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Large Amplitude Free Vibration of a Very Sag Marine
Cable

O. Punjarat, S. Chucheepsakul, T. Phanyasahachart

Abstract—This paper focuses on a variational formulation of
large amplitude free vibration behavior of a very sag marine cable. In
the static equilibrium state, the marine cable has a very large sag
configuration. In the motion state, the marine cable is assumed to
vibrate in in-plane motion with large amplitude from the static
equilibrium position. The total virtual work-energy of the marine
cable at the dynamic state is formulated which involves the virtual
strain energy due to axial deformation, the virtual work done by
effective weight, and the inertia forces. The equations of motion for
the large amplitude free vibration of marine cable are obtained by
taking into account the difference between the Euler’s equation in the
static state and the displaced state. Based on the Galerkin finite
element procedure, the linear and nonlinear stiffness matrices, and
mass matrices of the marine cable are obtained and the eigenvalue
problem is solved. The natural frequency spectrum and the large
amplitude free vibration behavior of marine cable are presented.

Keywords—Axial deformation, free vibration, Galerkin Finite
Element Method, large amplitude, variational method.

[. INTRODUCTION

ARINE cables refer to the long, slender and flexible

members used for connecting the anchor point at the sea
floor and the floating platform at the sea surface. The static
and dynamic analysis of the marine cable due to its self-
weight and environmental load is an interesting topic in
engineering in order to understand the behavior such as static
equilibrium configuration, free and forced vibrations. In
literature, research works related to the marine cables have
been done extensively. The linear theory of a free vibration of
a suspended cable with the support at the same elevation is
developed by Irvine and Caughey [1]. The asymptotic
equations for the natural frequencies and mode shapes of the
inclined cable are derived by Triantafyllou and Grinfogel [2].
The effect of axial deformation on the natural frequencies for
the marine cable was studied by Chucheepsakul and Huang
[3]. The model formulation is developed base on the virtual
work-energy functional of marine cables. Chucheepsakul and
Srinil [4] developed the model formulation to analyses the
three-dimensional vibration behaviors of an inclined
extensible marine cable using virtual work-energy functional,
the coupled equations of motions obtained from the difference
between Euler’s equation and equilibrium equation. Srinil et
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al. [5] investigated the nonlinear characteristics of the large
amplitude-free vibrations of inclined sagged elastic cable,
based on a three-dimensional model formulation and the axial
deformation effect is taken into account. Recently, the natural
frequencies and mode shape of a very large sag cable have
been proposed by Phanyasahachart et al. [6], [7]. The model
formulation developed based on the variational formulation
involves with the axial deformation strain energy, the virtual
work done due to self-weight and inertia force. The equation
of motion was addressed; the finite element method was used
to obtain the numerical solution. The purpose of this study is
to extend the authors’ research work on large amplitude free
vibration. The model formulation is firstly developed and
appeared in literature. The interesting features of nonlinear
free vibration behaviors of marine cables are presented and
highlighted.
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Fig. 1 Configuration of the marine cable in three states

II. VARIATIONAL MODEL FORMULATION

The configuration of the very sag marine cable in three
states is illustrated in Fig. 1, a variational formulation of the
mechanical behavior of the marine cable is derived based on
the work-energy principle in two-dimensional the Cartesian
coordinate system. The marine cable is modeled between the
hinged support at one end and the free-sliding support at the
other end. In static analysis, the external virtual work done
composed of the top horizontal tension force, effective weight,
and the current drag force. For dynamic analysis, the axial
deformations are taken into account for internal strain energy
while the external virtual work done composed of the effective
weight, and inertia force. The arc-length coordinate is used as
an independent variable.

From the geometrical configuration of the marine cable
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illustrated in Fig. 1, the following relations can be obtained.

g = o _ %
sinf = a0 s (1a)
_dxo _ %
cosf = @ (1b)
s = 3" + 95" (1

where the prime symbol (') is used to represent the derivative
with respect to the unstrained marine cable arc-length §,
subscript (sq) defined the condition in equilibrium state, the
angle (0) is measured between the horizontal and the marine
cable arc length. Differentiating (1a) with respect to the arc-
length parameter, s, gives the curvature (k) of the marine
cable element, one obtains

a0y

)

2

dsg

NI

For the extensible marine cable, the total axial strain (&,) at
the equilibrium state can be expressed by

_ dso—ds

€o ds

)

The arc length of the marine cable at static equilibrium
state, ds, can be defined in terms of the Cartesian coordinate
components (xg, Vo) by

dsy = (1 +&y)ds = /x(’)z +y2ds )

where ds is the arc length at undeformed state, with (1c¢) and
(4), one obtains:

xp = /(1+so)2 -y )

The infinitesimal arc-length ds, can be determined using
the geometric relation of the marine cable in equilibrium state
as shown in Fig 1. Thus, it is given as

ds2 = (dx, — d)? + dy? (©6)

With (4) and (5), one can obtain:

dr = {(1 +&) — /(1 +£0)% — y(’,z} ds 7

A. Virtual Work Due to Top Horizontal Tension

The total displacement defined in (7) is used to formulate
the virtual work done due to top horizontal tension applied to
the free sliding roller support as

Wr=- fost Ty {(1 +¢&) — }(1 +g9)% — y(’)z }d§ (8)

The virtual work of the top horizontal tension can be
expressed by

SWy = — [ Ty —2 6y)ds
© O Jarer? ®

B. Virtual Work Due to Effective Weight
The virtual work of effective weight for the marine cable is

W, = — [ We8y,ds (10)

while the effective weight of the marine cable (w,) can be
defined by

We = (pcAc - peAe)g (1 1)

where p. and p, are the densities of the cable and external
fluid, respectively. A, and A, are the cross-sectional areas of
the marine cable and outside diameter, respectively, and g is
the gravitational acceleration.

C.Virtual Work Due to the Current Drag Force

The current drag force on the marine cable is composed of
forces acting both in the normal and tangential directions with
respect to the neutral axis, the virtual work of the current drag
force can be expressed as

Wy = — fOSt(thy - any)‘SYOdg (12)

The current drag force in the normal and tangential
directions are given by

1
frn =EpeDeCDn|VHn|VHn (13)

and
1
fue = ;Pe”DeCDtWHtWHt (14)

where D, is the diameter of the external fluid, Cp,, and Cp, are
the normal and tangential drag coefficients, and Vy,, and Vy,
are the current velocities in normal and tangential directions,
respectively.

The total virtual work in static equilibrium can be expressed
as:

I

T, —2 sy,
2_ 1
= [ V@) =o ds (15)

0 +w, 6y, + (any - thy)5YO

Schematic of static equilibrium and dynamic configuration
of the large-sag extensible marine cable and the dynamic
displacement from static equilibrium position to dynamic
displaced position in # and v of the Cartesian coordinate
system is illustrated in Fig. 2.
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Fig. 2 Schematic of static and dynamic configuration of marine cable

The arc-length at the stretched state (ds) can be defined by

ds = /(x; +uD? + (v, + v)2ds (16)

The total strain at displaced state (&) described in total
Lagrange descriptor can be expressed by

ds—ds ds T 7 7 [
e=——="—-1=/(xg+u)+ @y +v)2-1 (17)
and its derivative is

_ (xo+u")sur+(yp+v’)svr

oe

(18)

Jetrun e gy

D.Virtual Strain Energy Due to Axial Deformation
The variation of the axial strain energy for the marine cable

due to the stretching can be expressed by [10]
U, = [ EAe(5e)ds (19)

Substitution of (17) and (18) into (19) yields

U, = fost EA(V Gy +u)2+ (vy +v)2 —
1 (xp+u")ou' +(y+v") v’ ds (20)

J(x(')+u’)2+(y{)+u’)2

The dynamic updated Green’s strain (yy) given by
Chucheepsakul et al. [8] is
(u’2+v' 2) _
(x62+y(’,2) T (1+g9)2

1,2 1,2
“u't 4+ =v )
2 2

_ xpu'+ypv’
Ya= "7,z
Xo Yo

% (x(')u’ + yov' + 1

With the approximation using the binomial series, and the
higher order term is neglected for linearization purpose,

1 1

Tirzra 1 —é(Zyd) +%(— ;) (— z) Qy)?+=1—-v4(22)

The arc-length at the stretched state can be simplified using
(22):

Vg +u)?+ (g +v)? =

\/x(')z +ye? 4+ 20ehu +yov) +w? +v'? = J1T+ 2y4(1 + &)
(23)

The variation of the axial strain energy can be simplified by
using (22) and (23):

é,Ua — j-st EA

0 1+g,

(g0 + Ya)[(xg + u")éu' + (yy + v")sv']ds (24)

Equation (24) can be rearranged by using (21) and the
expression of tension in equilibrium state T = EAg, becomes

[ . ]
. 1+&
SU, = [ 24 xou' + yov' \ (o +u)u'ds +
+(1+80)3 Fiu? 4 2y?
2 2
T
1+&g

faS[ EA xou' +yov' \ | (o +v')6v'ds(25)
el PRSI

E. Virtual Work Due to Effective Weight and Inertia Force

The virtual work done due to effective weight and inertia
forces for the marine cable is expressed by [10].

12, 12
Xo +Yo iiSu

g(1+&g)

W, =—[Tw, ds  (26)
0 e ,z+ ’2 ,z+ 2
I RCRECHI GURECIET) P

1+gg g(1+&p)

where w, is the effective weight; w, = (p A, + pe4.C,)g and
¢, 1s the added mass coefficient, ii and ¥ are the acceleration
in x and y directions, respectively.

III. EQUATIONS OF MOTION

The total virtual work-energy is written as
SN =6U,—6W, =0 27

Substitution of (24) and (26) to (27) yields the expression of
total virtual work as follows:

T
[ 1+&g ]
£A ( xou' + ygv' )J (xg +u")ou'

S, —_—
oI = f* l+ (1+£)? +%u'2 + %v’z

N
+w, iidu

—Uu
g(1+g)

ds +
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T
1+£o

| £a xou' +yov' \|o + vV |
s to
f t (1+&p)

1,2 ,1 ,2
+-u'" +>v 5
o 2 2 ds (28)
2 2 2 2
X Yo X0 v
1+g g(1+¢p)

In order to perform the equation of motion, we applied
integration by part twice and considering the marine cable for
static equilibrium, dmr =0 and u=v=u"=v' =u"=
v'" = 0. The Euler equation in (28) in u and v directions is
reduced to

T

e X0) =0 (29)
and
T 1A
T ire, o) = 0 (30)

For the marine cable in motion, u # 0,v # 0,u’ # 0,V #
0,u"” # 0,v" # 0. The Euler equation in u and v directions
becomes

T r A
— T xuy —
1+gg ( 0 + )
r
2 1 2 1 2
[ X0 U+ xpyov’ +Ex(’)u’ + Ex(’,v’

+
Are® \ ol + ylu'v' + %u’3 + %u’v’2 G

2 2
Jxo tve

i=
g(1+&o)

We

and
T

1+g,

I A
o +v") -
[ 12y 1 /.2 1, 42

EA XoYoU tYo v +§Y0u +;Y017 +

EPRE 1 1,3 2
Qe \ pxiu'v' + yov'v' + Eu’u’v’ + Ev’ (32)

2 2 2 2
Feett e

W, v =
1+&, € g(1+gp)

e

Subtracting (29) from (31) and subtracting (30) from (32),
we obtain the equations of motion for large sag extensible
marine cable in u and v directions, respectively. This can be
written as

myuit+ f’,v") =0 (33)

and
m,¥+ g, (", v") =0 34

The linear and nonlinear stiffness matrix coefficients in (33)
and (34) can be expressed as:

2
x U + xgyov”

EA +(Bxqu’ + yovHu"
+(xv’ + you v (35)

+ (gu,z + lv’z) u" +u'v'v”
2 2
\(36)

The linear stiffness matrix can be arranged in the matrix
form as:

f (uH ,UH) — T 4+ —
1 ’ 1+g,  (1+&)?

+(xqv' + youHu"”
+QByv’ + xpu)v"”’

1,2 3,2
+u’v’u”+(5u’ +EU’ )v”

17 2.
x(’)y(’)u }(’) v
Tv'' EA

n n j—
g1 (w",v") = 1+go + (1+£0)3\

A. Linear Free Vibration

[ el kel =@ o7

where the mass of the marine cable in u# and v directions is
defined by

x62+y(',2 (3 8)

my, =m, =w,
v v ¢ g(1+eo)

The linear axial stiffness matrix of the second order
derivative is

T EAx}? EAx{y
[kuu kuv]_ T&)+(1+80)3 (1+g9)3 (39)
kpy kol EAx{yb T EAyé2
(1+¢9)3 1+gy  (1+gp)3

B. Nonlinear Free Vibration

The nonlinear free vibration of the very sag extensible
marine cable can be expressed by

m, 0 ] i kyy ko [kuu kyy
Lt +
[ 0 m, {V} ( kvu  kuy kvy Koy NL

){;‘II} = {0} (40)

The first order nonlinear axial stiffness matrix is

[kuu kuw _EBa [3xqu’ +yov' xgv' 4 you' ](41)
kv kpply,, @+e)®lxgv’ +you’  3yov' + xou’
The second order nonlinear axial stiffness matrix is
3 l2 1 l2 1A !
-u"+-v uv
[kuu kuv] — EA 2 2 ( )
kvw ko NLz  (Ateo)? u'v % /2 ; )2

IV. FINITE ELEMENT METHOD

The static equilibrium configuration is obtained using finite
element method and Newton-Raphson iterative procedure in
previous work by Punjarat and Chucheepsakul, [9], [10]. The
equation of motion is solved using the method of the Galerkin
finite element method by Cook et al. [11]. The displacement
components vector in Cartesian coordinate is written as.
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{u} =fu v}" ~ [Nl{d} (43)

where the cubic polynomial shape function matrix, [N] at the
displaced state is

[Ny N, O O N; N, O O
M=o 0 N 5 o 0 N N4] “4)
and the generalized coordinate of nodal displacement is
d={u, vy v, vy u v, v, V)7 (45)

A. Linear Free Vibration Solution

Equation (37) can be written in the form of matrix
following the Galerkin finite element method as:

syt (fr [T | viastay +

S [ ] viasta) = ()

2%

(46)

where j is the element number and [N'] and [N"] is the
derivative of cubic polynomial shape function.

The finite element equation of the global system for free
vibration can be expressed by

[M]{D} + [K,]{D} = {0} (47)
where {D} and {D} are the acceleration and displacement

vectors, respectively can be obtained by assembling the
element acceleration and displacements, therefore

{D} = Xj<r™{d} (48a)

and

{D} = Zjerm{a} (48b)
The global mass matrices [M] is defined by
[M] = X} [m] (49)
where [m] is the element mass matrix which given by
[m] = f,Om. + COINIT [} 9] (N1 (50)

where m. and C,; are the mass of the marine cable and the
external fluid including the added mass coefficient,
respectively. The linear global stiffness matrices [K;] is

(K] = Z)i™ k] (51

where [k, ] is the element linear stiffness matrix

w2

. 1+&g 0 T B
[k,] = fo EA nr x62 X0Y0 | v ds (52)
s IN 2 | [N']
(1+€0) XYy Yo

Using standard procedure of the Galerkin finite element
method, (47) leads to the eigenvalue problem as:

([K.] - 0 [M]){D} = {0} (53)

where w; represents the natural frequency of vibration and {D}
is the corresponding mode shapes in the Cartesian coordinate.

B. Nonlinear Free Vibration Solution

For the nonlinear free vibration, the equation of motion can
be written as

[MI{D} + ([K,] + [Kn,D{D} = {0} (54)
where the nonlinear axial stiffness matrix is.
[Ky.] = [ky,] + [K3.] (55)
in which the first order nonlinear axial stiffness matrix is

xoV + you'
3yov' + xqu

11_ (l EA ar [3xou” + yov' ] o
) = fy e T 0 e | vas(se)
and the second order nonlinear axial stiffness matrix is

3.2 +11}’2 uv
l EA ’ M A=
kbl = Jy e N1 2 s 2 12| [N1dSGT)

7

uv
2 2

Using standard procedure of the Galerkin finite element
method, (54) leads to the eigenvalue problem as:

((KL] + [Kyi]) — w?[M])(D} = {0) (58)

where w; represents the natural frequency of vibration and {D}
is the corresponding mode shapes in the Cartesian coordinate.

The nonlinear equation of motion shown in (58) is time-
dependent; a time-independent nonlinear eigenvalue problem
can be obtained by substituting a certain properties of the time
function at the point of the maximum amplitude or at the
reversal point of the motion. The eigenvalue problem is
obtained by assuming the dynamic displacement value and
substituting the characteristic of the time function as an instant
with harmonic function [12].

{D}, .. =~ {D}max (59)

where w; is the natural frequencies of the marine cable and
{D}ax represents the dynamic displacement at the nodal
point of maximum amplitude [10].

Substitution of (59) to (54) yields the equation of motion for
large amplitude free vibration with time independent as:

(KL + [Kye]) — 0F [M]){D s = (0) (60)

The relationship between the dynamic displacements of the
marine cable at the point of maximum amplitude in (60) and
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the vibration mode shape can be expressed by

{D}max = a{Vn} (61)

where a represents the maximum amplitude of vibration and
{V,.} for the normalized corresponding mode shapes.

V.NUMERICAL RESULTS

A. Natural Frequency Spectrum of Marine Cable

This section presents the study of the natural frequency
spectrum for the cable, where the dimensionless frequencies
(Q) are plotted against the cable parameter (42) which is
proposed by Irvine and Caughey [1] for the cable with the
support at the same elevation and sag value is relatively small,
Triantafyllou and Grinfogel [2] proposed the cable parameter
for the cable with the inclined support. The following
dimensionless quantities are employed.

The cable parameter, A2

2 = (W)’ (L) cos?
A= ( Ta ) Ly (TaLe) c0s"¢a (62)
The dimensionless natural frequency, Q

wiLe ﬂ

Q= (63)

T T

where w is weight of cable (N/m), T, is the static cable tension
(N) at ¢ = ¢, ¢, is the angle of cable chord inclination
(radian), E is the Elastic modulus of cable (N/m?), A is the
cross-sectional area of cable (m?), L, is the horizontal span
length (m), L, is the stretched cable length (m), w; is the
natural frequency (radian/second), M is the total mass of cable
per unit length (kg/m).

In this study, the cable with support at the same elevation is
investigated for the natural frequency spectrum. The various
top horizontal tensions from large to small value are applied to
the free-sliding roller support. The cable length and the cable
diameter are 869.42 m and 0.023 m, respectively. The cable
unit weight is 9.48 N/m and the elastic modulus is varying
from 1.794x10° kN/m” to 1.794x10° kN/m’.

The natural frequency spectrum of the cable with the
support at the same elevation is plotted between the cable
parameter (A/m) and the dimensionless frequency parameter
(Q2/m) for the first eight mode shapes in Figs. 3-6. The small
values of cable parameter correspond to a small sag and the
large values of cable parameter correspond to a large-sag
cable. The cable tends to change vibration behaviors for the
top horizontal tension of 4 N, the plotted reverses back when
top horizontal tension lower than 4 N which gives the very
large sag cable, this illustrated the occurrence of two
frequencies for the same cable parameters of very large-sag
cable but the mode shapes are different.

E = 1.794x10° kN/m?
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16.0
14.0
12.0

W/m10.0

8.0
6.0
4.0
2.0
0.0

0.0 3.0 6.0 9.0 12.0 15.0

Fig. 3 Natural frequency spectrum of cable with elastic modulus, £ =
1.794 x 10° kN/m’

E =1.794x107 kKN/m?
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Fig. 4 Natural frequency spectrum of cable with elastic modulus, £ =
1.794 x 107 kN/m’
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Fig. 5 Natural frequency spectrum of cable with elastic modulus, E =
1.794x10® kN/m”

B. Large Amplitude Free Vibration Behavior

In order to demonstrate the effect of the extensibility on the
nonlinear free vibration of the marine cable, the numerical
investigation is carried out with the input parameters remain
the same as natural frequency spectrum; except the current
velocity of 1.0 m/s and the added mass coefficient of 1.0 are
added.

684



20.0
18.0
16.0
14.0
12.0
Q/n 10.0
8.0
6.0
4.0
2.0
0.0

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734
Vol:13, No:11, 2019

E = 1.794x10° kN/m?
Mode 7
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Fig. 6 Natural frequency spectrum of cable with elastic modulus, E =

1.794 x 10° kN/m?

The effect of top horizontal tension on the relation between

nonlinear frequency ratios (wy,/w;)? and amplitude of
vibration (a/r) for cable supports at the same level and
specified elastic modulus, E = 1.794x10” kN/m?, 1.794x10°
KN/, 1.794x10° kN/m?, and 1.794x10'® kN/m? are plotted in
Figs. 7 (a)-(d), respectively. The nonlinear frequency in these
figures showed a softening type for all value of elastic
modulus and the degree of softening increased as the top
horizontal tension value decreased.

The nonlinear behavior of the marine cable with support at

different level of 300 m exhibits the hardening type for lower
elastic modulus value of 1.794x10” kN/m? and 1.794x10®
kN/n?, and a softening type for the elastic modulus value of
1.794x10” kN/m”and 1.794x10'"° kN/m’.
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Fig. 7 Effect of top horizontal tension on the relation between nonlinear frequency ratios (wy; /w;)? and amplitude of vibration (a/r) for cable
supports at the same level and specified elastic modulus, E = 1.794 x 107 kN/m? to E = 1.794 x 10" kN/m’
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Fig. 8 Effect of top horizontal tension on the relation between nonlinear frequency ratios (wy, /w;)? and amplitude of vibration (a/r) for cable
supports at different level, 300 m and specified elastic modulus, E = 1.794x10” kN/m? to E = 1.794x10"" kN/m?

VI. CONCLUSION

The model formulation based on the variational approach
for large amplitude free vibration of a very sag extensible
marine cable had been proposed. In the formulation, the arc-
length coordinate adopted from the Lagrangian description
was used as the independent variable. The total virtual work
for the extensible marine cable in two dimensions was
formulated, the linear and nonlinear stiffness matrices, and
mass matrices were obtained. The eigenvalue problem of the
linear and nonlinear free vibration analysis was solved by the
inverse iteration method and the direct iteration method,
respectively.

The natural frequency spectrum of the cable with the
support at the same elevation was plotted between the cable
parameter (A/m) and the dimensionless frequency parameter
(Q/m) for the first eight mode shapes and illustrated that the
small cable parameter corresponded to a small sag cable,
while the large cable parameter corresponded to a very-large-
sag cable. The cable had a tendency to change vibration
behaviors for the low value of top horizontal tension, the
natural frequencies spectrum reverses back and illustrated the

occurrence of two frequencies parameter for the same cable
parameters. The simple case of the large amplitude free
vibration of the very sag extensible marine cable were
presented and shown the hardening type for lower elastic
modulus value and a softening type for the higher value of the
elastic modulus.
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