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Lateral and Longitudinal Vibration of a Rotating
Flexible Beam Coupled with Torsional
Vibration of a Flexible Shaft

Khaled Alnefaie

Abstract—In this study, rotating flexible shaft-disk system
having flexible beams is considered as a dynamic system. After
neglecting nonlinear terms, torsional vibration of the shaft-disk
system and lateral and longitudinal vibration of the flexible beam are
still coupled through the motor speed. The system has three natural
frequencies; the flexible shaft-disk system torsional natural
frequency, the flexible beam lateral and longitudinal natural
frequencies. Eigenvalue calculations show that while the shaft speed
changes, torsional natural frequency of the shaft-disk system and the
beam longitudinal natural frequency are not changing but the beam
lateral natural frequency changes. Beam lateral natural frequency
stays the same as the nonrotating beam lateral natural frequency w,
until the motor speed w,, is equal to w,. After then w, increases and
remains equal to the motor speed w,, until the motor speed is equal to
the shaft-disk system natural frequency wr. Then the beam lateral
natural frequency w, becomes equal to the natural frequency wrand
stays same while the motor speed w,, is increased. Modal amplitudes
and phase angles of the vibrations are also plotted against the motor
speed w,),.
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I. INTRODUCTION

IBRATION problem of rotating beams has been a subject

of extensive research due to a number of very important
applications such as helicopter blades, turbine blades, and
appendages of spinning satellites. References [7], [8], [10]
have studied a model consisting of servomotor, harmonic
drive, flexible shaft and a rigid manipulator arm. Transfer
function of the system relating desired input rotation to the
manipulator arm rotation is developed. Flexible system natural
frequency and damping ratio together with PID control
parameters appear in the transfer function. The possibility of a
precise trajectory tracking is discussed and frequency response
characteristics of the system with respect to some parameters
are studied. Reference [5] have also modeled rotating Euler-
Bernoulli type beam and studied residual vibration spectrum
of the beam. It is shown that at certain frequencies of the rise
function, residual vibration can be eliminated. For the same
model shear force at the root of the beam is used as a feedback
for the control system and parametric analysis is done, the
effect of shear force feedback control strategy on the beam tip
vibration is studied. . References [12], [13] have studied
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coupling effect of a flexible link and a flexible joint in one-
link rotating structure. Two nondimensional parameters are
defined; the ratio of a bending stiffness of the link to the
torsional stiffness of the rotor and the ratio of moment of
inertia of the link to the rotor. Unconstrained and constrained
modal expansions are compared. Reference [2] has developed
general model to describe the rotating blade vibration under
the effect of shaft torsional vibration. Reference [1] have
studied mathematical model for a flexible arm undergoing
large planar flexural deformation, continuously rotating under
the effect of a hub torque and supported by a flexible base.
Reference [3] have developed a new approach based on a
linear quadratic estimator technique for estimating the
vibration of any point on the span of a rotating flexible beam
mounted on a compliant hub in the presence of process and
measurement noise. Reference [11] have studied coupled
nonlinear equations of motion of a coupled elastic shaft-elastic
beam model in a very general fashion considering the
influence of rotor, shaft, hub, beam and payload as well as
geometric stiffness terms which arise from both centripetal
and Coriolis accelerations. Their solution concentrates on the
effect of two parameters representing the mass and stiffness
ratios of the manipulator system on its driveline. References
[4], [6], [9] analyzed a servomotor driven coupled elastic
shaft-elastic beam system. The model consists of a
servomotor, disk, and an elastic beam attached to the disk and
separated by an elastic shaft. Equations of motion are derived
with respect to the generalized coordinates of the elastic shaft,
elastic beam and the servomotor rotation. Nonlinear terms
coming from Coriolis, normal and tangential accelerations are
retained in the equations. Change of eigenvalues of the system
with respect to the control parameters and also beam tip
vibrations are investigated.

In this study, rotating flexible shaft-disk system having
flexible beams is considered as a dynamic system. Equations
of the dynamic system are derived considering that the shaft is
driven with a motor. After neglecting nonlinear terms,
torsional vibration of the shaft-disk system and lateral and
longitudinal vibration of the flexible beam are still coupled
through the motor speed. The change of natural frequencies
and modal amplitudes of the system are investigated with
respect to the motor speed.
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Il.FORMULATION

Fig. 1 shows the dynamic system consists of a disk having
flexible beams circumferentially connected to it and the disk is
connected a motor through flexible shaft. J, is the motor
inertia, J; is the disk inertia, 7, is the beam length, I is the
shaft length, 6, , 6, and 6, are the motor, flexible shaft and
disk rotation, respectively. Front view of the system shows the
configuration of the disk and the flexible beam. OXY is the
fixed frame of reference, Oxy is the rotating frame attached to
the disk at disk center. r; is the radius of the disk, r, + x
+u(x,?) and y(x,7) are the coordinates of the flexible beam unit
mass m with respect to the rotating coordinates Oxy. u(x,?) and
y(x,7) are the longitudinal and lateral displacements of unit
mass m.

Is

O

Fig. 1 Model of elastic shaft-disk-elastic beam system

The Kkinetic energy of the system can be written as

rg+lp

T =WU2)J,00+ Q2,00+ N [W2)mv (x,)dx
. 1)

ls
+(1/2) j pl 62 (z,1)dz
0
In (1) N is the number of flexible beams attached to the
disk, v is the velocity of the unit mass m, p is the density of
beam material, 7, is the polar moment of inertia of the flexible
shaft. The potential energy of the system can be written as

rg+lp I
U=(@1/2)N j EB"(x,t)dx + (1/2) J’ Gy (z,t)dz
7 0
rg+lp (2)
+(U/2)N j EAu" (x,t)dx
Td
In (2) EI is the rigidity of the elastic beam, GI, is the
rigidity of the elastic shaft, E4 is the longitudinal rigidity of
the beam, w(z,¢) is the elastic rotation of the shaft. The disk

and the shaft rotation can be written as the sum of the motor
rotation and the flexible shaft rotation as

0,(2.0) = 0,(1) +y (=)

. )
1(0=0,0) + v (1,.0)

It is assumed that the elastic motion of the beam and the
shaft are sum of the orthogonal modes

V(a0 =30, (2)0,(0  4,(2)a,0)

200 = () = 4, (g, ) (4)

i=1

a(e) = 3, ()4, () = 4,014, )

Here g,(z), ¢,(x)and ¢,(x) are orthogonal modes, g (%),

q»(?) and ¢,,(?) are generalized coordinates of the elastic shaft
and elastic beam, respectively. In the following derivations,
only first mode is considered.

Position vector of the beam unit mass m can be written as
?z(rd+x+u)17+y} (5)

The velocity of the unit mass m can be found by taking time
derivative of the vector 7 which is

v=;=(ﬂ+y9d);+[(”d+x+u)9d+y17 ©)

If (3), (4) and (6) are used the kinetic and the potential
energies of (1) and (2) will be
T=02)J,62+12)J,0,+d4d,)

m’m

S 2
O YR PACRT TS it

+(@/2)N j tde+ (7)
v o xr 4000, + 800+ 4]
1.\
+W2)[pl, (6, +9.4,) dz
0
rg+lp I
U=(/2)N j Elg’qldx + (1/2) j GI ¢ q%dz +
g 0 (8)

rg+lp
(W2N [EAg?qldx
Td
In (7) 5 =¢(/). Lagrange equations are used to obtain
dynamic equations of the system with respect to the
generalized coordinates. Viscous damping is introduced
through ¢, , £, and £ which are lateral, longitudinal and

torsional motion damping ratios, respectively. After ignoring
nonlinear terms, the following equations are obtained

ab + Zgbwb‘?b +(wp + @})q, + (Aay + az)%;q; +2040,4, =0

©)

4.+ 26,04, + (@ +0))q, + e ra)fod 0

. 2
0,4, =(lag + ay) @,
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(T, 1) + (NJyo 1 J,)atg +1Jij, + 2L 0., + 0°4, +
(Nmble/Js)(;tas +0’4)¢1‘.1.b + (11)
@Nmy 217 )(A+ (1 2)aw,q, =0

In these equations w,, is the motor speed, w,and , are the

first natural frequencies of lateral and longitudinal vibrations
of the beam and a, is the torsional vibration natural frequency

of the elastic shaft. The following are definitions of other
parameters

B=a!l, 9,=q9,1,, A=r11,,

o = i%df / E@fdé, = iqﬁbédé / Iqﬁid& ,
o, = Iqﬁbd.ff / iqﬁfdé Loy = iqﬁbfdé / i@zdé ,
as = %Z/iqﬁfdg ,

= imdé / i¢5d§, o = immf / Ji%zdé,

% = j%de‘ / jqﬁ,?dé, o = j@édé / j(bfdcf (12)

Ly
dé =dxll,or dg=dzll,, J, = [ pl,dz,
0

Iy
Jypo = J.m(rd +x)2dx, m,=ml, (13)

0

Since the root of the flexible beam cannot be considered
fixed because of the elastic rotation of the shaft, the
characteristic equation of the lateral vibration of Euler-
Bernoulli beam can be obtained by using the following
boundary conditions

¥(0,6)=0, EB"(0,1)=(GI,/1)y'(0,1),
V'(lp0)=0, y"(,0)=0 (14)

The characteristic equation is

K(cosh g1, cos B,1, +1) +

15
B, (sinh g1, cos f,1, —cosh g1, sin f,1,) =0 (15)

Here K defined as rigidity factor, which is the ratio of the
torsional stiffness of the shaft per unit length to the bending
stiffness of the beam per unit length.

G 11,
El,

(16)

If the torsional stiffness of the shaft is infinite, the rigidity
factor is infinite which corresponds to a fixed-free beam. If the
torsional stiffness of the shaft is zero the rigidity factor is zero
which corresponds to a hinged-free beam.

Depending on the value of the rigidity factor, the beam
lateral natural frequency will be between the natural frequency
of fixed-free beam and hinged-free beam.

For a given rigidity factor K, (15) can be solved and the
lateral natural frequency of the beam can be calculated as

@y = (ﬂblb)z\)E]b /ml: (17

For the longitudinal vibration of the beam the fixed-free
boundary conditions are assumed as

u(0,6)=0, u'(l,,)=0 (18)

Then the characteristic equation of the longitudinal
vibration of the beam will be

(@/c)cos(al,Ic) =0, c=\Elp (19)

o, =l 2 El pl’ (20)

Concerning boundary conditions of the elastic shaft at the
disk end, restoring moment is equal to the total inertial
moment of the shaft, disk and beams.

61,20 _ s vy (21)
Oz
Jy=J +J,+NJ,, (22)

Characteristic equation of the torsional vibration of elastic
shaft will be

ﬂs tan ﬁs = JS /‘]T (23)

then torsional natural frequency of the shaft is

o, = f,\GI pl; (24)

I1l.  SIMULATIONS
Parameters selected for the simulations are listed in Table I.

TABLE |

SIMULATION PARAMETERS
Symbol Quantity Value
rq disk radius 05m
my disk mass 120 kg
I beam length 1.0m
Wy X hy beam width x height 0.020 x 0.005 m
/ shaft length 0.1,05,1.0m
d, shaft diameter 0.06 m
E modulus of elasticity 207 GPa
G modulus of shear 79 GPa
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p density of steel 7700 kg m?
4 damping factors 0.02

Three shaft lengths are used for the simulation; 0.1 m, 0.5
m, and 1.0 m. Beam lateral and longitudinal natural
frequencies, shaft torsional natural frequency and shaft-disk
system torsional natural frequency with respect to the three
different shaft lengths are tabulated in Table II.

TABLE I
NATURAL FREQUENCIES OF THE SYSTEM FOR THREE DIFFERENT SHAFT
LENGTHS
i (m) K w, (radls)  w, (radls)  w, (rad/s)  wr (rad/s)
0.1 23308 26.3 8144.4 50314 225.6
0.5 4662 26.3 8144.4 10063 100.9
1.0 2331 26.3 8144.4 5031 71.3

Equations of the system given in (9), (10) and (11) can be
put in a matrix form

[m]a}+ [Chay+ K Ha} = {F) (25)

In open form, equations are

(1 0 M, ‘7/; 28,m, G, 0 ‘?b
0 1 0 [g,¢+| Cy 20,0, Cy R4, ¢+

uu

| My 0 Mg ‘?x My Cy 20,0, |4,

[ 2 2 — (26)
w, + ), C, 0 |(q, 0
Cy wuz + a)nzz Cu 39, (=172
My Gy, wf 9 0

Terms M3, M3;, M3, Cro, Copy Caz, Csa andﬁ can be found
in (9), (10) and (11). There is a dynamic coupling through
mass matrix elements M;;, M3,, but they are constant. There is
no static coupling through stiffness matrix [K] but there are
coupling terms in the damping matrix [C] through C;,, C5;,
C,; and Cj3; and they are functions of motor speed w,,. The
eigenvalues of (25) can be found by constructing the system
matrix, which is

[A]:[_ ! } @7

MK -M7*C

Solution of the system matrix will produce three pairs of
complex eigenvalues, which are
S10 =60, T, 1_§;j
S3,4 = _é/ua)u * a)u 1_ é’uzj (28)

S55 =—G,@p T wpy1- é/?]

Since the roots are functions of the motor speed w,, for
each given w,,; &, ws, &, o, § and wr can be calculated.

Preliminary calculations show that the roots are sensitive to
shaft length that is why the calculations are carried out for
three different shaft lengths of 0.1m, 0.5m and 1.0m. Table II
lists the rigidity factor K, the beam lateral natural frequency
wy, the beam longitudinal natural frequency w,, the shaft
torsional natural frequency w, and the torsional natural
frequency of the shaft-disk system wr. Since the rigidity factor
is very high for all shaft lengths, beam lateral natural
frequency is not affected with the selected shaft lengths.

Fig. 2 shows how the lateral natural frequency w, changes
with the motor speed. When the motor speed is zero,
nonrotating beam lateral natural frequency w, is 26.3 rad/s for
all shaft lengths. w, stays the same as the nonrotating beam
lateral natural frequency until the motor speed w,, is equal to
w,. Then, w, starts increasing but remains equal to the motor
speed w, until the motor speed is equal to the shaft-disk
system natural frequency wr. After then the beam lateral
natural frequency w, becomes equal to the shaft-disk system
natural frequency wr and stays same while the motor speed w,,
is increased.
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Fig. 2 The beam lateral natural frequency with respect to motor speed

Fig. 3 shows how beam lateral vibration damping ratio ¢, is
changing with the motor speed. Nonrotational damping ratio
of 0.02 is assumed. While the motor speed is increased
damping ratio decreases, when the motor speed reaches to
shaft-disk system natural frequency 7 increases back to its
original value. For shorter shaft lengths, damping ratio is
lowered more.
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Fig. 3 The beam lateral vibration damping ratio with respect to motor
speed

Fig. 4 shows the settling time of the beam lateral vibration.
The settling time is defined as

4
t = (29)
Gy,
Settling time of beam wibration
E] T T T T T
n 1 1 L 1 1
0 500 1000 1500 2000 2500 3000

o, [rpm]

Fig. 4 The settling time of the beam lateral vibration with respect to
motor speed

Since the damping ratio ¢, and the natural frequency w, are
changing with the motor speed, settling time of the beam
lateral vibrations will also change. Settling time plot shows
that beam vibration settling time is much shorter when the
motor speed reaches the natural frequency of the shaft-disk
system wr.

Generalized coordinates g5, ¢, and ¢, can be written in
terms of eigenvalues and eigenvectors as

la}=[E]s] (30)

Here {q}:{qh q, q;}T. [E] is 3x6 eigenvector matrix

and [S] is 6x6 diagonal eigenvalue matrix. For example g5
in open form is

q,=E, e +E, " +E, " +E, " +E, " +E,™ (31)

Here E,, and E,, are complex conjugate eigenvector
elements of the beam lateral vibration. s, ands, are also
complex conjugate eigenvalues of the beam lateral vibration
which is shown ass,,in (28). E, and E, are complex

conjugate eigenvector components which are the contribution
of the longitudinal beam vibration to the lateral beam
vibration. s, and s, are eigenvectors which are complex
conjugate eigenvalues of the beam longitudinal vibration
which are s;, in (28). E, and E are complex conjugate
eigenvector components which are the contribution of the
torsional vibration to the lateral beam vibration. s, and s, are
eigenvectors which are complex conjugate eigenvalues of the
flexible shaft torsional vibration which are s; ¢ in (28).
Similar to (31) equations for g, (¢)and ¢, (z) can also be

written. Equation (31) can be put in more familiar format by
using algebra and trigonometric identities such as

q,(t) = X, e sin(a)b,ll— S+ CI)bbj +
X, S sin(a)” N %) . 32)
X e sin(wﬂ/l— S+ qDSJ

Here X, is the modal amplitude contributed by beam
lateral vibration, ®@,, is the phase angle, X, is the modal

amplitude contributed by the longitudinal vibration of the
beam, @, is the phase angle and X, is the modal amplitude

contributed by the shaft vibration, @, is the phase angle.
Similar equations can be written for ¢, (¢#) and ¢, (¢#) such as

q,(t)= Xl;ue{wht Sin(a)hvl— glft + q)bu\J +
X, e sin(a)u N (D“uj + (33)
X, e oo sin(a)mll— S+ ‘DmJ
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q,(t) = X, e sin(a)b,ll— S+ CDbJ +
X, e sin(wu N <1>mj + (39)
X e Sin[a)ﬂll— S+ (Dﬂ)

Fig. 5 shows modal amplitudes of the beam lateral
vibration X,,, X, and X, with respect to the motor

speed w,, . To fit the three modal amplitudes in the same plot,

their magnitudes are changed to ¢B. Modal amplitudes and
phase angles are calculated for shaft length of 0.1 m. For small
values of the motor speed, the contribution of the longitudinal
vibration to the lateral vibration of the beam is very high while
the contribution of the shaft vibration is small. When the
motor speed is increased, the magnitude of X, is decreased

and the magnitude of X, is increased, but at the same time
Xl

h

, 1S also increased.
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Fig. 5 Modal amplitudes of the beam lateral vibration with respect to
motor speed

Fig. 6 shows the change of phase angles®,,, ®, and
@, with respect to the motor speed. Phase angles stay almost
constant but small change in the phase angles ®,, and @,
can be seen around the motor speed 2000 to 2500 rpm.

180 T T

100+ / B

a0 b

60 B

Phase Angles [Degrees]

40t .

20 / ”/"-\\\ 4
ok [ e

_20 L 1 1 1 1
0 500 1000 1500 2000 2500 3000

o, [rpm]

Fig. 6 Phase angles of the beam lateral vibration with respect to
motor speed

Fig. 7 shows the modal amplitudes of the beam longitudinal
vibration X, , X, and X_, .The modal amplitude X, is not

bu

changing with the motor speed but X, decreases and X,,
increases approximately after motor speed 2000 rpm.

60

P _

,=0.1m

Wodes [dB]

-220

0 500 1000 1500 2000 2500 3000
o, [rom]

Fig. 7 Modal amplitudes of the beam longitudinal vibration with
respect to motor speed

Fig. 8 shows the phase angles®,, , ®, and @ of the
beam longitudinal vibration. The phase angle ®_ is not

changing by the motor speed but the beam lateral vibration
phase angle @, changes approximately from -90° to +90°

after motor speed 1500 rpm.
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Fig. 8 Phase angles of the beam longitudinal vibration with respect to
motor speed

Fig. 9 shows the modal amplitudes of shaft torsional
vibration which are X, , X and X . These modal amplitudes

are not changing appreciably by the motor speed.

20
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_160 L 1 1 1 1
0 500 1000 1500 2000 2500 3000
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Fig. 9 Modal amplitudes of the shaft vibration with respect to motor
speed

Fig. 10 shows the phase angles of the shaft torsional
vibration. Similar to the modal amplitudes, the phase angles
@, , O, and d_ are also not changing with the motor speed.

Dynamic equation of the longitudinal vibration of beam has a
forcing function on the right side, which is shown as f in (26).
This force is a centrifugal force that excites the vibrations of
the system.

I5=[].1 m
20F J

30k i
40F .

50k i

Phase Angles [Degrees)

S0} J
TJol J

sl J/ ]

90

L 1 1 Il 1
0 £00 1000 1500 2000 2500 3000
o, [rpm]

Fig. 10 Phase angles of the shaft vibration with respect to motor
speed

As an example Fig. 11, Fig. 12 and Fig. 13 are plotted to
show the beam lateral and longitudinal vibrations and
torsional vibrations for motor speed of 3000 rpm and shaft
length of 0.1 m. Since the beam longitudinal vibration natural
frequency is very high settling time of longitudinal vibration is
relatively short, it damps out around 0.03 second.

3 T T T v T T T

1,=0.1m
2 @, =3000 rpm

qbf lb

_3 1 1 1 L 1 1 1
0 1 2 3 4 5 6 7 8

t [s]

Fig. 11 The beam lateral vibration for motor speed 3000 rpm
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Fig. 12 The beam longitudinal vibration for motor speed 3000 rpm
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Fig. 13 The shaft torsional vibration for motor speed 3000 rpm

IV. CONCLUSION

In this work, rotating flexible shaft-disk system having
flexible beams is considered as a dynamic system. Equations
of the dynamic system are derived considering that the shaft is
driven with a motor of speed w, . After neglecting nonlinear

terms, torsional vibration of the shaft-disk system and lateral
and longitudinal vibration of the flexible beam are still
coupled through the motor speed. The system has three natural
frequencies; the flexible shaft-disk system torsional natural
frequency, the flexible beam lateral and longitudinal natural
frequencies. Eigenvalue calculations show that while the
motor speed changes the shaft-disk system torsional natural
frequency and the beam longitudinal natural frequency is not
changing but the beam lateral natural frequency changes.
Results show that the beam lateral natural frequency stays
the same as the nonrotating beam lateral natural frequency a,

until the motor speed , is equal tow,. After then w,

increases and remains equal to the motor speed e, until the

motor speed is equal to the shaft-disk system natural
frequency of @, . Then the beam lateral natural frequency ,

becomes equal to the natural frequency «, and stays same
while the motor speed @, is increased. Since the system is

coupled, each vibration is the combination of the three
vibrations with modal amplitude values and phase angles.
These modal amplitudes and phase angles are also plotted
against the motor speed.
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