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Abstract—This paper presents a novel approach for representing 

the spatio-temporal topology of the camera network with overlapping 
and non-overlapping fields of view (FOVs).  The topology is 
determined by tracking moving objects and establishing object 
correspondence across multiple cameras. To track people successfully 
in multiple camera views, we used the Merge-Split (MS) approach for 
object occlusion in a single camera and the grid-based approach for 
extracting the accurate object feature. In addition, we considered the 
appearance of people and the transition time between entry and exit 
zones for tracking objects across blind regions of multiple cameras 
with non-overlapping FOVs. The main contribution of this paper is to 
estimate transition times between various entry and exit zones, and to 
graphically represent the camera topology as an undirected weighted 
graph using the transition probabilities. 
 

Keywords—Surveillance, multiple camera, people tracking, 
topology.  

I. INTRODUCTION 
S camera and network technology has improved, the cost 
of installing a surveillance system has dropped 

significantly, leading to an exponential increase in the use of 
security cameras. A typical visual surveillance system is used 
for observation in wide areas which need security, such as 
banks, casinos, airports, and military installations. The 
surveillance system may operate continuously or only as 
required to monitor a particular event. For example, a traffic 
monitoring system detects congestion and notice accidents for 
traffic flow and immediate assistance. Furthermore, increasing 
use of the surveillance system in public places have been 
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successful at reducing some types of crimes like property crime, 
for acting as a deterrent in car parks or in other public places. 

The visual surveillance system comprises a large network of 
cameras distributed over wide areas. In the camera network, to 
discover the relationship between the cameras is a one of the 
most important issues to develop the intelligent surveillance 
system. In this paper, we present a conceptual approach for 
representing the spatio-temporal topology of the camera 
network with overlapping as well as non-overlapping fields of 
views (FOVs). In order to determine the spatio-temporal 
topology, three problems are addressed: (1) detecting the same 
target object in overlapping FOVs; (2) recognizing occluded 
object; (3) tracking multiple objects in non-overlapping FOVs. 

For object identification, we used the grid-based approach 
[1] for robustly extracting head and hand regions of moving 
people in a varying distance from the camera. First, a 
background subtraction scheme is applied to the sequence of 
images based on hue and saturation information to classify the 
foreground and background pixels. The background subtracted 
image is partitioned into grid patches.  The grid patches are 
classified into background, non-skin foreground and skin 
foreground classes based on the histogram analysis of patch 
feature values. 

Object occlusion is a challenging problem in the object 
tracking process. It can be very difficult to deal with by a single 
camera and cause loss of target in multiple object tracking 
algorithms. Occlusion can be full or partial, and it can be 
caused by another foreground object or by a background object. 
In this paper, we used the merge and split approach which used 
attributes of atomic blobs and operations such as entry, exit, 
merge, and split. 

A common assumption in multi-camera surveillance systems 
is that the FOVs of each camera overlap. However, it is not 
always possible to have overlapping camera views because of 
monitoring a wide area. In order to overcome this limitation, 
camera handoff is commonly used to keep track of an object 
across multiple camera FOVs. Multi-camera tracking with 
non-overlapping FOVs involves the tracking of targets in the 
blind region and the correspondence matching of targets across 
cameras. In this paper, we considered the appearance of people 
as they move through cameras and the transition time between 
entry and exit zones. Finally, the systems can automatically 
learn the topology of an arbitrary network of cameras.  
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The rest sections of this paper are organized as follows. 
Section 2 describes the related work. In Section 3, object 
identification is described, and Section 4 presents how to learn 
camera network topology. In Section 5, experimental results 
are presented. Section 6 concludes this paper.  

II. RELATED WORK 
Previous work on multiple cameras has dealt with 

identification, recognition, and tracking of moving objects. 
Numerous researchers have proposed camera network 
calibration to achieve robust object identification and tracking 
from multiple viewpoints.  

To indentify objects from cameras, colour is often used in the 
matching process. Black et al. [2] use a non-uniform 
quantization of the HSI colour space to improve illumination 
invariance, while retaining colour detail. KaewTraKulPong 
and Bowden [3] use a Consensus-Colour Conversion of 
Munsell colour space (CCCM) as proposed by Sturges et al. [4]. 
This is a coarse quantization to provide consistent colour 
representation inter-camera without colour camera calibration. 

Object tracking across multiple cameras is usually based on a 
prior registration of the cameras using common scene features 
or tracked moving objects. For overlapped cameras, tracking 
algorithms [5, 6] required camera calibration and a computation 
of the handoff of tracked objects between cameras. To 
accomplish this, it needs to share a considerable common FOV 
with the first. 

However, these requirements of overlapped cameras are 
impractical due to the large number of cameras required and the 
physical constraint upon their placement. Thus, it needs to be 
able to deal with non-overlapping region in the system where 
an object is not visible to any camera. Most single camera 
tracking algorithms rely on smooth motion using the previously 
observed velocity to predict the future location using methods 
such as the Kalman filter [7]. However, motion between 
cameras is rarely smooth. Thus a number of techniques have 
been developed to handle the invisible spots and improve 
object handoff. 

Haritaoglu et al. [8] have developed a system which employs 
a combination of shape analysis and tracking to locate people 
and their parts (head, hands, feet, torso etc.) and tracks them 
using appearance models. In [9], they incorporate stereo 
information into their system. Kettnaker and Zabih [10] 
presented a Bayesian solution to track objects across multiple 
cameras where the cameras have non-overlapping FOVs.  They 
used constraints on the motion of the objects between cameras, 
which are positions, object velocities and transition times. A 
Bayesian formulation of the problem was used to reconstruct 
the paths of objects across multiple cameras. They required 
manual input of the topology of allowable paths of movement 
and the transition probabilities. 

Huang and Russell [11] use a probabilistic approach for 
tracking cars on a highway. They used a combination of 
appearance matching and transition times of cars in 
non-overlapping cameras with known topology. The 

appearance of the car is evaluated by the mean of the colour and 
the transition times modeled as Gaussian distributions.  

Cai and Aggarwal [12] extend a single-camera tracking 
system by switching between cameras. They used calibrated 
cameras with overlapping FOVs. The correspondence between 
objects was established by matching geometric and appearance 
features. 

Javed et al. [13] present a more general system by learning 
the camera topology and path probabilities of objects using 
Parzen windows. Individual tracks are corresponded by 
maximizing the posterior probability of the spatio-temporal and 
colour appearance, adapted to account for changes between 
cameras. The transition probabilities are learnt using a small 
number of manually labeled trajectories, so this method is 
based on supervised learning. 

Dick et al. [14] use a stochastic transition matrix to describe 
peoples observed patterns of motion both within and between 
FOVs. This does not require correspondences, but does need a 
training phase and does not scale well. 

Ellis et al. [15] do not require correspondences or a training 
phase, instead observing motion over a long period of time and 
accumulating appearance and disappearance information in a 
histogram. They used a thresholding technique to look for 
peaks in the temporal distribution of travel times between 
entrance-exit pairs; a clear peak suggesting that the cameras are 
linked. 

This approach has been extended by Stauffer [16] and Tieu 
et al. [17] to include a more rigorous definition of a transition 
based on statistical significance. They tracked across multiple 
cameras with both overlapping and non-overlapping FOVs, 
building a correspondence model for the entire set of cameras. 
They made an assumption of scene planarity and recovered the 
inter-camera homographies. 

Recently, Gilbert et al. [18] presented an approach to 
automatically derive the main entry and exit areas in a camera 
probabilistically using incremental learning, while 
simultaneously the colour variation inter camera is learnt to 
accommodate inter-camera colour variations. 

III. OBJECT IDENTIFICATION 

A. Background Subtraction  
Background subtraction is a critical step for moving person 

detection and tracking. The basic idea is to subtract the current 
stereo pair from corresponding reference background images to 
get the foreground.  

For background subtraction, it may be used a hue saturation 
intensity (HSI) colour model has been widely used in color 
image processing and analysis.  We have analyzed the noise 
characteristics of the HSI colour model and developed an 
adaptive spatial filtering method to reduce the magnitude of 
noise and the non-uniformity of noise variance in the HSI 
colour space. 

The hue factor generally represents the unique value of color 
itself while minimizing the effect of the illumination. The 
saturation represents the pureness of a color. The intensity is a  



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1677

 

 

 
(a) Background     (b) Silhouette extraction  (c) Object detection 

Fig. 1 Example of the object detection 
 

measure of the brightness of the colour, which may not always 
be satisfied to subtract background involving operations over 
extended time period. 

In this paper, we statistically analyze the reference 
background image in HSI colour space for fifty frames with 
different illuminations and all pixels of the static background 
scene image are modeled as Gaussian distribution with respect 
to the hue and saturation values. After the preprocessing for 
analyzing the background image, a sequence of images 
containing a moving human captured from a camera is 
converted into HSI colour images and subtracted from the 
reference background image. If the subtraction values are 
greater than the threshold values which are derived based on 
the variance values from the background image, those pixels 
are determined as belonging to the foreground pixels. We 
classify a pixel into a foreground or background class based on 
the following equation: 
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B. Grid-based ROI Extraction  
In order to improve object detection, we used the grid-based 

approach [1] for robustly extracting head and hand regions of a 
moving human in a varying distance from the camera. The 
proposed method defines grid images which continuously 
maintain the foreground and background information in 
significantly lower resolution than that of original input 
images. The grid images are adaptively classified into 
background, non-skin foreground, and skin-foreground classes 
based on the analysis of the portion of the number of 
foreground and skin pixels with respect to that of the overall 
input image pixels. We effectively perform the labeling of skin 
regions by using the grid image in a low resolution and reduce 
the unexpected artifacts from the noises. 

The result image of background subtraction is partitioned 
into grid patches of 8 × 8 pixels, and the numbers of foreground 
pixels and skin pixels are counted for each grid. The ratio of the 
number of foreground pixels to sixty-four pixels in a grid (Fij) 
and the ratio of the number of skin pixels to that of foreground 

pixels in a grid (Sij) are used as patch feature values. 
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Grid patches are classified into a background class, a general 

non-skin foreground class or a skin foreground class based on 
two patch feature values, Fij and Sij. That is, we build a grid 
image which consists of three classes of patches. 
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We first applied the static patch classification using the fixed 

threshold and performed the proposed adaptive patch 
classification based on patch histogram analysis. We compared 
the ROI extraction results of two approaches in Fig. 2. In case 
of the static patch classification, the small skin region in a long 
distance image was missed in the skin ROI detection, while the 
large skin region is robustly detected in a short distance image. 
In the proposed adaptive patch classification, the small skin 
regions in the long distance are also detected successfully. 

 

 
Fig. 2 Background subtraction images in 648×468 resolution. 

Non-Skin foreground pixels are coloured red and skin foreground 
pixels are coloured yellow 
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C. Occluded Object Recognition 
In order to solve the occlusion problem, we use the HSI 

colour model until objects come into an occlusion situation and 
attempt to measure noise according to the change in blob 
surface during merging. The blob is defined as being a group of 
objects such as persons or cars, which acts as a container that 
can have one or more objects. For each foreground blob, the 
color model is initialized and a distance measure is used to 
consistently label the blobs for the rest of the sequence. The 
model accommodates the presence of partial occlusions, pose 
variations and illumination changes, through partial updating at 
every frame. 

There are two major approaches for dealing with occlusion 
using a single camera. The first approach is the Merge-Split 
(MS) approach that merges the detected occlusion blobs into a 
single new blob. From that point on, the attribute of original 
objects is encapsulated into the new blob. The second approach 
is the Straight-Through (ST) approach that continues to track 
the individual blobs containing only one object through the 
occlusion without attempting to merge them. We used the MS 
approach in this paper. 

When a new set of blobs is computed for a frame, an 
association with the previous frame’s set of blobs is required. 
This association can be an unrestricted. With each new frame, 
blobs can entry, exit, merge, and split. The system detects that 
two or more people have merged into a group when the total 
number of blobs in the frame has decreased and two or more 
blobs in the previous frame overlap with a single blob in the 
current frame.  

On the other hand, the group can also be split. This event is 
detected when the total number of blobs in the frame has 
increased and several blobs in the current frame overlap with a 
group blob in the previous frame. In order to assign labels after 
a split, each blob involved in the splitting is segmented as if it 
was still the group with all the components. Assuming that each 
person can only be present in one of the blobs involved in the 
splitting process, it is concluded that a person is present in the 
blob that contains the largest number of pixels labeled with that 
person’s label. Fig. 3 shows the result of tracking under 
occlusion. In the frame 662, both human H0 and H1 are seen in 
a camera. In the frame 669, two humans have merged into a 
group G2. In the frame 705, the group G2 has split into H0 and 
H1.  

IV. LEARNING CAMERA NETWORK TOPOLOGY 
To learn the topology of an arbitrary camera network, we 

consider the spatio-temporal relationship between cameras, 
which can be used to support predictive tracking across the 
camera network. We use the entry-exit and travel-transition 
time model for spatial relationship and temporal relationship, 
respectively. The model can be graphically represented as a 
stochastic state automation such as a graph, where the nodes 
correspond to camera locations. The links represent possible 
transitions between connected camera locations and are 
annotated by a model of the transition time and the probability 

that an object visible in the first location will become visible 
next in the second camera. 

First of all, the entry-exit model defines entry and exit zones 
with appearance and disappearance of objects. The entry zones 
can be new entry zone and re-entry zone according to object 
identification. The new entry zone is determined when new 
object is first detected from multiple cameras. On the other 
hand, the re-entry zone is determined when an object detected 
from one camera reappear in another camera after 
disappearance. When an object moves from new entry zone and 
exit zone, the movement time is called the travel time of the 
object. In addition, an object moves from exit zone and re-entry 
zone, the movement time is called the transition time. Thus, the 
travel time denotes the size of FOV and the transition time 
represents the camera distance.  

In this paper, we define several nodes for camera network 
topology, which are the overlapping node, the non-overlapping 
node, the virtual node. In overlapping FOVs, an object entered 
into one camera and the object can reappear in another camera 
before disappearance. In this case, the overlapping node needs 
to represent an overlapping edge.  In non-overlapping FOVs, 
the non-overlapping node can be an entry node or an exit node 
whether an object appears or disappears. In particular, an object 
disappears from one camera and may reappear in the same 
camera. For this case, we define the virtual node to represent 
the invisible edge. 

Finally, we can construct an undirected weighted graph G to 
represent the camera network. The graph G consists of two sets: 
a set of vertices },...,,{ 21 nvvvV = represents the camera node, 
the overlapping node, non-overlapping node, and virtual node. 
The other set of edges },...,,{ 21 neeeE =  connects vertices in V 
which represents edge, overlapping edge, and non-overlapping 
edge. An edge Eei ∈ is represented by the tuple >< ijji wvv ,, , 

where Vvv ji ∈, . It corresponds to a connection between 

corresponding two nodes in the camera network. Also, weight 
iw  is assigned a number representing the normalized distance 

from iv to jv , which is calculated by the inter-camera travel 

time and the transition time. 
  

>=< WEVG ,,         (5) 

 

 

 

   
(a)  Frame 662  (b) Frame 669   (c) Frame 705   

Fig. 3 Tracking results of handling multiple occluded people on 
single camera  
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(a)         (b) 

 
(c)         (d)  

 
(e)         (f)  

Fig. 4 (a)-(e) The tracking environment. (f) The top down layout of the 
camera system 

 
|)()(| jiij CTCTw −=              (6)  

 
Typically, a graph can be represented using an adjacency 

matrix. The adjacency matrix for undirected graph G is a |V| x 
|V| array, say A, with A(i,j) = A(j,i) = distance of edge(i, j) if 
there exists an edge between i and j in G. An A(i,j) = 0 if there is 
no such edge in G.  
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In Fig. 7, if the graph is undirected, every entry is a set of two 

nodes containing the two ends of the corresponding edge. Thus, 
its adjacency matrix contains many 0s, which leads to waste of 
space. Also, the matrix is symmetric for an undirected graph. 
To improve the space efficiency, we used an adjacency list 
representation for graph. The graph G is represented by the list 

|]|...1[ VAdj  of lists. For each Vv∈ , the list ][vAdj  is a linked 
list of all vertices which is implemented by data structure as 
shown below.  

 
TABLE I 

DATA STRUCTURE FOR LINKED LIST  
[0] [1] [2] 

index of adjacent vertex weight reference to next edge node
 

TABLE II 
CAMERA ZONE AND TRAVEL-TRANSITION TIME CORRESPONDENCES 

IDENTIFIED  

Time Camera New entry Re-entry Exit 
Travel
time 

Transition
time 

09:45:22:12 c1 p1         
09:45:26:87 c4 p2         
09:45:30:34 c2   p1   8   
09:45:31:68 c4     p2 5   
09:45:32:56 c1     p1 10   
09:45:32:81 c3   p2     1 
09:45:37:41 c2     p1 7  
09:45:37:94 c3     p2 5  
09:45:38:23 c3   p1     1 
09:45:39:18 c3     p1 1  
09:45:40:76 c4   p1     1 
09:45:40:56 c5   p2     3 
09:45:45:24 c4     p1 5  
09:45:46:74 c3   p1     1 
09:45:48:21 c5     p2 8  
09:45:51:81 c3     p1 5  
09:45:54:81 c5   p1     3 
09:46:02:64 c5     p1 8  
09:46:03:37 c5 p3        
09:46:05:15 c5  p1   -3 
09:46:11:37 c5   p3 8  

V. EXPERIMENTS AND RESULTS 
To evaluate the performance of our system, we performed 

experiments with five CCD cameras (320 x 240 resolutions) 
and used PCs with Pentium 4 Processors and 1GB of RAM as 
hardware platform, and Microsoft SQL Server 2000 as 
underlying DBMS. In addition, we implemented using the C++ 
and OpenCV library [19] for image processing. 

The experiment was done with five cameras in three rooms 
and a passage as shown in Fig. 4. The training phase lasted for 
five minutes and the test was run for ten minutes.  Table II 
presents a part of the results that contains entry-exit zones and 
movement time of three moving objects (p1, p2, p3). As shown 
in Table II, a p1 loitered in FOV of a camera 4 to start at 
09:45:40 and end at 09:45:45. The p1 met a p3 in visible FOV 
of a camera 5 and the visual system effectively treats partly 
occluded objects. The p1 disappeared from the camera 5 at 
09:46:02 and reappeared in the same camera 5 at 09:46:05, 
because there is no exit. In this case, the virtual node v1 is 
created in the topology. 

 

 
(a)           (b)     

Fig. 5 (a) An adjacency matrix for graph about a p1. (b) An adjacency 
list representation 
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Fig. 6 The probability distribution showing the travel and transition 

time for ten nodes  
 

Fig. 5 presents an adjacency matrix and an adjacency list 
representation for graph about a p1 based on Table II. As 
shown in the table, the matrix is symmetric and contains many 
0s. Fig. 6 shows the temporal probability distribution of ten 
edges for five minutes. In conclusion, Fig. 7 shows a camera 
network topology which is represented by an undirected 
weighted graph. 

VI. CONCLUSION 
In this paper, we have presented a method to automatically 

construct a spatio-temporal topology of a multiple camera 
network using the entry-exit and the travel-transition time 
model. The model is based on an unsupervised learning method 
from the perspective of statistical modeling, which relies on the 
matching objects between images from at least two nodes 
whether overlapping or non-overlapping cameras. In order to 
represent the spatio-temporal topology, we have created an 
undirected weighted graph.  

For object identification, we used the grid-based approach 
for robustly and efficiently extracting skin regions of a moving 
human in a varying distance from the camera. Furthermore, we 
improved the object identification efficiency using an occluded 
object recognition that considers both the occluded block and 
the HSI colour space,  

In future work, we plan to extend our spatio-temporal 
topology to 3-dimensional topology of the building with stairs 
and elevators. In addition, we will consider compound actions 
and complex events with the visible FOV using probabilistic 
methods to recognize different types of object interactions. 
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