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Abstract—This paper analyzes the patterns of the Monte Carlo 

data for a large number of variables and minterms, in order to 
characterize the circuit path length behavior. We propose models 
that are determined by training process of shortest path length 
derived from a wide range of binary decision diagram (BDD) 
simulations. The creation of the model was done use of feed forward 
neural network (NN) modeling methodology. Experimental results 
for ISCAS benchmark circuits show an RMS error of 0.102 for the 
shortest path length complexity estimation predicted by the NN 
model (NNM). Use of such a model can help reduce the time 
complexity of very large scale integrated (VLSI) circuitries and 
related computer-aided design (CAD) tools that use BDDs. 

 
Keywords—Monte Carlo data, Binary decision diagrams, Neural 

network modeling, Shortest path length estimation. 

I. INTRODUCTION 
HE increasing complexity of modern VLSI circuitry is 
only manageable through advanced CAD systems that 

allow efficient handling of BFs (BFs) [1]. One of the most 
important functions of CAD tools is to provide robust and 
efficient data structures to represent BFs as well as fast 
algorithms to manipulate these data structures. During the last 
two decades, BDDs have gained popularity as the data 
structures in solving most of the combinational problems 
which arise in synthesis and verification of digital systems. 

BDD in general is direct acyclic graph representations of 
BFs. BDDs were proposed by Akers [2] and were further 
generalized by Bryant [3]. The success of BDDs has attracted 
many researchers in the area of design, synthesis and 
verification of VLSI circuits. Evaluation of the time 
complexity of a BF can be performed by employing its BDD 
[3].  

Fast evaluation time is a key step in many applications such 
as logic simulation, testing evaluation process of logic circuits 
[4], [5]. As the circuit sizes continue to grow, the need for fast 
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evaluation becomes even more significant. The evaluation 
time is not directly related to the number of nodes in a BDD, 
but it is proportional to the path length of the BDD. Therefore, 
minimization of the path length can improve the overall 
performance of the circuit implementing BFs. This will 
eventually increase the efficiency of the final implementation 
[6], [7]. Numerous research works have been done to analyze 
the behavior of path related objective functions [6]-[10]. Most 
of the proposed methods are based on either static variable 
ordering [11]-[14] or dynamic variable ordering techniques 
[15], [16]. The minimization of the APL leads to circuits with 
smaller depth of paths from the root to the terminal node of 
the BDD. The resulting circuit will be optimized for speed on 
one hand, and on the other hand the number of very long paths 
in the BDD will be reduced [17]. The minimization of 
Average Path Length (APL) is of great importance in 
embedded systems, real time operating system applications 
[18], [19]. Minimization of Longest Path Length (LPL) [6] 
and Shortest Path Length (SPL) in BDDs is motivated by the 
synthesis of digital circuits in order to optimize their delays, 
which is a very important issue for Pass Transistor Logic 
(PTL) [20], [21].  

In all these path length minimizations, we need to create the 
whole BDD representing the BF with the best possible 
variable ordering method. Building the whole BDD may lead 
to some complexity in the design process in terms of the time 
required to implement, verify and test the design. So it will be 
useful to have an estimation of the BDD complexity prior to 
make decisions on the feasibility of the design. Many research 
works have been published on the estimation of combinational 
and sequential circuits [22]-[24].  

NNs learn from experience or some known examples. The 
learning process results in a set of weights that tend to 
minimize the errors between the NNM and the actual 
examples. NN are useful at pattern recognition, generalization, 
and trend prediction. Over the decade NN has been used to 
provide solution to difficult NP-complete optimization 
problems [25]. The measure of efficiency of the circuits has 
been addressed in relation with the area of circuit 
implementation, where the complexity of BFs is analyzed in 
terms of their implementation using different kind of circuits, 
from those with simple sum-of-product (SOP) to NNs. In 
recent times, some research work has been done on BF 
complexity analysis using NN learning process. [26], [27]. 
The main idea of this paper is to extend the work done by the 
same authors to demonstrate the capabilities of a NN 
methodology in effectively modeling the behavior of path 
length properties. Previously this methodology addressed the 
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LPL and APL of BDD. Here we use an NNM to predict the 
SPL complexity with Monte Carlo BDD simulation.  

In second section of this paper, we review the previous 
work done by the same authors on the estimation of path 
length properties. The proposed NNM for the estimation of 
SPL complexity is explained in the third section. Section four 
provides the ISCAS benchmark validation for the NNM. 
Finally we conclude our paper with our future developments 
in the same area. 

II. PREVIOUS WORK DONE ON PATH LENGTH COMPLEXITY 
ESTIMATION 

We used an NN software package called Brain-Maker 
version 3.75 [28] to model the APL and LPL behavior [29]. 
Brain Maker’s feed-forward back-propagation NNs were fully 
connected, meaning all inputs were connected to all hidden 
neurons, and all hidden neurons were connected to the 
outputs. Our experiments involved different number of 
neurons in the single hidden layer. We used 90% of the data 
sets as the training set and the other 10% as the validation set. 
During training, only the training set was presented to the 
NNs, and not the validation set. We had acquired a total of 
10,528  data sets (also called facts) by running BF simulations 
[29]. A total of 72 different configurations of NNM were used 
to collect the data on NNM learn-ability. A given NNM was 
considered to be sufficiently trained when it had learnt 97.5% 
of the training facts. For our NNMs, the raw data (using no 
transformation) provided APL and LPL average training 
accuracy of 90.8%, 89.3% and average validation accuracy of 
90% and 90.5%, respectively. The Fig. 1 illustrates the 
comparison of APL and LPL complexity for 10 variables from 
simulations and NNM predictions.  
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Fig. 1 Comparison of APL and LPL complexity for 10 variables from 
simulations and NNM predictions 

 
 

 

III. DATA ACQUISITION AND PRE-PROCESSING 
For each variable count n between 1 and 14 inclusive and 

for each term count between 1 and 2n-1, 100 SOP terms were 
randomly generated and the Colorado university Decision 
Diagram (CUDD) package [30] was used to determine the 
SPL in terms of nodes. This process was repeated until the 
average size of the SPL complexities (i.e. number of nodes) 
became 1. Then the graphs for both the complexities were 
plotted against the product term count for number of variables 
1 to 14. 

A. NN Training Setup and Testing Accuracy 
The NN-modeling software package Brain Maker has been 

used here to create and test the NNMs, as mentioned earlier. 
The configuration and training statistics for SPL is given in 
Table I. It shows that our experiments involved different 
number of neurons in the single hidden layer.  
 

TABLE I 
CONFIGURATION AND RELATED STATISTICS FOR SPL COMPLEXITY NNM 

Neurons 
in single
hidden 
layer 

Training 
epochs 

Training 
time 

(hours) 

Training 
accuracy 

% 

Validatio
n 

accuracy
 % 

2 204 0.02 59 61 
4 384 0.04 94 93 
6 397 0.04 91 90 

10 263 0.04 94 94 
14 333 0.04 94 94 
18 341 0.04 95 95 
20 235 0.03 95 94 
22 174 0.02 95 95 
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Fig. 2 Training and validation accuracy for different number of 

neurons in the hidden layer for SPL 
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Fig. 3 Training time as a function of hidden layer size 

 
For our NNMs, the raw data for SPL provided an average 

training accuracy of 89.6% and average validation accuracy of 
89.5%. Fig. 2 illustrates the training and validation accuracy 
as a function of neuron count in the (single) hidden layer for 
SPL. As expected, we needed fewer training epochs as the 
number of neurons in the hidden layer was increased; this is 
indicated by the trend-line in Fig. 3. Another point worth 
mentioning is that each NN configuration was trained multiple 
times and the best training statistics for every configuration 
were collected to alleviate the issue of local minima. Any 
increase in hidden-layer neuron count beyond four had a 
marginal improvement in the model accuracy. The closeness 
of training and validation accuracies validate the performance 
of our NNMs. Table I shows Configuration and related 
statistics for SPL-complexity NNMs. 

 

B. NN Modeling Results and Analysis 
We used an arbitrary set of values for number-of-variables 

and number of product terms and used the NNM to predict the 
SPL complexities in the form of nodes (complexity).  

Figs. 4 and 5 illustrate the comparison for experimental 
results and NNM predictions of SPL complexities for 8 and 11 
variables respectively. It can be inferred that the NNM result 
provides a very good approximation of the path related 
objective function complexity. 

The NNM could also be used for prediction of path length 
properties beyond 14 variables as the NNMs are somewhat 
capable of extrapolation [28]. 
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Fig. 4 Comparison of SPL experimental (blue) and predicted (red) 

results for 8 variables 
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Fig. 5 Comparison of SPL experimental (blue) and predicted (red) 

results for 11 variables 

IV. NN MODEL VALIDATION 
Table II Illustrates the ISCAS benchmark circuit [31] 

validation results for simulation using CUDD package and the 
proposed NNM for SPL complexity estimation. The ISCAS 
benchmarks are sets of multi-input compound Boolean 
expressions, because the randomly generated BFs used for the 
experiments were single output SOP expressions and the 
benchmark functions were split into multiple single-output 
expressions, and then expanded directly to SOP term. Each 
ISCAS benchmark produced a collection of SOP expressions. 
For each of these expressions, the node count was computed 
using the CUDD package [30]. For some benchmarks, lack of 
variation made the correlation meaningless. But, for the 
complete set of 426 circuits, the NNM was able to produce the 
match with the RMS error of 0.102 is very significant. It can 
be inferred from these results that the NNM is a better model 
on prediction of the SPL complexity if the input data range is 
known. Although the benchmark circuits considered had up to 
94 inputs, mostly those benchmarks consisted of product 
terms of 1-14 variables. The circuits for all outputs were 
measured. It was observed that the term-variable count 
combinations were almost all to the left of the roll off of the 
graph, and thus still in region of logarithmic complexity. So, 
empirically the most important part of the model is the 
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logarithmic rise, and it was this part that has been validly 
tested by the benchmark circuit analysis. It is obvious that 
importance of a full-scale match of the curves will be more 
difficult to justify because of the lack of sample minterms that 
can be extracted from the benchmarks. 

 
TABLE II 

ISCAS BENCHMARK CIRCUIT VALIDATION 
SPL complexity 

Circuit 
name 

Number 
of input 
variable

s 

Number 
of 

circuits Actual NNM Relative 
error 

5xp1 7 10 16.890 17.464 0.034 
alu4 14 8 30.270 32.031 0.058 

apex7 48 55 72.410 65.865 -0.090 
b1 3 4 4.490 2.863 -0.362 

b12 15 9 22.940 24.165 0.053 
b9 41 21 44.030 45.050 0.023 
c8 28 17 35.760 32.071 -0.103 
cc 21 18 27.460 24.721 -0.100 
cht 47 36 22.880 26.287 0.149 
clip 9 5 19.690 21.480 0.091 
cmb 16 4 13.160 14.455 0.098 
con1 6 2 4.060 3.952 -0.027 

cu 14 11 10.260 10.383 0.012 
decod 5 16 32.800 30.112 -0.082 

inc 15 57 23.670 25.030 0.057 
majority 5 1 2.050 1.882 -0.082 
misex1 8 7 12.060 12.344 0.024 
misex3 14 14 67.730 68.202 0.007 

pcle 19 9 22.320 23.508 0.053 
pm1 9 13 16.750 16.389 -0.022 
sao2 10 4 13.020 13.946 0.071 
sct 14 15 26.150 27.311 0.044 

sqrt8 8 4 5.481 5.957 0.087 
squar5 5 8 14.980 12.274 -0.181 

ttt2 24 12 49.020 50.289 0.026 
x2 10 7 23.260 21.701 -0.067 
x4 94 59 151.550 152.267 0.005 

Total circuits 426 RMS error -0.0083 
 

V. CONCLUSION 
In this research work, we extended the work done by the 

authors in relation of NNMs with the path length properties, 
mainly shortest path length. The NNM was obtained through 
the training utilizing the experimental data for Monte Carlo 
BDD simulation data. The ISCAS benchmark validation with 
RMS errors of 0.102 has shown the accuracy of the training 
model. It also demonstrated that the NNMs were capable of 
providing useful clues about the complexity of the final 
circuit. Once NNMs had been developed, they could be used 
to conduct further experiments with different types of inputs, 

in a fraction of time what a circuit simulator would take. 
Future work will be mainly concentrated on having wider 
range of variables to verify the full-scale match of the curves. 
 

REFERENCES   
[1] K. Priyank, “VLSI Logic Test, Validation and Verification, Properties & 

Applications of Binary Decision Diagrams”, Lecture Notes, Department 
of Electrical and Computer Engineering University of Utah, Salt Lake 
City, UT 84112. 

[2] S. B. Akers, “Binary Decision Diagram”, IEEE Trans. Computers, Vol. 
27, pp. 509-516, 1978. 

[3] R. E. Bryant, “Graph−Based Algorithm for BF Manipulation”, IEEE 
Trans. Computers, Vol. 35,, pp. 677-691, 1986. 

[4] C. Scholl, R. Drechsler, and B. Becker, “Functional simulation using 
binary decision diagrams”, Proc. Inter. Conf. of CAD, pp. 8-12, 1997. 

[5] D. K. Pradhan, A. K. Singh, T. L Rajaprabhu, A. M. Jabir, “GASIM: A 
Fast Galois Filed Based Simulator for Functional Model”, IEEE Proc. of 
HLDVT’05, pp. 135-142, 2005. 

[6] S. Nagayama, and T. Sasao, “On the minimization of longest path length 
for decision diagrams”, Proc Inter. Workshop on Logic and Synthesis 
(IWLS-2004),pp. 28-35, 2004. 

[7] P.W. C. Prasad, M. Raseen, A. Assi, and S. M. N. A. Senanayake, “BDD 
Path Length Minimization based on Initial Variable Ordering”, Journal 
of Computer Science, Science Publications, Vol. 1(4), pp. 521-529, 
2005. 

[8] Y. Liu, K. H. Wang, T. T. Hwang, and C. L. Liu, “Binary decision 
Diagrams with minimum expected path length”, Proc. of DATE 01, pp. 
708–712, 2001. 

[9] R. Ebendt, S. Hoehne, W. Guenther, and R. Drechsler, “Minimization of 
the expected path length in BDDs based on local changes”, Proc. of Asia 
and South Pacific Design Automation Conf. (ASP-DAC’2004), pp. 866-
871, 2004. 

[10] R. Ebendt, and R. Drechsler, “On the Exact Minimization of Path-
Related Objective Functions for BDDs”, Proc. of Inter. Conf. on Very 
Large Scale integration (IFIP VLSI-SOC), pp. 525-530, 2005.  

[11] N. Drechsler, M. Hilgemeier, G. Fey, and R. Drechsler, “Disjoint Sum of 
Product Minimization by Evolutionary Algorithms”, Proc. of 
Applications of Evolutionary Computing, Evo.Workshops, pp. 198-207, 
2004. 

[12] S. Nagayama, A. Mishchenko, T. Sasao, and J.T. Butler, “Minimization 
of average path length in BDDs by variable reordering”, Proc. of Intl. 
Workshop on Logic and Synthesis, pp: 207-213, 2003. 

[13] M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and Improvements 
of Boolean Comparison Method Based on Binary Decision Diagrams”, 
Proc. of Inter. Conf. on Computer Aided Design (ICCAD), pp. 2-5, 
1988. 

[14] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Logic 
Verification Using Binary Decision Diagrams in a Logic Synthesis 
Environment”, Proc. of the Inter. Conf. on Computer Aided Design 
(ICCAD), pp. 6-9, 1988. 

[15] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision 
Diagrams”, Proc. of the Inter. Conf. on Computer Aided Design 
(ICCAD), pp. 42-47, 1993. 

[16] F. Somenzi, “Efficient manipulation of decision diagrams”, Intl. Journal 
on. Software Tools for Technology. Transfer, (STTT), Vol. 3, pp. 171-
181, 2001. 

[17] G. Fey, J. Shi and R. Drechsler, “BDD Circuit Optimization for Path 
Delay Fault-Testability”, Proc. of EUROMICRO Symposium on Digital 
System Design, pp. 168-172, 2004. 

[18] A. Jain, M. Narayan, and A. Sangiovanni Vincentelli, “Formal 
Verification of combinational Circuits”, Proc. of Inter. Conf. on VLSI 
Design, pp. 218-225, 1997. 

[19] M. Lindgren, H. Hansson, and H. Thane, “Using Measurements to 
Derive the Worst-case Execution Time”, Proc. of 7th Inter. Conf. on 
Real-Time Systems and Applications (RTCSA’00), pp. 15-22, 2000. 

[20] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and G. De Micheli, 
“Decision Diagrams and Pass Transistor Logic Synthesis”, Stanford 
University CSL Technical Report, No. CSL-TR-97-748, 1997.  



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

803

 

 

[21] R. S. Shelar and S. S. Sapatnekar, “Recursive Bi-partitioning of BDD's 
for Performance Driven Synthesis of Pass Transistor Logic”, Proc. of 
IEEE/ACM ICCAD, pp. 449-452, 2001. 

[22] M. Nemani and F. N. Najm, “High-Level Power Estimation and the Area 
Complexity of BFs”, Proc. of IEEE Inter. Symposium on Low Power 
Electronics and Design, pp. 329-334, 1996. 

[23] N. Ramalingam, and S. Bhanja, “Causal Probabilistic Input Dependency 
Learning for Switching model in VLSI Circuits”, Proc. of ACM Great 
Lakes Symposium on VLSI, pp. 112-115, 2005. 

[24] P. E. Dunne, and W. van der Hoeke, “Representation and Complexity in 
Boolean Games”, Proc. 9th European Conf. on Logics in Artificial 
Intelligence, LNCS 3229, Springer-Verlag, pp. 347-355, 2004. 

[25] I. Parberry, Circuit Complexity and Neural Networks. MIT Press, 1994. 
[26] L. Franco, M. Anthony, "On a generalization complexity measure for 

BFs", IEEE Conference on Neural Networks, Proc. of IEEE 
International Joint Conference on Neural Networks, pp. 973-978, 2004.  

[27] L. Franco, "Role of function complexity and network size in the 
generalization  ability of feedforward networks", Lecture Notes in 
Computer Science, v 3512, Computational Intelligence and Bioinspired 
Systems: 8th International Workshop on Artificial Neural Networks, 
IWANN 2005, Proceedings, pp. 1-8, 2005. 

[28] BrainMaker – User’s Guide and Reference Manual, 7th ed., California 
Scientific Software Press, 1998. 

[29] P.W.C. Prasad, A. Assi, and A. Beg, “Predicting the Complexity of 
Digital Circuits Using Neural Networks”, WSEAS Transaction on 
Circuits and Systems, Vol. 5(6), pp. 813-820, 2006. 

[30] F. Somenzi, “CUDD: CU Decision Diagram Package,” 
ftp://vlsi.colorado.edu/ pub/., 2003. 

[31] S., Yang, “Logic synthesis and optimization benchmarks user guide 
version 3.0,” Technical report, Microelectronic Centre of North 
Caroline, Research Triangle Park, NC, 1991. 

 
 
 
Namal A. Senanayake (M’05–SM’06) is currently with Monash University 
Sunway Campus where he leads the research group Intelligent, Integrated and 
Interactive Systems (IIIS). He has been recently appointed as the chairman of 
IEEE Asia-Pacific Robotics & Automation Development Council – Malaysia 
Section. Prior to Monash, he has been working with three different 
universities; Chalmers University of Technology, Sweden, Johannes Kepler 
University of Linz, Austria and University of Peradeniya, Sri Lanka holding 
key academic and research positions. During his 18 years of research 
experience, he managed to publish over 72 publications in international 
conferences, journals and book chapters. He was one of the editors of three 
books published based on the research outcomes. He was the special session 
organizer for various international conferences, in particular IEEE 
conferences. He is one of the reviewers in IEEE publications and Elsevier 
publications. 

He has initiated research with Sports Biomechanics Centre, National Sports 
Complex, in which his research team carried out special research projects of 
national interest. Having engaged in this area of research, Interactive 
Multilayer Sensorized Smart Floor has been developed under his leadership 
and currently in the process of patenting the device. Dr. Arosha is the leader 
of MoU between Monash and National Instruments.  He carried out various 
special research projects under this MoU which are mainly targeting industrial 
needs. 

Dr. Senanayake is a member of research committee of Monash and he is 
the student counselor of IEEE student branch at Monash 
 
Azam Beg is with College of Information Technology, United Arab Emirates 
University, Al-Ain, UAE.  

His research interest is on computer architecture, VLSI design and 
applying AI into circuit design and computer architecture. 
 Dr. Beg received his master’s and Ph.D. from Mississippi State University, 
MS, USA. 
 
Withana C. Prasad is with College of Information Technology, United Arab 
Emirates University, Al-Ain, UAE, on leave from Multimedia University, 
Malaysia. 
 His research interest is in VLSI design. 
 Dr. Prasad received his Master’s from University of Ukrane and Ph.D. 
from Multimedia University, Malaysia. 

 


