, inference

with this model can be computationally inefficient because it

requires the inversion of the covariance matrices, though this

cost has been greatly alleviated by making use of the mixtures.

In order to increase the scalability of the inference as well as

to reduce the computational cost of the learning phase, an

approach based on Multi-Task learning could be employed

[22]. More precisely, the robot motion control task could be

separated into two different sub-tasks, namely, the trajectory

tracking task and the sub-tracks reconfiguration task. Both

these tasks are correlated and share the same representation.

Therefore a multi-task learning approach could be suitably

applied leading to both a better model for the main task and

an improvement of the performance of the learning process.
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