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Abstract—The surface properties of many materials can be 

readily and predictably modified by the controlled deposition of thin 
layers containing appropriate functional groups and this research area 
is now a subject of widespread interest. The layer-by-layer (lbl) 
method involves depositing oppositely charged layers of 
polyelectrolytes onto the substrate material which are stabilized due 
to strong electrostatic forces between adjacent layers. This type of 
modification affords products that combine the properties of the 
original material with the superficial parameters of the new external 
layers. Through an appropriate selection of the deposited layers, the 
surface properties can be precisely controlled and readily adjusted in 
order to meet the requirements of the intended application. In the 
presented paper a variety of anionic (poly(acrylic acid)) and cationic 
(linear poly(ethylene imine), polymers were successfully deposited 
onto the polypropylene nonwoven using the lbl technique. The 
chemical structure of the surface before and after modification was 
confirmed by reflectance FTIR spectroscopy, volumetric analysis and 
selective dyeing tests. As a direct result of this work, new materials 
with greatly improved properties have been produced. For example, 
following a modification process significant changes in the 
electrostatic activity of a range of novel nanocomposite materials 
were observed. The deposition of polyelectrolyte nanolayers was 
found to strongly accelerate the loss of electrostatically generated 
charges and to increase considerably the thermal resistance properties 
of the modified fabric (the difference in T50% is over 20oC). From 
our results, a clear relationship between the type of polyelectrolyte 
layer deposited onto the flat fabric surface and the properties of the 
modified fabric was identified. 
 

Keywords—Layer-by-layer technique, polypropylene nonwoven, 
surface modification, surface properties.  

I. INTRODUCTION 
HE deposition of thin, mainly organic layers containing 
functional polyelectrolyte groups, designed for modifying 

the surface properties of flat objects, is now the subject of a 
wide interest.  

The major idea of the layer-by-layer (lbl) method is in 
alternately depositing oppositely charged polyelectrolyte 
layers, which react between themselves due to electrostatic 
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forces. Using this kind of modification it is possible to obtain 
products that combine the volumetric properties of the main 
object with the superficial parameters of a new external layer. 
Through an appropriate selection of the layer to be deposited 
one can very precisely control the surface properties of the 
given product adjusting them to concrete requirements and 
needs. It has been shown that this method can be also used for 
textile fabrics. 

Our previous papers described the use of the lbl method for 
the modification of polypropylene and polylactide nonwovens 
to obtain hydrophilic [1], [2], thermal [3], [5], electrokinetic 
[4], [5], dyeing [3] and electrostatic properties [5].  

Poly (ethylene imine) (LPEI) is one of the most used 
polymer for gene delivery [6]–[10]. PEI-based polymers have 
found a number of applications in biotechnology, nano-
medicine and pharmacy [11]-[15]. Our previous investigations 
[4] showed the possibility of deposition of polymeric brushes 
PEI-PEI and PEI –poly(2-ethyl-2-oxazoline), PEtOx onto PP 
nonwoven. The present paper describes the effect of surface 
modification of polypropylene nonwoven fabric by the 
deposition of linear LPEI, layers using the layer-by-layer 
method. The effect of the chemical composition upon the 
thermal resistance properties was explored in detail. The 
investigation mainly focused on determination of thermal 
decomposition parameters such as activation energy, reaction 
order and frequency coefficients which are of vital importance 
for determining the mechanism of polymer degradation and 
thermal stability values [16].  

The effects of surface modification with LPEI were 
compared with the effects of the deposition of various 
polyelectrolytes. Particular efforts were made in order to 
detect any changes in electrostatic and thermal properties. 

II. EXPERIMENTAL 

A. Materials  
− Polypropylene (PP) nonwoven textile (surface weight = 

27.9g/m2, average filament diameter = 9.65mm) was 
prepared by the melt blown method (Cenaro – Lodz, 
Poland) using low viscosity, isotactic PP granules 
completely free from additives, (Borealis AG, HL604FB, 
Austria).  

− A two-step synthetic procedure was applied for the 
synthesis of the, LPEI95 [4], [17], [18]. First, PEtOx95 
precursors were synthesised, followed by acidic 
hydrolysis to afford the corresponding LLPEI. The 
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PEtOxpolymers were characterized by GPC and 1H 
NMR. GPC analyses gave monomodal distributions with 
dispersity indices ranging from 1.1 to 1.3. The degree of 
polymerizations, DPs of the PEtOx was estimated from 
the 1H NMR spectra of the polymers in CDCl3. The 
experimental DPs are in good agreement with the 
theoretical values and with those calculated from the feed. 
LPEI was obtained by acidic hydrolysis of PEtOx. 
Examination of the 1H NMR spectra revealed the degree 
of hydrolysis to be >95%. The DP of the resulting LPEI 
was confirmed as equivalent to that of the corresponding 
PEtOx precursor.  

− Poly (acrylic acid) (PAA) was prepared by polymerization 
of acrylic acid (AA) in toluene initiated with 
azobisisobutyronitrile (AIBN). The polymer was rinsed 
several times with toluene and dried under vacuum. Its 
weight-average molecular weight (Mw= 145 000 g/mol) 
was determined by gel chromatography. 

B. Modification Procedures 

1. Activation 
The PP nonwoven was activated by immersion in a solution 

of ammonium persulfate (c = 20g/dm3, t = 30min, T = 80°C, 
in nitrogen), followed by thorough rinsing with water. Aiming 
to produce the first graft poly(acrylic acid) (PAA) layer the 
activated nonwoven was dipped in concentrated AA aqueous 
solution, (c = 52g/dm3, t = 60min, T = 80°C, in nitrogen).  

2. Nanolayers Deposition  
Samples of the grafted nonwovens were dipped in LPEI 

solution with a concentration of 10-2 base mol/dm3 at 80°C 
for 15min and then rinsed with pure water. Substrates were 
then dipped in the oppositely charged poly(acrylic acid) 
(PAA) solution (10-2 base mol/dm3) for 15min at room 
temperature. 

Prior to every such operation samples were rinsed with 
distilled water. 

C. Characterisation 

1. Dyeing Tests 
Samples with different numbers of layers were immersed 

into 0,001 mol/dm3 methylene blue solution for 10min. After 
immersion in the dye solution the nonwovens with multilayer 
films were soaked in water for 1min and then dried with a 
mild flow of air. All the dyed samples were subjected to 
measurements of light reemission. Dyed samples were placed 
in a Spectraflash 300 apparatus (Datacolor International) to 
measure their light reemission within the range from 400 to 
700nm.  

2. FTIR Spectroscopy 
The FTIR spectra were collected using a Perkin-Elmer 2000 

FTIR instrument. A Perkin-Elmer specular reflectance 
variable angle accessory (VASR) has been used to gather the 
reflectance FTIR spectra at 60° (16 scans). The unmodified, 
nonwoven fabric was used as a background for creating 
spectra of modified nonwoven fabric.  

3. Volumetric Titration 
The quantitative analysis of acidic groups was determined 

with the use of a laboratory pH conductometer/salinometer 
CPC-502 from ELMETRON, operating in pH measurement 
mode with a combined glass electrode. A weighed portion of 
nonwoven substrate (about 1 g) was flooded with 5 ml of 0.01 
mol/dm3NaOH solution and then 75cm3 of distilled water was 
added. The system was titrated by means of 0.01mol/dm3HCl 
solution (during stirring with a magnetic stirrer). The same 
procedure was used to titrate samples of modified and 
unmodified nonwoven fabrics. The latter was used as a 
reference sample. 

4. Thermogravimetric Analysis 
The thermal analysis of all samples was carried out with a 

Perkin Elmer TGA 7 thermal analyser in a platinum measuring 
cell, with the use of Pyris program for data handling. 
Measurements were performed in a nitrogen and air 
atmosphere mainly with the heating rate 15°C min-1. The 
samples were heated up to 650°C, starting from room 
temperature. All measurements were repeated at least three 
times. For each course temperature of 50% degradation (T50%) 
was determined and after that the average value was 
calculated. 

III. RESULTS AND DISCUSSION 

A. Deposition of Polyelectrolyte Layers on the Surface of 
Polypropylene Nonwoven Fabrics 

The surface of polypropylene nonwoven was modified with 
the use of poly(acrylic acid) (PAA) as a negatively charged 
layer and poly(ethylene imine) (LPEI) as a positively charged 
layer. The first layer was deposited on the surface of fabric by 
grafting acrylic acid. The next layers were deposited by the 
layer-by-layer technique. The resultant system is shown in 
Table I. 

 
TABLE I 

COMPOSITION OF DEPOSITED LAYERS 
Grafting  Type of nanolayer (sample number) 

1 2 3 
PAA PEI PAA 

 
The structure of modified samples was confirmed using 

dyeing tests, volumetric analysis and reflectance FTIR 
spectroscopy.  

1. Dyeing Tests 
The deposition of polyelectrolyte layers was confirmed by 

the method of dyeing test with methylene blue dye. This dye 
belongs to the group of thiazine dyes and is used to dye the 
surfaces of acidic character. Therefore one should expect 
considerable differences in the intensity of colour of the test 
dyed fabrics before modification and those containing the last 
layer of poly(acrylic acid) or the external layer of polyamine.  

The dyed samples show visual differences in the intensity 
of color: sample 1 and 3 have clearly deeper blue color than 
samples 0, and 2. Spectrophotometric measurements of 
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The results shown in Fig. 3 show that the application of the 
LPEI polymers on the nonwoven surface strongly accelerated 
the loss of electrostatically generated charges. 

C. Thermogravimetric Properties 
In addition to the well-documented affects upon the surface 

properties of the material under modification, it has been also 
observed that this surface modification can also change the 
thermal resistance of the substrate material [3]. The 
representative TG curves of samples after each stage of 
modification are presented in Fig. 4. 

 

 
Fig. 4 Representative thermogravimetric curves in air atmosphere 
 
The same phenomenon we have previously found [4] for 

samples with poly(allylamine hydrochloride) and 
poly(dimethyl aminoethyl methacrylate) (PDAMA). 
Deposition of PDAMA has a similar effect on the thermal 
properties of the above mentioned polyamines. The final 
difference in temperature of 50% decomposition between 
unmodified samples 0 and 2 is 22.5°C. 

IV. CONCLUSIONS 
The investigations performed in this work have shown that 

the linear poly(ethylene imine) can be use for modification of 
the polypropylene nonwoven surface in similar way as 
poly(allylamine hydrochloride) or poly(dimethylaminoethyl 
methacrylate).  

FTIR reflectance analysis can be used for the confirmation 
of surface structure. The FTIR results are consistent with 
volumetric tests and methylene blue dyeing tests.  

The modified samples have significantly smaller static 
charge and better thermal stability than unmodified PP 
nonwoven. 
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