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Abstract—An algorithm for learning an overcomplete dictionary 

using a Cauchy mixture model for sparse decomposition of an under-
determined mixing system is introduced. The mixture density 
function is derived from a ratio sample of the observed mixture 
signals where 1) there are at least two but not necessarily more 
mixture signals observed, 2) the source signals are statistically 
independent and 3) the sources are sparse. The basis vectors of the 
dictionary are learned via the optimization of the location parameters 
of the Cauchy mixture components, which is shown to be more 
accurate and robust than the conventional data mining methods 
usually employed for this task. Using a well known sparse 
decomposition algorithm, we extract three speech signals from two 
mixtures based on the estimated dictionary. Further tests with 
additive Gaussian noise are used to demonstrate the proposed 
algorithm’s robustness to outliers. 
 

Keywords—expectation-maximization, Pitman estimator, sparse 
decomposition 

I. INTRODUCTION 
N overcomplete dictionary (OD) is a collection of basis 
vectors such that their number exceeds the 

dimensionality of the data [1-5]. ODs can model more 
intricate data structures than complete dictionaries such as 
principal component analysis (PCA) [6] and independent 
component analysis (ICA) [7]. PCA is usually used to find the 
basis vectors in the directions of greatest data variation by 
modeling the data as a multivariate Gaussian density. The 
basis vectors, called principal components, are restrained to be 
orthogonal. The limitation is that if the data is non-Gaussian 
the model can predict the data where none occur. Unlike PCA, 
ICA basis vectors can be non-orthogonal.Applications of PCA 
and ICA are limited to cases where the basis vectors are as 
many as the observed mixture signals, which mean that the 
source signals are equal in number to the mixtures. To identify 
more sources than mixtures requires the use of an OD which 
can be used to learn overcomplete representations (finding a 
representation of the data in which only a few components are 
significant at the same time) often called sparse 
representations. Most algorithms developed for learning basis 
vectors use all the available sample values with equal weight 
to estimate their optimal directions with respect to some 
statistical assumption (such as reduced mutual information), 
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as is the case in [1-7]. This means that they are susceptible to 
noise effects because a slight change of a few sample values 
(which might be due to additive noise) will invariably affect 
the concerned basis vectors, leading to an erroneous OD. 

In this paper we derive an algorithm for learning an OD 
using a Cauchy mixture model (CMM) by variable weighting 
of the available sample values for a more robust and accurate 
learning of the basis vectors. In the CMM density function, 
the location parameters of the Cauchy mixture components 
coincide with the optimal directions of the basis vectors. We 
show that these location parameters are adequately defined by 
the ratio sample values at time instances where only one of the 
sparse source signals is observed. This avoids equal use of all 
sample values of which most might not offer valuable traction 
of the optimal directions of the basis vectors and reduces the 
deleterious effects of additive noise. 

 This paper is structured as follows: In Section II we derive 
a CMM density function from the ratio sample of a given pair 
of mixture signals, where the location parameters of the 
Cauchy mixture components coincide with the directions of 
the OD’s basis vectors. In Section III we derive a 
maximization technique based on the Pitman estimator to 
optimize the location parameters, hence the basis vectors. In 
Section IV, we acknowledge the current sparse decomposition 
algorithms for using the estimated OD to obtain sparse 
representations. The Simulation results are in Section V. The 
discussion in Section VI summarizes the advantages of the 
proposed algorithm as well as its limitations. 

II. PROBLEM MODELING 
For a set of M  observed mixture signals 1{ ( ), , ( )}Mx n x nK  

and K  statistically independent and sparse source signals 
1{ ( ), , ( )}Ks n s nK , with K M≥ , let the matrix X  be given by 
 
 = ⋅X A S , 

 
which can be expanded to 
 

 
1 11 1 1

1

K

M M MK K

X a a S

X a a S

    ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
  =           ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L
M M O M M

L
, 

 
where [1, ]n N∈  is the discrete time index, the variable mX  is 
realized by the data points of ( )mx n , for [1, ]m M∈ , kS  is the 
variable for ( )ks n , for [1, ]k K∈ , and A  is the M K×  
mixing matrix or overcomplete dictionary. Using only X , the 
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task is to retrieve S , but to do so we must first infer the 
overcomplete dictionary A . Since the sources are assumed to 
be sparse, let ( )n kn S∈ Τ  be the time instances when 0j kS ≠ =  
and 0kS ≠ , for , [1, ]j k K∈ . Therefore, given a pair of 
variables mX  and rX , r m≠ , we have 
 

 , for T ( )r rk
k n k

m mk

X a S n SX a
⎡ ⎤ ⎡ ⎤=          ∈⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (1) 

 
from which we can form the ratio sample 
 

 , for T ( )m mk
mr n k

r rk

X aQ n S
X a

= =            ∈ . (2) 

 
As a result of (2), the basis vectors of the OD are 

adequately determined by the sample values of mrQ  at the 
time instances ( )n kn S∈ Τ , [1, ]k K∈ . The sample values 
where T ( )n kn S∉  are unnecessary for determining the OD.For 
sparse sources, it is most likely that the values of mrQ  for 

( )n kn S∈ Τ  are the modes of its density function. But without 
any knowledge of the type of this density, one cannot 
ascertain that the mode is the minimum variance estimator of 
the points of interest. However, the expected heavy tailed 
nature of the density function of mrQ  (due to division by the 
sample values of rX  close to zero) discourages the use 
Gaussian and platykurtic densities and makes the Cauchy 
density function attractive since it is thicker tailed than most 
densities.Fig.1 shows an example scatter plot for rX  and mX  
for , [1, ]r m M∈  and r m≠ . The black dots are the scatter 
plot points and it is assumed that both variables are centered. 
Let 1[ , , ]k=A a aK , where ka  is the column vector k  of the 
overcomplete dictionary of which we are interested in the 
value of (2) for it. Let there be the mrq -axis orthogonal to the 
unknown vector ka  as shown. The magnitude of the vector 
from the origin to the mrq -axis is ku  and the point of 
intersection of mr kq c= . A line is drawn from the origin to an 
arbitrary scatter plot point and it crosses the mrq -axis at the 
arbitrary value mrq . This line makes an angle mrθ  with respect 
to the unknown and wanted direction of ka  (i.e. the direction 
is given by (2) as a ratio of the two elements of ka ).  Under 
this model, the values of the mrq -axis at the intersection points 
are the realizations of the ratio sample mrQ , where the 
subscript k  in ku  and kc  is used to illustrate the relation to 
the vector ka . 

 
 
The angle mrθ  is such that tan( ) ( ) /mr mr k kq c uθ = − , which 

means that 
 

 
2 2

1
[ ( ) ]

mr k

mr kk

d u
u q c

θ
π π

= ⋅
+ −

, 

 
and integrating over all possible values of mrQ  evaluates to 
one. This means that 
 

 
( )22

p( | , ) k
mr k k

mr kk

uq c u
u q cπ

=
⎡ ⎤+ −⎣ ⎦

, (3) 

 
where (0, )ku ∈ ∞  and ( , )kc −∞ ∞  are the scale and location 
parameters respectively, and p( | , )mr k kq c u  is known as the 
Cauchy or Lorentzian density function [8]. From (3), even 
though rX  and mX  may not be Gaussian (i.e. the ratio of two 
centered Gaussians is a Cauchy), by derivation the Cauchy 
density appears to be a good approximation of the underlying 
density function. Moreover, rX  and mX  are the sum of 
statistically independent variables 1, , KS SK  and by the central 
limit theorem [9] the mixture variables may be approximately 
Gaussian, further making the estimation of mrQ  by a Cauchy 
variable reasonable.The model in (3) is for one column vector. 
For K column vectors there are K independent mixture 
components (assuming that the original sources are 
statistically independent). Thus the probability of the sample 
value mr mrQ q=  is given by the CMM 

 

 ( ) ( )1
1

p | , , p | P( )
K

mix mr K mr k
k

q q kϕ ϕ ϕ
=

= ∑L , (4) 

Fig. 1 A scatter plot for rX  and mX  with ka  as the 
column vector k  of the mixing matrix A . ku  is the 

distance from the origin to the intersection point of ka  with 
the mrq -axis at the point mr kq c= . The angle mrθ  is made 
by the line from the origin to an arbitrary scatter plot point 
with respect to ka . This line crosses the mrq -axis at the 

point mr mrq q= . 
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where p( | )mr kq ϕ  is the mixture component k  with the 
parameter set { , }k k kc uϕ =  and the relative weight P( )k  such 
that 
 

 ( )
1
P 1

K

k
k

=

=∑ . 

 
 To estimate the directions of the basis vectors of A , all we 
need to do is to find the location parameters 1{ , , }Kc cL  of all 
the mixture components. 

III. LEARNING OVERCOMPLETE DICTIONARIES 

mrQ  is drawn from K mixture components and it is 
unknown which component of the CMM generated which 
sample values.  Therefore, let the n-th sample value of mrQ  be 

replaced by the (K+1)-tuplets 1, , ,n n nKv w wL  where 1nkw =  

if nv  was generated by the mixture component k , for 
n ∈ [1,N]. The expectation-maximization (EM) algorithm [10] 
is a general way of iteratively estimating the tuplets and the 
parameters { 1, , Kϕ ϕK }. The EM algorithm is divided into 
two steps: 

A. Expectation Step 
The expected values of the tuplets are evaluated using the 

current or initialized estimates of the parameters { 1, , Kϕ ϕK } 
and the weights P(k), k ∈ [1,K]. The expected value of nkw  is 
the probability that nv  was generated by the mixture 
component k , which means that 

 

 ( ) ( ) ( )
( )1

p | P
E

p | , ,
n k

nk
mix n K

v k
w

v
ϕ
ϕ ϕ

=
L

. 

 
Thus, 
 

 ( )

( )
( )

( )
( )

22

221

P

E ,
P

k

n kk
nk K

j

j n jj

uk
u v c

w
uj

u v c

π

π=

⎡ ⎤+ −⎣ ⎦=

⎡ ⎤+ −⎣ ⎦
∑

 (5) 

 
for k ∈ [1,K] and n ∈ [1,N].  
 

B. Maximization Step 
The current expected values of the tuplets serve as prior 

knowledge about the possibility that nv  was generated by the 
mixture component k . This information, form the expectation 
step, is used to optimize the parameters { 1, , Kϕ ϕK } using an 
appropriate method such as the maximum-likelihood 
estimation [11]. The choice of the maximization algorithm 

depends on the type of density being optimized. However, the 
weights are given by 

 

 ( ) ( )
1

1P E
N

nk
n

k w
N =

= ∑ . (6) 

 
The Cauchy density function has an undefined mean due to 

its infinite variance. As a result, different methods have been 
developed for the estimation of its scale and location 
parameters [12-15]. If the scale is known, the robust Pitman 
estimator [14, 15] is often used for point estimation of the 
location parameter because it is the minimum variance 
estimator. Therefore, in Appendix A we derive the 
maximization algorithm for the K location parameters using 
the Pitman estimator. If ˆkc  is the Pitman estimator for the 
mixture component k  then 

 

( ) ( )

( ) ( )
[ ]

1

1

ˆ E , for 1,
E

N
jk

k jk j N
j

jk jk
j

c w v k K
w=

=

ℜ Ψ
=        ∈

ℜ Ψ
∑

∑
, (7) 

 
where ( )jkℜ Ψ  denotes the real part of 
 

 
( )

( ) ( )2 2

E 21 1
4

jk k
jk

j nn j j n k

w u
v vv v u≠

⎡ ⎤ ⎡ ⎤
Ψ = − −⎢ ⎥ ⎢ ⎥

−− + ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
∏ . (8) 

  
The Pitman estimator is quite robust to outliers and this can 

be understood by considering the divisor term 22( ) 4j n kv v u− +  
in jkΨ . If jv  is much smaller/larger than the other sample 
values, its effect in the optimization of ˆkc  is negligible. Thus 

jkΨ  acts as some form of statistical filter placing more 
emphasis on the most frequent values which are also close to 
each other, and for a Cauchy density function these are 
located around the location parameter kc .The scale parameter 

ku  controls the effect of the difference between a given jv  
and nv . If ku  is small then 2( )j nv v−  is dominant in 

22( ) 4j n kv v u− +  making jkΨ  small and therefore contributing 
less to the optimization of ˆkc . If ku  is larger, then 2( )j nv v−  
is swamped by the 24 ku  term. This reduces the selectivity of 

jkΨ  and thus sample values larger/smaller than the most 
frequent ones might affect the result of ˆkc . In fact, when the 
scale parameter 0ku → , the Pitman estimator acts like the 
sample median and inherits its superior robustness to outliers. 
But the median is too discriminating and can miss some 
important information from the “useless” sample values unlike 
the Pitman estimator which gives minimal uncertainty [15]. 
For ku → ∞  the Pitman estimator acts like the sample mean 
and is non-ideal in this case given thick tails of the ratio 
sample mrQ . As a result, it is necessary to choose a small 
value of ku  to inherit the robustness of the sample median yet 
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achieving a more accurate result.Based on the analysis of (7) 
and (8), it is clear that the estimator ˆkc  is focused mostly on 
sample values of mrQ  for T ( )n kn S∈ . The uncertainty or 
variance of the Pitman estimators is derived in Appendix B. 
The developed EM algorithm steps are: 
 

1. Initialize the parameters { 1, , Kϕ ϕL } and the 
weights P( )k , where { , }k k kc uϕ = . 

2. Expectation step: Evaluate the tuplets E( )nkw  
based on the current values of the parameters and 
weights via (5). 

3. Maximization step: Optimize the location 
parameters 1{ , , }Kc cL  using (7) and the weights 
using (6) using the current values of the tuplets. 

4. Repeat steps 2 and 3 until convergence or some 
condition such as the number of iterations is met. 

 
According to (2),  ˆkc  is the ratio of mka  to rka , therefore 
 
 [ ] [ ]ˆ for , 1, and 1,mk rk ka a c r m M k K=       ∈     ∈ . (9) 
 
It is necessary to choose a value for rka  in order to get mka , 

for all k . For example, if the r-th row of A is set to 
1 2r r rKa a a λ= = = =L , for some scalar λ , then by (9) 
1 1m ra aλ=  up to mK rKa aλ= . Inevitably there is a scaling 

ambiguity between the estimated OD A and the unknown 
mixing OD. It is essential to set all elements of A is the row of 

rX  to the same value λ  so that the scaling ambiguity is 
constant for all column vectors, otherwise the estimated OD 
will be incorrect. 

For dimensionalities M>2, to maintain a constant scaling 
ambiguity for all the elements of A, the variable Xr 
corresponding to the initialized row is used repeatedly with all 
the other M-1 variables. With Xr as the reference row variable, 
all the M-1 row elements of A are scaled with respect to its r-
th row elements. This ensures that A is just an ambiguously 
scaled version of the unknown mixing dictionary, which is 
usually unavoidable [7]. 

IV. SPARSE DECOMPOSITION 
Signal decomposition under an overcomplete dictionary is 

not unique due to the under-determined data space. This 
degeneracy can be circumvented by making a statistical 
assumption about the nature of the underlying sources. If the 
sources are sparse, the problem can be solved by minimizing 
the 0l -norm resulting in an method known as the SL0 
algorithm [16, 17] which is usually faster and more accurate 
than the well known basis pursuit [18], matching pursuit [19] 
and FOCUSS [20]. After estimating the overcomplete 
dictionary A , we use the SL0 algorithm to find the sparse 
representations in the simulations. 

 

V. SIMULATION RESULTS 
Fig. 2 shows K=3 speech signals which are mixed down to 

M=2 instantaneous mixtures given in Fig. 3 using the matrix 
 

 1 1 1
1 4 6

             ⎡ ⎤= −          ⎢ ⎥⎣ ⎦
A . (10) 

 
After forming the ratio sample 21 2 1/Q X X= , the CMM 

algorithm is used to learn the ratios of the elements of the 
column vectors of A via estimation of the location parameters 
of the Cauchy mixture components. 

 

 
 The CMM results are plotted in Fig. 4 for three different 
scale parameters of choice. The values of (2) for the mixing 
matrix given in (10) are 21 1Q = −  for 1T ( )nn S∈ , 21 4Q = for 

2T ( )nn S∈  and 21 6Q =  for 3T ( )nn S∈ . These values coincide 
with the location parameters of each of the three learned 
CMMs. As the scale parameter is reduced, the resolution of 
the CMM about the location parameters is increased due to the 

Fig. 3 Two instantaneous mixtures obtained using three 
speech signals and an OD of dimensions 2M =  and 

3K = . In each mixture signal there are three sources 
and therefore the system is under-determined

Fig. 2 Speech signals are sparse and occasionally only one is 
observed at some instance. These signals are used to give two 

mixtures thus forming an under-determined signal space 
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high selectivity of jkΨ . In all three cases, it is clear that the 
CMM algorithm has accurately determined the overcomplete 
dictionary A. 

 

 
Fig. 5 shows the resulting source estimates alongside the 

original sources after learning A  and using the SL0 algorithm 
for sparse source separation. Although there are some slight 
discrepancies between a given source and its estimate, this is a 
limitation of the SL0 algorithm since the OD has been 
accurately determined by the CMM method.  

In [1], Lewicki and Sejnowski derive an algorithm for 
learning an overcomplete dictionary by maximizing the data 
likelihood over the basis functions. The Lewicki-Sejnowski 
(LS) algorithm optimization steps interchange between 

estimating the dictionary and inferring the sparse sources. All 
sample values from the available mixtures weigh an equal 
amount in the estimation process unlike in the CMM 
algorithm where the Pitman estimators place more emphasis 
on the sample values for the time instances T ( )n kn S∈ .  

To illustrate the efficiency of the CMM approach, some 
Gaussian noise is added to the mixture signals where in table I 
the signal-to-noise ratio is 12dB and in table II it is reduced to 
9dB. In table II, the new OD is such that 4K =  (i.e. four 
source signals) while maintaining 2M =  mixture signals to 
compare the accuracy of the methods with an increase in 
uncertainty. 

 
 

 
 
In tables I and II, the error is given by the modulus of the 

ratio deviation to eliminate scaling ambiguities. That is, from 
the estimated OD the ratio of the elements of each column 
vector is computed and subtracted from the true column ratio 
of the mixing matrix. In table I, for 3K =  sources with and 
SNR of 12 dB the LS algorithm performs reasonably well but 
the CMM method produced better results. This is a 
consequence of using all the samples equally to estimate the 
location parameters or column ratios. The CMM is only 
slightly affected by the additive Gaussian noise due to its 
focus on sample values close to each other, much like the 
sample median.It is observed in table II that as the number of 
sources and additive noise increase the LS algorithm 
performance degrades significantly, while the CMM algorithm 
continues to be robust. Besides the increased noise, from [16]-
[20] it is known that estimating the sources under an 
overcomplete dictionary is sensitive to an increase in the 
number of basis vectors. Since the LS method requires the 
estimation of the sparse sources in order to optimize the 
dictionary, it suffers from this computational uncertainty. In 
contrast, the CMM algorithm determines the OD first, and 
then a sparse decomposition algorithm like the SL0 technique 
is used for sparse representations. The result is a better source 
separation result albeit noisy extracted sources. 

Column Vector 
Ratio 

LS Error CMM Error 
( )0.01ku =  

1 2= −a  1.67 0.11 
2 3=a  3.44 0.05 

3 1= −a  2.18 0.18 
4 4=a  6.77 0.13 

TABLE II 
COLUMN VECTOR ESTIMATION  SNR=9 DECIBELS 

Column Vector 
Ratio 

LS Error CMM Error 
( )0.01ku =  

1 2= −a  0.38 0 
2 3=a  0.14 0.05 

3 1= −a  0.23 0 

TABLE I 
COLUMN VECTOR ESTIMATION  SNR=12 DECIBELS 

Fig. 5 The SL0 algorithm is used to infer the original 
sources using the overcomplete dictionary learned by the 
CMM algorithm. The obtained representations resemble 

the original sources 

Fig. 4 Each Cauchy mixture model has three modes 
corresponding to the ratios of the column vector elements. 

In each case, the estimated location parameters are at 
1̂ 1c = − , 2ˆ 4c =  and 3ˆ 6c = . As the scale parameter is 
reduced, the resolution of the algorithm increases 
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VI. DISCUSSION 
A new algorithm for learning an OD has been introduced 

with the aim of increased robustness to outliers which often 
affect the accuracy of data mining methods using all the 
sample values equally in the optimization process.  By 
forming a ratio sample from the observed mixture signals, the 
ratios of the mixing dictionary column elements coincide with 
the location parameter of the CMM. By study, these ratios (i.e. 
basis vector directions) are fully determined by the sample 
values when only one of the sparse sources is active. The 
Pitman estimator places more emphasis on the most frequent 
samples values closer to the Cauchy location parameters and 
less on those constituting the heavy tails. This allows the 
CMM algorithm to be robust to outliers much like the sample 
median (although not as robust) but with better accuracy. On 
the downside, to form a ratio sample it is mandatory to have at 
least two mixture signals but not necessarily more, and by 
derivation the algorithm is limited to sparse and statistically 
independent source signals.  

APPENDIX 

A. Pitman Estimators for the CMM Location Parameters 
Let the maximum a posterior estimator [15] for the location 

parameter of the mixture component k  be ˆkc , then 
 

 ( )ˆ p | ,k k k k kc c c v u dc
∞

−∞
= ∫ . 

 
Assuming a non-informative prior p( )kc  and leaving out 

the normalization factors, then by Bayes’ rule 
 

 
( )

( )
1

ˆ p | ,

p | , , E

k k k k k
N

k n k k nk k
n

c c v c u dc

c v c u w dc

∞

−∞
∞

−∞
=

=

    = ⎡ ⎤⎣ ⎦

∫
∏∫

, 

 
since the sources are statistically independent and p[ | ,n kv c  

, E( )] E( ) p( | , )k nk nk n k ku w w v c u= , with E( )nkw  as the prior 
knowledge that nv  is drawn from mixture component k . Let 
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( )

1

221

I E p | ,

E
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N
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rk nk n k k kk
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N
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n n kk

N
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r k k

v c w v c u dc

uc w dc
u v c

u c dc

π

π

∞

−∞
=

∞
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=

∞
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          =
⎡ ⎤+ −⎣ ⎦
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⎝ ⎠

∏∫

∏∫

∫

 (11) 

 
for [0, 2 1)r N∈  − , where 

 

 ( ) ( )
( )( )1

E
g

N
nkr

r k k
k kn nk nk

w
c c

c c c c+ −
=

=
− −∏ , 

 
with 1n knkc v u± = ± − . Using contour integration [21], 

 

 ( ) ( )I lim g
R

k
rk r k k

CR

uv c dc
π →∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠ ∫ , 

 
where : exp(- -1)RC z R φ= ⋅ . The integral is evaluated along 
the counter-clockwise contour spanning the range [-R,R] 
followed by the upper half circumference of a circle of radius 
R centered at (0,0), the origin. By the residue theorem [22], 
 

 ( ) ( )
1

I 2 1 Res g ,
N N

k
rk r k jk

j

uv c cπ
π

+

=
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∑ , (12) 

 
where only the poles in the upper half plane are considered 
due to the Cauchy integral theorem [23]. The order of the 
poles in g ( )r kc  is 1m = , thus 
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E E
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+
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                             =  
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∏
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As ( ) 2 1kjk jkc c u+ −− = − , ( ) ( )j njk nkc c v v+ +− = −  and ( jkc+ −  

) ( 2 1)j n knkc v v u− = − + − , 
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E
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E 2 11 .
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The first moment or Pitman estimator of the mixture 

component k  is given by 
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Noting that the integrals in (11) are real and after 

substituting (13) into (12), 
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where,  
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Therefore by (14), the Pitman estimator for mixture 

component k  is given by 
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B. Variance of the CMM Pitman Estimators 
For the number of samples 3N ≥ , the Pitman estimator is 

an unbiased estimator of the location parameter of the Cauchy 
density function [15]. That is 
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Differentiate with respect to kc  using the product rule and 

rearrange to give 
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By the Cauchy-Schwartz inequality, 
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or, 
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 (18) 

 
where ( )N kcΓ  is known as the N-sample Fisher 

information [15], and ˆvar( )kc  is the variance or uncertainty 
associated with the estimator. The inequality suggests that the 
precision to which we can estimate kc  is fundamentally 
limited by the reciprocal of the N-sample Fisher information 
multiplied by the square of the sum of the possible 
probabilities for the mixture component k  on the sample 
values of the ratio sample mrQ . Evaluating the numerator, 
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The variance of ˆkc  is evaluated after convergence, which 
means that we can substitute for p( | , )n k kv c u  using 
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As a result, 
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for k ∈ [1,K]. Since p( | , )k kv c u  factors (i.e. the sources are 
statistically independent), it can be shown that the N-sample 
Fisher information is given by 
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for the single-sample Fisher information ( )n kcΓ . Thus 
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Using contour integration and applying the residue theorem, 
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where 
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for 1k kkv c u± = ± − . The poles of g( )nv  are of order 3m = , 
thus 
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Substituting (22) into (21) and evaluating (20), 
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From (18), (19) and (23) 
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for [ ]1,k K∈ . 
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