
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

473

Learning Algorithms for Fuzzy Inference Systems
Composed of Double- and Single-Input Rule

Modules
Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima

Abstract—Most of self-tuning fuzzy systems, which are
automatically constructed from learning data, are based on the
steepest descent method (SDM). However, this approach often
requires a large convergence time and gets stuck into a shallow
local minimum. One of its solutions is to use fuzzy rule modules
with a small number of inputs such as DIRMs (Double-Input Rule
Modules) and SIRMs (Single-Input Rule Modules). In this paper,
we consider a (generalized) DIRMs model composed of double
and single-input rule modules. Further, in order to reduce the
redundant modules for the (generalized) DIRMs model, pruning and
generative learning algorithms for the model are suggested. In order
to show the effectiveness of them, numerical simulations for function
approximation, Box-Jenkins and obstacle avoidance problems are
performed.

Keywords—Box-Jenkins’s problem, Double-input rule module,
Fuzzy inference model, Obstacle avoidance, Single-input rule
module.

I. INTRODUCTION

MANY studies on fuzzy inference systems and their

learning methods have been made [1]–[5]. Their aim

is to construct self-tuning fuzzy systems from learning data

based on SDM. The obvious drawbacks of the method

are its large computational complexity and getting stuck

in a shallow local minimum. There are two approaches

to overcome these drawbacks. One approach is to develop

effective learning methods for fuzzy inference systems. In

the approach, some methods have been developed which

1) use GA (Genetic Algorithm) and PSO (Particle Swarm

Optimization) to determine the structure of the fuzzy model

[6], 2) use a self-organization or a vector quantization

technique to construct fuzzy inference systems with a small

number of rules [7], [8], and 3) use generalized objective

functions [9]. The other approach is to develop fuzzy inference

models, which are advantageous in terms of computational

complexity and global convergence. In such an approach, an

SIRMs (Single-Input Rule Modules) model has been proposed

that aims to obtain a better solution by using a simple model

[10]. Although the SIRMs model can easily apply to the

problems with a large number of variables, it does not always

H. Miyajima is with the Graduate School of Science and Engineering,
Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
(e-mail: k3768085@kadai.jp).

K. Kishida is with the National Institute of Technology, Kagoshima
College, 1460-1 Shinko, Hayato, Kirishima 899-5102, Japan (e-mail:
kishida@kagoshima-ct.ac.jp)

N. Shigei and H. Miyajima are with the Graduate School of Science and
Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065,
Japan.

show good performance in nonlinear problems [11], [12].

Therefore, SNIRMs (Small Number of Input Rule Modules)

models have been proposed as a generalized SIRMs model

[11]–[13]. The DIRMs model is one of such models and each

module involves two input variables. It has been shown that

the DIRMs model outperforms the SIRMs model in terms of

accuracy [11]. Using the conventional DIRMs model, we can

know only the important pairs of variables but not a single

variable. Let us consider how we can know important variables

and modules while keeping a high accuracy.

In this paper, we consider a (generalized) DIRMs model

composed of double and single-input rule modules. Further, in

order to reduce the redundant modules for the DIRMs model,

pruning and generative learning algorithms are suggested.

In order to show the effectiveness of them, numerical

simulations for function approximation, Box-Jenkins and

obstacle avoidance problems.

II. FUZZY INFERENCE MODEL AND ITS LEARNING

A. Fuzzy Inference Model

The conventional fuzzy inference model based on steepest

descent method (SDM) is described in [1]–[3]. Let Zj =
{1, · · · , j} for the positive integer j. Let x = (x1, · · · , xm)
and y be input and output data, respectively, where xi for

i ∈ Zm and y are real numbers. Then the rule of simplified

fuzzy inference model is expressed as

Rj : if x1 is M1j and · · · xm is Mmj then y is wj , (1)

where j ∈ Zn is a rule number, Mij is a membership function,

and wj is the weight [2], [3].

A membership value of the antecedent part μj for input x
is expressed as:

μj =
m∏
i=1

Mij(xi) (2)

Let cij and bij denote the center and width values of Mij ,

respectively.

Using Gaussian membership function, Mij is expressed as:

Mij = exp

(
−1

2

(
xj − cij

bij

)2
)

(3)

where cij and bij are the center and the width parameters,

respectively.

In the following, Gaussian function is used as the

membership function Mij .



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

474

The output y∗ of fuzzy inference is calculated by:

y∗ =

∑n
j=1 μj · wj∑n

j=1 μj
(4)

The objective function E is defined to evaluate the inference

error between the desirable output y and the inference output

y∗.

E =
1

2
(y∗ − y)2 (5)

In order to minimize the objective function E, each

parameter β ∈ {cij , bij , wj} is updated based on SDM [3].

β(t+ 1) = β(t)−Kβ
∂E

∂β
(6)

where t is iteration time and Kβ is a constant. Then, the

following equations are obtained:

∂E

∂wj
=

μj∑n
j=1 μj

· (y∗ − y) (7)

∂E

∂cij
=

μj∑n
j=1 μj

· (y∗ − y) · (wj − y∗) · xj − cij
b2ij

(8)

∂E

∂bij
=

μj∑n
j=1 μj

· (y∗ − y) · (wj − y∗) · (xj − cij)
2

b3ij
(9)

B. The Conventional Leaning Method

In this section, we describe a learning algorithm for the

conventional model described in the previous section. The set

of learning data D = {(xp
1, · · · , xp

m, yp)|p ∈ ZP } is given in

advance. The objective of learning is to minimize the following

error.

E =
1

P

P∑
p=1

(y∗p − yp)
2. (10)

The conventional learning algorithm is shown below [3].

Learning Algorithm A
Step 1: The initial numbers of rules, cij , bij and wj are set

randomly. The threshold Θ1 for inference error is given. Let

Tmax be the maximum number of learning time. The learning

coefficients Kc,Kb and Kw for cij , bij and wj are set.

Step 2: Let t = 1.

Step 3: Let p = 1.

Step 4: An input and output data (xp
1, · · · , xp

m, yp) is given.

Step 5: Membership value of each rule is calculated by 2)

and (3).

Step 6: Inference output y∗p is calculated by 4).

Step 7: Real number wj is updated by (7).

Step 8: Parameters cij and bij are updated by (8) and (9).

Step 9: If p < P then p ← p+ 1 and go to Step 4.

Step 10: Inference error E(t) is calculated by (10). If E(t) ≤
Θ1 then learning is terminated.

Step 11: If t �= Tmax then t ← t + 1 and go to Step 3.

Otherwise learning is terminated.

III. THE SNIRMS MODELS

Generalized SNIRMs, SIRMs and DIRMs models are

defined. Let Um
r be the set of all ordered r-tuples of Zm,

that is

Um
r = {l1 · · · lr|li < lj if i < j}. (11)

Then, let U∗
m,k =

⋃k
r=1 U

m
r . Each rule of SNIRMs model for

U∗
m,k is defined as:

SNIRM−l1 · · · lr :

{Rl1···lr
i : if xl1 is M l1

i and · · · and xlr is M lr
i

then yl1···lr is wl1···lr
i }ni=1 (12)

for 1≤r≤k.

Example 1. For U∗
3,2 = U3

1∪U3
2 = {1, 2, 3, 12, 13, 23}, the

obtained system is as follows:

SNIRM − 1 : {R1
i : if x1 is M1

i then y1 is w1
i }ni=1

SNIRM − 2 : {R2
i : if x2 is M2

i then y2 is w2
i }ni=1

SNIRM − 3 : {R3
i : if x3 is M3

i then y3 is w3
i }ni=1

SNIRM− 12 :
{R12

i : if x1 is M1
i and x2 is M2

i then y12 is w12
i }ni=1

SNIRM− 13 :
{R13

i : if x1 is M1
i and x3 is M3

i then y13 is w13
i }ni=1

SNIRM− 23 :
{R23

i : if x2 is M2
i and x3 is M3

i then y23 is w23
i }ni=1

Let x = (x1, · · · , xm). The output for SNIRM−l1 · · · lr is

as:

μl1···lr
i = M l1

i (xl1) · · ·M lr
i (xlr ), (13)

y0l1···lr =

∑n
i=1 μ

l1···lr
i wl1···lr

i∑n
i=1 μ

l1···lr
i

. (14)

In this model, in addition to the conventional parameters c,
b and w, the importance degree h is used. Let hL be the

importance degree of each module L.

y∗ =
∑

L∈U∗
m,k

hL · y0L (15)

where L = l1· · ·lr for 1≤r≤k.

From (2) to (5), ∂E
∂β ’s are calculated as:

∂E

∂hL
= (y∗ − y)y0L, (16)

∂E

∂wL
i

= hL · μL
i∑n

i=1 μ
L
i

(y∗ − y), (17)

∂E

∂cLi
= hL·(y∗ − y)

wL
i − y0L∑n
i=1 μ

L
i

xi − cLi
(bLi )

2
(18)

∂E

∂bLi
= hL·(y∗ − y)

wL
i − y0L∑n
i=1 μ

L
i

(xi − cLi )
2

(bLi )
3

(19)

The cases of k = 1 and k = 2 are called SIRMs and

DIRMs models, respectively. Fig. 1 shows DIRMs model and

the conventional DIRMs model [13] has only Um
2 . Therefore,

the conventional DIRMs model is a special case of the



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

475

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

����� ����	
����

����������

��
��� ������

�����

�����

�����

(a)DIRMs for Um
1

�

��

�

��

�

��

�

��

�

��

�

��

�

������
�

������

�

�

�

�

�

��

��

������

����� ����	
����

����������

��
��� ������

�����

�����

����
�
�
�

(b)DIRMs for Um
2

Fig. 1 The (generalized) DIRMs model with the output y∗ = y01 + y02

(generalized) DIRMs models. Examples 1 is DIRMs model

for m=3. It is known that the SIRMs model does not always

achieve good performance in non-linear systems [11], [12]. On

the other hand, when the number of input variables is large,

the conventional fuzzy inference model defined equation (11),

requires a large time complexity and tends to easily get stuck

into a shallow local minimum.

The DIRMs model can achieve good performance in

non-linear systems compared to the SIRMs model and is

simpler than the conventional fuzzy model.

A learning algorithm for SNIRMs model is given as:

Learning Algorithm B(k)
Step 1: The initial parameters, cLi , bLi , wL

i , Θ1, Tmax, Kc,

Kb and Kw are set, where L∈U∗
m,k.

Step 2: Let t = 1.

Step 3: Let p = 1.

Step 4: An input and output data (xp
1, · · · , xp

m, yp) is given.

Step 5: Membership value of each rule is calculated by (13).

Step 6: Inference output yp is calculated by (15).

Step 7: Importance degree hL is updated by (16).

Step 8: Real number wL
i is updated by (17).

Step 9: Parameters cLi and bLi are updated by (18) and (19).

Step 10: If p < P then p ← p+ 1 and go to Step 4.

Step 11: Inference error E(t) is calculated by (10). If E(t) <
Θ1 then learning is terminated.

Step 12: If t �= Tmax, t ← t+1 and go to Step 3. Otherwise

learning is terminated.

Note that the numbers of rules for the conventional model,

DIRMs and SIRMs models are O(Hm), O(m2H2) and

O(mH), respectively, where H is the number of partitions

for fuzzy inference rules.

The conventional DIRMs model outperforms SIRMs model

in terms of accuracy, but not the number of rules. Therefore,

we consider a (generalized) DIRMs model. It seems that the

(generalized) DIRMs model is superior in interpretability

to the conventional DIRMs model, but it also includes the

redundant modules (or parameters). Therefore, in order to

reduce redundant modules, we suggest pruning and generative

learning algorithms as:

Learning Algorithm C (Generative Learning Algorithm
for DIRMs Model)
Step 1: Threshold value Θ for learning is set. Algorithm B(1)

for Um
1 is performed. Let U = Um

1 and t = 1.

Step 2: Select a pair of variables xi1 and xi2 with highest

importance degree in Um
1 and add a new module composed

of two input variables xi1 and xi2 to the system. If the

module composed of xi1 and xi2 is already included in the

system, a pair of variables xi3 and xi4 with the next highest

importance degree is selected. Let the new module be {i1i2}.

Step 3: In order to adjust the parameters of the system,

algorithm B for U = U∪{i1i2} is performed.

Step 4: Let E(t) be defined by (10). If |E(t)−E(t−1)| < Θ
then go to Step 2 with t←t+ 1, else algorithm terminates.

Learning Algorithm D (Pruning Learning Algorithm for
DIRMs model)
Step 1: Threshold value Θ for learning is set. Let U = U∗

m,2

and t = 1.

Step 2: Learning algorithm B for the set U is performed. Let

E(t) be defined by (10).

Step 3: If |E(t)−E(t−1)|≥Θ, then the algorithm terminates.

Step 3: Select one module L0 with the lowest importance

degree in U , set U = U−{L0} and go to Step 2 with t←t+1.

IV. NUMERICAL SIMULATIONS

In order to show the performance of DIRMs model

and pruning and generative learning algorithms, numerical

simulations are performed. In IV.A, the relation among

suggested, conventional and SIRMs models is shown. In

Sections IV B, IV C, and IV D, numerical simulations for

function approximation, Box-Jenkins problem, and obstacle

avoidance problems are performed, respectively.

A. The Class of DIRMs Model

The suggested model includes the conventional SIRMs and

DIRMs models. Further, the following results are obtained.

The EX-OR problem with two variables is defined as:

y = x1⊕x2 (20)

where x1, x2 and y∈{0, 1} and ⊕ means the Exclusive OR

operation [3]. Then the following result holds.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

476

[Proposition 1] [14] The EX-OR problem cannot be

implemented by any SIRMs model.

[Proposition 2] EX-OR problem can be approximated by

DIRMs model with U2
2 .

(Proof) Let ε > 0. Then, it is shown that there exists δ > 0
for a DIRMs model such that

E =
1

4

4∑
p=1

(y∗p − yp)
2 < ε (21)

and DIRMs system is satisfied with the condition.

yp = h12

∑2
i=1 M

1
i (x1)M

2
i w

12
i∑2

i=1 M
1
i (x1)M2

i (x2)
(22)

where h12 = 1, c11 = c21 = c22 = c13 = 0, c12 = c23 = c14 =
c24 = 1, bji = δ, w12

1 = w12
4 = 0, w12

2 = w12
3 = 1 and δ is

sufficiently small. �
Fig. 2 shows the relation between MSE for learning and

the number of parameters. As shown in Fig. 2, the MSE for

learning is no longer changed where the number of parameters

exceeds 248. Therefore, pruning and generative algorithms are

needed.
It is not clear if the (generalized) DIRMs model includes

truly the conventional DIRMs model.

B. Function Approximation
This simulation uses four systems specified by the following

functions with four dimensional input domains [0, 1]4 for (23)

and (24) and [−1, 1]4 for (25) and (26).

y =
(2x1 + 4x2

2 + 0.1)2

37.21
× (4 sin(πx3) + 2 cos(πx4) + 6)

12
(23)

y =
(sin(2πx1)× cos(x2)× sin(πx3)× x4 + 1.0)

2.0
(24)

y =
(2x1 + 4x2

2 + 0.1)2

74.42
+

(4 sin(πx3) + 2 cos(πx4) + 6)

446.52
(25)

y =
(2x1 + 4x2

2 + 0.1)2

74.42
+

(3e3x3 + 2e−4x4)−0.5 − 0.077

4.68
(26)

The simulation condition is shown in Table I. The numbers

of learning and testing data are 512 and 6400, respectively.

All learning and testing data are uniformly and randomly

selected from the input space, respectively. In Table II, A,

B(1), C and D mean Learning Algorithms A, B(1), C and D.

Further, B∗(2) means Learning Algorithm B with only Um
2 .

Table II shows the results. In each box, three numbers from

the top to the bottom show MSE of training(×10−3), MSE of

testing(×10−3) and the number of parameters, respectively.

The result of simulation is the average value from ten trials.
The results in Table II show that B∗(2) and D are the same

ability as A in terms of accuracy with the exception of (24),

B(1) is inferior in terms of accuracy to other methods and C

is inferior in terms of accuracy to D. As a result, D is more

effective in terms of accuracy and the number of parameters

compared with other methods.

TABLE I
THE INITIAL CONDITIONS FOR SIMULATIONS OF FUNCTION

APPROXIMATION

A B C D
Kc 0.001 0.001 0.001 0.001
Kb 0.001 0.001 0.001 0.001
Kw 0.01 0.01 0.01 0.01

Kh ���� 0.01 0.01 0.01

H 3 3 3 3
Tmax 50000 50000 50000 50000

Initial cij Equal intervals

Initial bij
1

2(H−1)
×(the domain of input)

Initial wij Random on [0,1]

Initial hj ���� Random on [0,1]

TABLE II
THE RESULT OF SIMULATION FOR FUNCTION APPROXIMATION

(23) (24) (25) (26)
0.01 0.07 0.08 0.07

A 0.03 0.14 0.14 0.14
(729) (729) (729) (729)
1.60 10.69 1.40 3.34

B(1) 1.80 10.71 1.62 3.75
(40) (40) (40) (40)
0.02 2.29 0.01 0.01

B∗(2) 0.06 7.80 0.01 0.02
(276) (276) (276) (276)
0.09 8.85 0.05 0.06

C 0.12 9.43 0.06 0.08
(283.8) (49.2) (201) (306.8)

0.04 3.63 0.03 0.02
D 0.06 4.76 0.04 0.03

(267) (86.8) (104.6) (128.2)

C. Box-Jenkins Gas Furnace Problem

In order to show the effectiveness of suggested methods,

Box-Jenkins problem as one of benchmark ones is used.

The problem is a prediction one with six input and one

output and is known as one used to compare the ability

among conventional fuzzy models [15]–[17]. The data set

of Box-Jenkins gas furnace modeling consists of 296 input

and output data of a gas furnace process collected using a

sampling of 9 seconds [15]. In each sampling instant k, the

input xk is the gas flow into the furnace and the output yk

�

������

������

������

������

�����

������

��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�

���������	�
���
	
����	�

Fig. 2 The relation between MSE for learning and the number of parameters
for (23)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

477

TABLE III
SIMULATION RESULT FOR SCENARIO 1

Model # parameters # rules Training Error
(MSE)

Box and Jenkins [15] 10 - 0.202
Kim et. al. [16] 38 2 0.055

Pedrycz et. al. [8] 64 8 0.061

B(1) 114 6 0.059
B(2) 1347 23 0.039

D 208 - 0.043

TABLE IV
RESULT FOR SCENARIO 2

Model # parameters # rules Training Testing
error error

(MSE) (MSE)
Kim et. al. [16] 38 2 0.034 0.244
Li et. al. [17] 57 3 0.015 0.147

Pedrycz et. al. [8] 32 4 0.022 0.173

B(1) 78 6 0.017 0.161
B(2) 1293 20 0.013 0.197

D 130 - 0.016 0.157

is CO2 concentration. We employed the suggested technique

to construct a fuzzy model with six inputs xk , xk−1, xk−2,

yk−1, yk−2, and yk−3, and one output yk.

We investigate two scenarios when constructing fuzzy

models. In the first scenario (scenario 1), the objective is to

evaluate the ability of the suggested method to fit the learning

data. In this case all the data are used as the learning data.

In the second scenario (Scenario 2), we consider the first

148 samples as learning data while the remaining data form

testing data.

Tables III and IV show the results for scenarios 1 and

2, respectively, where #parameters means the number of

parameters. Simulations of them are performed for some

systems with different numbers of parameters (or modules)

and best results selected from their results are shown. In the

scenario 1, the suggested pruning method(D) is superior in

terms of accuracy to DIRMs model(B(2)). In the scenario 2,

SIRMs model(B(1)) is superior in terms of accuracy to other

suggested methods. Note that both DIRMs and SIRMs models

are constructed from modules of two and one variables, and

compared results are showed as the method with six input

rules. Therefore,it is considered that the problem strongly

depends on one variable yk−1.

D. Obstacle Avoidance Problem

This problem is also used in the previous paper [13]. As

shown in Fig. 3, the distance d1 and the angle θ1 between

the mobile object and the obstacle and the distance d2 and

the angle θ2 between the mobile object and the destination

are selected as input variables. The problem is to construct

a fuzzy inference system that the mobile object avoids the

obstacle and arrives at the destination. From learning data (200

points shown in Fig. 4), fuzzy inference rules for the model

are constructed. The number of partitions for each model is

3. The mobile object moves with the vector A = (Ax, Ay)
at each step, where Ax is a fixed value and Ay is determined

TABLE V
THE INITIAL CONDITIONS FOR SIMULATIONS OF OBSTACLE AVOIDANCE

AND ARRIVING AT THE DESIGNATED PLACE

D
Kc 0.001
Kb 0.001
Kw 0.05
Kh 0.05
H 3

Tmax 50000

Initial cij Equal intervals

Initial bij
1

2(H−1)
×(the domain of input)

Initial wij Random on [0,1]
Initial hj Random on [0,1]

��
��

��
����������	


����

�

�

�

��

��
��


�����


�������

��

��
�����������

Fig. 3 Simulation on obstacle avoidance and arriving at the goal.

by learning. The simulation condition is shown in Table V.

Simulation for learning is successful for Algorithm B(2) and

D. Further, following tests are performed.

• T1: Test 1 is simulation for obstacle avoidance

and arriving at the destination when the mobile

object starts from various places. Fig. 5 shows

the results of moves of mobile object for starting

places at (0.0, 0.1), (0.0, 0.2), · · ·, (0.0, 0.8), (0.0, 0.9).
Simulations with the obstacle placed at the place (0.4,

0.4) and arriving at the destination (1.0, 0.6) are

�����������

Fig. 4 Learning data to avoid obstacle and arrive at the destination (1.0, 0.5).



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

478

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

Fig. 5 Simulation for obstacle avoidance with the different destination (1.0,
0.6) from learning.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

Fig. 6 Simulation for obstacle moving with fixed speed.

performed for suggested model (See Fig. 5). The results

are successful as shown in Fig. 5.

• T2: Test 2 is simulation for the case where the obstacle

moves with the fixed speed. That is a simulation to avoid

the obstacle moving with the vector (0.01, 0.02) at each

step, from the initial place (0.3, 0.0) and arrives at the

place (0.8, 1.0) at step T = 50 as shown in Fig. 6.

The destination is (1.0, 0.6). The results are successful

as shown in Fig. 6.

• T3: Test 3 is simulation for the case where the obstacle

moves randomly as shown in Fig. 7, where |B| is

constant, and the θb is determined randomly at each step.

Simulations with the obstacle moving randomly from the

point (0.5, 0.0) are performed. The destination is (1.0,

0.6). The results are successful as shown in Fig. 8.

From this simulation, we can get the following fuzzy rules.

Assume that three attributes are ”small”, ”middle” and ”large”

for d1, θ1, d2 and θ2, and left(Ay > 0) and right(Ay < 0) for

the direction of Ay , respectively.

If d2 is (small or middle), then move to right.

If d2 is large, then move to left.

If d1 is (small or middle) and d2 is small, then move to

left.

If d1 is (small or middle) and d2 is (middle or large), then move to

right.

If d1 is large and d2 is small, then move to right.

y

x

�

��

��

��

��������

Fig. 7 The obstacle moves with the vector B, where |B| is constant and θb
is selected randomly.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

Fig. 8 Simulation for obstacle moving randomly.

If d1 is large and d2 is (middle or large), then move to left.

If d1 is small and θ2 is (small or middle), then move to

right.

If d1 is small and θ2 is large, then move to left.

If d1 is middle and θ2 is small, then move to left.

If d1 is middle and θ2 is (middle or large), then move to right.

If d1 is large and θ2 is small, then move to right.

If d1 is large and θ2 is (middle or large), then move to left.

We have already performed the same simulations in the

previous paper [13]. The simulation for B∗(2) are successful

and needed almost the numbers of modules 3. On the other

hand, the fuzzy inference system composed of two modules of

two variables and one module of one variable are constructed

when using pruning learning algorithm D.

V. CONCLUSION

In this paper, we considered the (generalized) DIRMs model

and suggested pruning and generative learning algorithms

for the model. In order to show the performance of

them, numerical simulations for function approximation,

Box-Jenkins and obstacle avoidance problems are performed.

In particular, it is shown that the model is superior in the

number of parameters to the conventional models when using



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

479

pruning algorithm. Further, it seems that the same results hold

for the cases of the SNIRMs models.

In the future work, we will consider the difference of the

ability between the suggested and the conventional DIRMs

models.

REFERENCES

[1] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems
Approach to Machine Intelligence, Prentice Hall, Englewood Cliffs, NJ,
1992.

[2] C. Lin, and C. Lee, Neural Fuzzy Systems, Prentice Hall, PTR, 1996.
[3] M.M. Gupta, L. Jin, and N. Homma, Static and Dynamic Neural

Networks, IEEE Press, 2003.
[4] J. Casillas, O. Cordon, F. Herrera, and L. Magdalena, “Accuracy

Improvements in Linguistic Fuzzy Modeling,” Studies in Fuzziness and
Soft Computing, Vol.129, Springer, 2003.

[5] B. Liu, Theory and Practice of Uncertain Programming, Studies in
Fuzziness and Soft Computing, Vol.239, Springer, 2009.

[6] O. Cordon, “A historical review of evolutionary learning methods for
Mamdani-type fuzzy rule-based systems: Designing interpretable genetic
fuzzy systems,” Journal of Approximate Reasoning, 52, pp.894-913,
2011.

[7] K. Kishida, H. Miyajima, M. Maeda, and S. Murashima, “A Self-tuning
Method of Fuzzy Modeling using Vector Quantization,” Proceedings of
FUZZ-IEEE’97, pp.397-402, 1997.

[8] W. Pedrycz, and H. Izakian, “Cluster-Centric Fuzzy Modeling,” IEEE
Trans. on Fuzzy Systems, Vol.22, Issue 6, pp. 1585-1597, 2014.

[9] S. Fukumoto, and H. Miyajima, “Learning Algorithms with
Regularization Criteria for Fuzzy Reasoning Model,” Journal of
Innovative Computing, Information and Control, vol.1, no.1, pp.249-263,
2006.

[10] N. Yubazaki, J. Yi, and K. Hirota, “SIRMS (Single Input Rule Modules)
Connected Fuzzy Inference Model,” J. Advanced Computational
Intelligence, 1, 1, pp.23-30, 1997.

[11] N. Shigei, H. Miyajima, and S. Nagamine, “A Proposal of Fuzzy
Inference Model Composed of Small-Number-of-Input Rule Modules,”
Proc. of Int. Symp. on Neural Networks: Advances in Neural Networks
- Part II, pp.118-126, 2009.

[12] S. Miike, H. Miyajima, N. Shigei, and K. Noo, “Fuzzy Reasoning
Model with Deletion of Rules Consisting of Small-Number-of-Input Rule
Modules,” Journal of Japan Society for Fuzzy Theory and Intelligent
Informatics, pp.621-629, 2010 (in Japanese).

[13] H. Miyajima, N. Shigei, and H. Miyajima, “An Application of
Fuzzy Inference System Composed of Double-Input Rule Modules to
Control Problems,” Proceedings of the International MultiConference of
Engineers and Computer Scientists 2014, Vol I, pp.23-28, 2014.

[14] H. Miyajima, N. Shigei, and H. Miyajima, “Some Properties on Fuzzy
Inference Systems Composed of Small Number of Input Rule Modules,”
Advances in Fuzzy Sets and Systems, Vol.20, pp.155-175, 2015.

[15] G.E.P. Box, G.M. Jenkins, Time series analysis, forecasting and
control,second ed., Holden Day, San Francisco, CA, 1970.

[16] E. Kim, M. Park, S. Ji, and M. Park, “A new approach to fuzzy
modeling,” IEEE Trans. Fuzzy Systems, vol. 5, no. 3, pp. 328-337, 1997.

[17] C. Li, J. Zhou, B. Fu, P. Kou, and J. Xiao, “T-S fuzzy model
identification with a gravitational search-based hyperplane clustering
algorithm,” IEEE Trans. Fuzzy Syst., vol.20, no.2, pp. 305-317, 2012.

Hirofumi Miyajima received the B.E. degree in Electronics and Information
Engineering from Hokkaido University, Japan, in 2010, and the M.E. degree in
Information Science and Technology from Osaka University, Japan, in 2012.
He is currently working toward his Dr. Eng. Degree at Kagoshima University.
His current research interests include fuzzy modeling, neural networks and
learning algorithms for them.

Kazuya Kishida received the B.E., M.E., D.E. degrees from Kagoshima
University, Japan, in 1993, 1995, and 1998, respectively. He is currently an
Associate Professor in Electronic Control Engineering at National Institute of
Technology, Kagoshima College. His current research interests include neural
networks, fuzzy modeling, genetic algorithms.

Noritaka Shigei received the B.E., M.E., D.E. degrees from Kagoshima
University, Japan, in 1992, 1994, and 1997, respectively. He is currently
an Associate Professor in Graduate School of Science and Engineering at
Kagoshima University. His current research interests include neural network,
wireless sensor network, digital communication system, digital circuit design,
and parallel computing system.

Hiromi Miyajima received the B.E. degree in electrical engineering from
Yamanashi University, Japan, in 1974, and the M.E. and D.E. degrees in
electrical and communication engineering from Tohoku University, in 1976
and 1979, respectively. He is currently a Professor in Graduate School
of Science and Engineering at Kagoshima University. His current research
interests include fuzzy modeling, neural networks, quantum computing, and
parallel computing.


