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Abstract—In this study, rotating flexible shaft-disk system 

having flexible beams is considered as a dynamic system.  After 
neglecting nonlinear terms, torsional vibration of the shaft-disk 
system and lateral and longitudinal vibration of the flexible beam are 
still coupled through the motor speed. The system has three natural 
frequencies; the flexible shaft-disk system torsional natural 
frequency, the flexible beam lateral and longitudinal natural 
frequencies. Eigenvalue calculations show that while the shaft speed 
changes, torsional natural frequency of the shaft-disk system and the 
beam longitudinal natural frequency are not changing but the beam 
lateral natural frequency changes. Beam lateral natural frequency 
stays the same as the nonrotating beam lateral natural frequency ωb 
until the motor speed ωm is equal to ωb. After then ωb increases and 
remains equal to the motor speed ωm until the motor speed is equal to 
the shaft-disk system natural frequency ωT. Then the beam lateral 
natural frequency ωb becomes equal to the natural frequency ωT and 
stays same while the motor speed ωm is increased. Modal amplitudes 
and phase angles of the vibrations are also plotted against the motor 
speed ωm. 
 

Keywords—Rotor dynamics, beam-shaft coupling, beam 
vibration, flexible shaft. 

I. INTRODUCTION 
IBRATION problem of rotating beams has been a subject 
of extensive research due to a number of very important 

applications such as helicopter blades, turbine blades, and 
appendages of spinning satellites. References [7], [8], [10] 
have studied a model consisting of servomotor, harmonic 
drive, flexible shaft and a rigid manipulator arm. Transfer 
function of the system relating desired input rotation to the 
manipulator arm rotation is developed. Flexible system natural 
frequency and damping ratio together with PID control 
parameters appear in the transfer function. The possibility of a 
precise trajectory tracking is discussed and frequency response 
characteristics of the system with respect to some parameters 
are studied. Reference [5] have also modeled rotating Euler-
Bernoulli type beam and studied residual vibration spectrum 
of the beam. It is shown that at certain frequencies of the rise 
function, residual vibration can be eliminated. For the same 
model shear force at the root of the beam is used as a feedback 
for the control system and parametric analysis is done, the 
effect of shear force feedback control strategy on the beam tip 
vibration is studied. . References [12], [13] have studied 
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coupling effect of a flexible link and a flexible joint in one-
link rotating structure. Two nondimensional parameters are 
defined; the ratio of a bending stiffness of the link to the 
torsional stiffness of the rotor and the ratio of moment of 
inertia of the link to the rotor. Unconstrained and constrained 
modal expansions are compared. Reference [2] has developed 
general model to describe the rotating blade vibration under 
the effect of shaft torsional vibration. Reference [1] have 
studied mathematical model for a flexible arm undergoing 
large planar flexural deformation, continuously rotating under 
the effect of a hub torque and supported by a flexible base. 
Reference [3] have developed a new approach based on a 
linear quadratic estimator technique for estimating the 
vibration of any point on the span of a rotating flexible beam 
mounted on a compliant hub in the presence of process and 
measurement noise. Reference [11] have studied coupled 
nonlinear equations of motion of a coupled elastic shaft-elastic 
beam model in a very general fashion considering the 
influence of rotor, shaft, hub, beam and payload as well as 
geometric stiffness terms which arise from both centripetal 
and Coriolis accelerations. Their solution concentrates on the 
effect of two parameters representing the mass and stiffness 
ratios of the manipulator system on its driveline. References 
[4], [6], [9] analyzed a servomotor driven coupled elastic 
shaft–elastic beam system. The model consists of a 
servomotor, disk, and an elastic beam attached to the disk and 
separated by an elastic shaft. Equations of motion are derived 
with respect to the generalized coordinates of the elastic shaft, 
elastic beam and the servomotor rotation. Nonlinear terms 
coming from Coriolis, normal and tangential accelerations are 
retained in the equations. Change of eigenvalues of the system 
with respect to the control parameters and also beam tip 
vibrations are investigated.  

In this study, rotating flexible shaft-disk system having 
flexible beams is considered as a dynamic system. Equations 
of the dynamic system are derived considering that the shaft is 
driven with a motor. After neglecting nonlinear terms, 
torsional vibration of the shaft-disk system and lateral and 
longitudinal vibration of the flexible beam are still coupled 
through the motor speed. The change of natural frequencies 
and modal amplitudes of the system are investigated with 
respect to the motor speed. 
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II. FORMULATION 

    Fig. 1 shows the dynamic system consists of a disk having 
flexible beams circumferentially connected to it and the disk is 
connected a motor through flexible shaft. Jm is the motor 
inertia, Jd is the disk inertia, lb is the beam length, ls is the 
shaft length, θm , θs and θd are the motor,  flexible shaft and  
disk rotation, respectively. Front view of the system shows the 
configuration of the disk and the flexible beam. OXY is the 
fixed frame of reference, Oxy is the rotating frame attached to 
the disk at disk center. rd is the radius of the disk, rd + x 
+u(x,t) and y(x,t) are the coordinates of the flexible beam unit 
mass m with respect to the rotating coordinates Oxy. u(x,t) and 
y(x,t) are the longitudinal and lateral displacements of unit 
mass m.  

 
Fig. 1 Model of elastic shaft-disk-elastic beam system 

  
The kinetic energy of the system can be written as 
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In (1) N is the number of flexible beams attached to the 
disk, v is the velocity of the unit mass m, ρ is the density of 
beam material, Ip is the polar moment of inertia of the flexible 
shaft. The potential energy of the system can be written as 
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In (2) EI is the rigidity of the elastic beam, GIp is the 
rigidity of the elastic shaft, EA is the longitudinal rigidity of 
the beam, ψ(z,t) is the elastic rotation of the shaft. The disk 
and the shaft rotation can be written as the sum of the motor 
rotation and the flexible shaft rotation as 
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It is assumed that the elastic motion of the beam and the 
shaft are sum of the orthogonal modes 
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Here )(zsiφ , )(xbiφ and )(xuiφ  are orthogonal modes, qsi(t), 
qbi(t) and qui(t) are  generalized coordinates of the elastic shaft 
and elastic beam, respectively. In the following derivations, 
only first mode is considered. 
 

Position vector of the beam unit mass m can be written as 
 

jyiuxrr d +++= )(                               (5) 
 

The velocity of the unit mass m can be found by taking time 
derivative of the vector r  which is 
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If (3), (4) and (6) are used the kinetic and the potential 
energies of (1) and (2) will be 
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In (7) )( ss lφφ = . Lagrange equations are used to obtain 
dynamic equations of the system with respect to the 
generalized coordinates. Viscous damping is introduced 
through bζ , uζ and sζ which are lateral, longitudinal and 
torsional motion damping ratios, respectively. After ignoring 
nonlinear terms, the following equations are obtained 
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In these equations mω is the motor speed, bω and uω are the 
first natural frequencies of lateral and longitudinal vibrations 
of the beam and sω  is the torsional vibration natural frequency 
of the elastic shaft. The following are definitions of other 
parameters 
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Since the root of the flexible beam cannot be considered 

fixed because of the elastic rotation of the shaft, the 
characteristic equation of the lateral vibration of Euler-
Bernoulli beam can be obtained by using the following 
boundary conditions 
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The characteristic equation is 
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Here K defined as rigidity factor, which is the ratio of the 

torsional stiffness of the shaft per unit length to the bending 
stiffness of the beam per unit length. 
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If the torsional stiffness of the shaft is infinite, the rigidity 
factor is infinite which corresponds to a fixed-free beam. If the 
torsional stiffness of the shaft is zero the rigidity factor is zero 
which corresponds to a hinged-free beam. 

Depending on the value of the rigidity factor, the beam 
lateral natural frequency will be between the natural frequency 
of fixed-free beam and hinged-free beam. 

For a given rigidity factor K, (15) can be solved and the 
lateral natural frequency of the beam can be calculated as 

 
42 /)( bbbbb mlEIlβω =                         (17) 

 
For the longitudinal vibration of the beam the fixed-free 

boundary conditions are assumed as 
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Then the characteristic equation of the longitudinal 
vibration of the beam will be 
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Concerning boundary conditions of the elastic shaft at the 
disk end, restoring moment is equal to the total inertial 
moment of the shaft, disk and beams. 
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Characteristic equation of the torsional vibration of elastic 
shaft will be 
 

Tsss JJ /tan =ββ                            (23) 
 
then torsional natural frequency of the shaft is 

2/ sss lG ρβω =                                 (24) 

III. SIMULATIONS 
Parameters selected for the simulations are listed in Table I. 
 

TABLE I 
SIMULATION PARAMETERS 

Symbol Quantity Value 

rd disk radius  0.5 m 
md disk mass 120 kg 
ls beam length  1.0 m 
wb x hb beam width x height 0.020 x 0.005 m 
ls shaft length 0.1, 0.5, 1.0 m 
ds shaft diameter 0.06 m 
E modulus of elasticity 207 GPa 
G modulus of shear 79 GPa 
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ρ density of steel 7700 kg m-3 
ζ damping factors 0.02 

 
Three shaft lengths are used for the simulation; 0.1 m, 0.5 

m, and 1.0 m. Beam lateral and longitudinal natural 
frequencies, shaft torsional natural frequency and shaft-disk 
system torsional natural frequency with respect to the three 
different shaft lengths are tabulated in Table II. 

 
TABLE II 

NATURAL FREQUENCIES OF THE SYSTEM FOR THREE DIFFERENT SHAFT 
LENGTHS 

ls (m) K ωb (rad/s) ωu (rad/s) ωs (rad/s) ωT (rad/s) 

0.1 
0.5 
1.0 

23308 
4662 
2331 

26.3 
26.3 
26.3 

8144.4 
8144.4 
8144.4 

50314 
10063 
5031 

225.6 
100.9 
71.3 

 
Equations of the system given in (9), (10) and (11) can be 

put in a matrix form 
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Terms M13, M31, M33, C12, C21, C23, C32 and f2 can be found 

in (9), (10) and (11). There is a dynamic coupling through 
mass matrix elements M13, M31, but they are constant.  There is 
no static coupling through stiffness matrix [K] but there are 
coupling terms in the damping matrix [C] through C12, C21, 
C23 and C32 and they are functions of motor speed ωm. The 
eigenvalues of (25) can be found by constructing the system 
matrix, which is  
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Solution of the system matrix will produce three pairs of 

complex eigenvalues, which are 
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Since the roots are functions of the motor speed ωm, for 

each given ωm; ζb, ωb, ζu, ωu, ζs and ωT can be calculated. 

Preliminary calculations show that the roots are sensitive to 
shaft length that is why the calculations are carried out for 
three different shaft lengths of 0.1m, 0.5m and 1.0m. Table II 
lists the rigidity factor K, the beam lateral natural frequency 
ωb, the beam longitudinal natural frequency ωu, the shaft 
torsional natural frequency ωs and the torsional natural 
frequency of the shaft-disk system ωT. Since the rigidity factor 
is very high for all shaft lengths, beam lateral natural 
frequency is not affected with the selected shaft lengths. 

 Fig. 2 shows how the lateral natural frequency ωb changes 
with the motor speed. When the motor speed is zero, 
nonrotating beam lateral natural frequency ωb is 26.3 rad/s for 
all shaft lengths. ωb stays the same as the nonrotating beam 
lateral natural frequency until the motor speed ωm is equal to 
ωb. Then, ωb starts increasing but remains equal to the motor 
speed ωm until the motor speed is equal to the shaft-disk 
system natural frequency ωT. After then the beam lateral 
natural frequency ωb becomes equal to the shaft-disk system 
natural frequency ωT and stays same while the motor speed ωm 
is increased.  
 

 
Fig. 2 The beam lateral natural frequency with respect to motor speed 
 
  Fig. 3 shows how beam lateral vibration damping ratio ζb is 
changing with the motor speed. Nonrotational damping ratio 
of 0.02 is assumed. While the motor speed is increased 
damping ratio decreases, when the motor speed reaches to 
shaft-disk system natural frequency  ωT increases back to its 
original value. For shorter shaft lengths, damping ratio is 
lowered more.  
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Fig. 3 The beam lateral vibration damping ratio with respect to motor 

speed 
 
Fig. 4 shows the settling time of the beam lateral vibration. 

The settling time is defined as 
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Fig. 4 The settling time of the beam lateral vibration with respect to 

motor speed 
 

Since the damping ratio ζb and the natural frequency ωb are 
changing with the motor speed, settling time of the beam 
lateral vibrations will also change. Settling time plot shows 
that beam vibration settling time is much shorter when the 
motor speed reaches the natural frequency of the shaft-disk 
system ωT.  

Generalized coordinates qb, qu and qs can be written in 
terms of eigenvalues and eigenvectors as 
 
 

{ } [ ][ ]SEq =                                       (30) 
 
Here  { } { }T

sub qqqq = ,  [E]  is  3x6  eigenvector matrix 
and [S]  is 6x6 diagonal eigenvalue matrix. For example qb 
in open form is 
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Here bbE  and *

bbE  are complex conjugate eigenvector 

elements of the beam lateral vibration. bs and *
bs are also 

complex conjugate eigenvalues of the beam lateral vibration 
which is shown as 2,1s in (28). ubE  and *

ubE  are complex 
conjugate eigenvector components which are the contribution 
of the longitudinal beam vibration to the lateral beam 
vibration. us  and *

us  are eigenvectors which are complex 
conjugate eigenvalues of the beam longitudinal vibration 
which are 4,3s  in (28). sbE  and *

sbE are complex conjugate 
eigenvector components which are the contribution of the 
torsional vibration to the lateral beam vibration. ss  and *

ss  are 
eigenvectors which are complex conjugate eigenvalues of the 
flexible shaft torsional vibration which are 6,5s  in (28). 

Similar to (31) equations for )(tqu and )(tqs can also be 
written. Equation (31) can be put in more familiar format by 
using algebra and trigonometric identities such as 
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Here bbX is the modal amplitude contributed by beam 

lateral vibration, bbΦ  is the phase angle, ubX  is the modal 
amplitude contributed by the longitudinal vibration of the 
beam, ubΦ  is the phase angle and sbX  is the modal amplitude 
contributed by the shaft vibration, sbΦ  is the phase angle. 
Similar equations can be written for  )(tqu  and )(tqs  such as 
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Fig. 5 shows modal amplitudes of the beam lateral 

vibration bbX , ubX  and sbX  with respect to the motor 
speed mω . To fit the three modal amplitudes in the same plot, 
their magnitudes are changed to dB. Modal amplitudes and 
phase angles are calculated for shaft length of 0.1 m. For small 
values of the motor speed, the contribution of the longitudinal 
vibration to the lateral vibration of the beam is very high while 
the contribution of the shaft vibration is small. When the 
motor speed is increased, the magnitude of  ubX  is decreased 
and the magnitude of  sbX  is increased, but at the same time 

bbX  is also increased. 
 

 
Fig. 5 Modal amplitudes of the beam lateral vibration with respect to 

motor speed 
 

 Fig. 6 shows the change of phase angles bbΦ , ubΦ  and 

sbΦ  with respect to the motor speed. Phase angles stay almost 
constant but small change in the phase angles bbΦ  and ubΦ  
can be seen around the motor speed 2000 to 2500 rpm. 
 
 

 
Fig. 6 Phase angles of the beam lateral vibration with respect to 

motor speed 
 

Fig. 7 shows the modal amplitudes of the beam longitudinal 
vibration buX , uuX  and suX .The modal amplitude suX  is not 
changing with the motor speed but uuX  decreases and buX  
increases approximately after motor speed 2000 rpm.  

 
 

 
Fig. 7 Modal amplitudes of the beam longitudinal vibration with 

respect to motor speed 
 

Fig. 8 shows the phase angles buΦ  , uuΦ  and suΦ  of the 
beam longitudinal vibration. The phase angle suΦ  is not 
changing by the motor speed but the beam lateral vibration 
phase angle buΦ changes approximately from -90o to +90o 
after motor speed 1500 rpm. 
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Fig. 8 Phase angles of the beam longitudinal vibration with respect to 

motor speed 
 

Fig. 9 shows the modal amplitudes of shaft torsional 
vibration which are bsX , usX and ssX . These modal amplitudes 
are not changing appreciably by the motor speed. 
 

 
Fig. 9 Modal amplitudes of the shaft vibration with respect to motor 

speed 
 

Fig. 10 shows the phase angles of the shaft torsional 
vibration. Similar to the modal amplitudes, the phase angles 

bsΦ , usΦ  and ssΦ are also not changing with the motor speed. 
Dynamic equation of the longitudinal vibration of beam has a 
forcing function on the right side, which is shown as f2 in (26). 
This force is a centrifugal force that excites the vibrations of 
the system. 
 

 
Fig. 10 Phase angles of the shaft vibration with respect to motor 

speed 
 

As an example Fig. 11, Fig. 12 and Fig. 13 are plotted to 
show the beam lateral and longitudinal vibrations and 
torsional vibrations for motor speed of 3000 rpm and shaft 
length of 0.1 m. Since the beam longitudinal vibration natural 
frequency is very high settling time of longitudinal vibration is 
relatively short, it damps out around 0.03 second.  

 

 
Fig. 11 The beam lateral vibration for motor speed 3000 rpm 
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Fig. 12 The beam longitudinal vibration for motor speed 3000 rpm 

 

 
Fig. 13 The shaft torsional vibration for motor speed 3000 rpm 

IV. CONCLUSION 
In this work, rotating flexible shaft-disk system having 

flexible beams is considered as a dynamic system. Equations 
of the dynamic system are derived considering that the shaft is 
driven with a motor of speed mω . After neglecting nonlinear 
terms, torsional vibration of the shaft-disk system and lateral 
and longitudinal vibration of the flexible beam are still 
coupled through the motor speed. The system has three natural 
frequencies; the flexible shaft-disk system torsional natural 
frequency, the flexible beam lateral and longitudinal natural 
frequencies. Eigenvalue calculations show that while the 
motor speed changes the shaft-disk system torsional natural 
frequency and the beam longitudinal natural frequency is not 
changing but the beam lateral natural frequency changes. 

 Results show that the beam lateral natural frequency stays 
the same as the nonrotating beam lateral natural frequency bω  
until the motor speed mω is equal to bω . After then bω  

increases and remains equal to the motor speed mω  until the 
motor speed is equal to the shaft-disk system natural 
frequency of Tω . Then the beam lateral natural frequency bω  
becomes equal to the natural frequency Tω  and stays same 
while the motor speed mω  is increased. Since the system is 
coupled, each vibration is the combination of the three 
vibrations with modal amplitude values and phase angles. 
These modal amplitudes and phase angles are also plotted 
against the motor speed.  
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