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Abstract—In this work we adopt a combination of Laplace 

transform and the decomposition method to find numerical solutions 

of a system of multi-pantograph equations. The procedure leads to a 

rapid convergence of the series to the exact solution after computing a 

few terms. The effectiveness of the method is demonstrated in some 

examples by obtaining the exact solution and in others by computing 

the absolute error which decreases as the number of terms of the series 

increases. 
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I. INTRODUCTION 

HE general pantograph equation given by 

( ) ( ) ( ) ( ) ( )( ) 0,,...,,...,, 11 ≥= −− tqtuqtutututftu nnn
 

for 10 << q is a very important type of delay differential 

equation. It arises in many scientific models such as 

electrodynamics, population studies, number theory and 

dynamical systems. Ockendon and Tayler, 1971 [8] introduced 

the concept of pantograph equation in their bid to determine the 

motion of a pantograph head on an electric locomotive which is 

collecting current from an overhead trolley wire. Since then, 

pantograph equations have been the subject of investigation by 

researchers.  

M.Z. Liu and D. Li [7] proved the existence and uniqueness 

of the analytic solution of the multi-pantograph equation. They 

constructed the Direchlet series solution and obtained the 

sufficient condition for the asymptotic stability of the analytic 

solution obtained.  

Derfel and Isreales [4] addressed the existence and 

uniqueness of solutions of the pantograph equations and their 

asymptotic behavior.  

Abazari and Abazari [1] presented and proved the theorems, 

in one-dimensional differential transform method, for solving 

nonlinear higher order multi-pantograph equations.  

Buhmann and Isreles [3] investigated the stability of 

discretized pantograph differential equation by analyzing the 

numerical solution of the trapezoidal rule discretizations.  
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Our interest in this work is to adopt a combination of Laplace 

transform and the decomposition methods to find numerical 

solutions of a system of multi-pantograph equations. We shall 

also seek to demonstrate the effectiveness of the method in 

approximating solutions of multi-pantograph equations. S. A. 

Khuri, 2001[6] was the first to introduce this numerical Laplace 

transform algorithm which is based on the decomposition 

method. He [5] applied the algorithm to obtain approximate 

solutions of a class of nonlinear differential equations. 

II. LAPLACE DECOMPOSITION ALGORITHM (LDA) 

We illustrate the LDA by considering the following linear 

system: 

 

                       
)()()( tfNuRutu m ++=

                           (1)                            

 

whose initial conditions are   

 

,)0()(

k

ku λ=   1,..,2,1,0 −= mk                    (2)                                                         

 

R  and N are linear operators of order less than m and )(tf

is an analytic function. 

Taking the Laplace transform ( L ) of both sides of (1) gives 

 

( )[ ] ( )( ) ( )[ ]tfNuRuLustuLs
m

k
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−
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where ( )0ku is the k th derivative of u at 0=t and 

( ) ( )000 uu = . 

Substituting the initial conditions (2) in (3) and rearranging 

terms we have  

 

( )[ ] =tuLsm ( ) ( )[ ]tfNuRuLs
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Thus    

( ) ( ) [ ]NuRuLsLtHtu m ++= −−1
                  (4)                     

 

where 
1−L  is the inverse Laplace transform and  
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Khuri [6] proposed that )(tu  be decomposed (as in the 

Adomian decomposition algorithm) as 

 

                 
∑

∞

=

=
0

)()(
n

n tutu

                              (5) 

 

Ru and  Nu   are also decomposed as  

 

)(tRu = ∑
∞

=0n

nA  and  ∑
∞

=

=
0

)(
n

nBtNu                (6)                             

 

where  nA  and  nB  are the Adomain polynomials. 

Putting (5) and (6) in (4) we obtain 
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From (7) we take     

 

)()(0 tHtu =                                  (8)                                                     

 

as our first approximation and obtained higher iterates from the 

recurrence relation   

 

[ ]∑
∞

=

−
+ +=

0

1

1 )(
n

nn

m

n BALsLtu  , for 0≥n              (9) 

 

Substituting (8) and (9) in (5) gives the solution to (1) as  

 

 
..........)( 3210 ++++= uuuutu

               (10) 

III. EXAMPLES  

A. Example 1 

 Consider the first order multi-pantograph equation  

 

( ) ( )tututu −






−=′
5

4
,     ( ) 10 =u  ， 10 ≤≤ t       (11)                                                                                                                                                                                                     

 

Taking the Laplace transform gives 
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Substituting the boundary condition in (11) and taking the 

inverse Laplace transform of both sides, after dividing through 

by s , we obtain 

 

   ( )







+







−= −− tutuLsLtu
5

4
1)( 11               (12)                                                                 

 

Using (5) in (12) gives  
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Thus, our first approximation to ( )tu  is given by ( ) 10 =tu . 

And, from (9), higher iterates can be obtained from the 

recurrence relation 
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n

u
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
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We thus obtain the first few iterates of (14) as  

 

 

tu 21 −= ; 
2

2
5

9
tu = ; 

3

125

123
3 tu −= ; 

4

4
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23247
tu = ; 

5

5
195312500
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6
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7

7
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tu −= ; ……………….      (15) 

 

Now ( ) ( )∑=
∞

=0n

tnutu  yields  
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.....+                                                                                       (16) 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1159

 

It is interesting to note that an Adomian decomposition 

solution of (11) produces the same series as in (

the advantage of our method is that it does not require separate 

calculation of the Adomian polynomials. 

COMPARISON

t  
Exact Solution  

te  

Adomian Decomposition 

=n

0.0 1.00 0.00

0.2 1.221402758 0.00

0.4 1.491824698 2.22E

0.6 1.822118800 2.22E

0.8 2.225540928 1.33E

1.0 2.718281828 4.88E

 

B. Example 2 

Consider the first order multi-pantograph equation
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With the boundary condition 

 

( ) 10 =u      

 

By the procedure outlined in Section II 
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from which we obtain  
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It is interesting to note that an Adomian decomposition 

1) produces the same series as in (16). However, 

the advantage of our method is that it does not require separate 

Fig. 1 LDA solution o
 

TABLE I 
OMPARISON OF ABSOLUTE ERRORS BETWEEN SOLUTIONS OF (17) 

Adomian Decomposition (

14 ) 

Taylor Series Method 

[9] ( 8=n ) 

LDA Method

3=n  n

0.00 0.00 0.00 0.00

0.00 1.440E-12 1.8677E-5 3.93E

2.22E-6 7.524E-10 3.18037E-4 1.3334E

2.22E-16 2.953E-8 1.716236E-3 1.07176E

1.33E-15 4.018E-7 5.79128E-3 4.78701E

4.88E-15 3.059E-6 1.5120803E-2 1.550635E

pantograph equation 

10 ≤≤ t             (17)                                                                       

                               (18)                                                                                                             

 we have 
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C.  Example 3 

Consider the first order multi

 

( ) ( ) tututu
4

1

8

1


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with boundary condition    

 

( )0u

 

After computing the first seven iterates of 

outlined procedure in Section 

 

( ) =tu
2

611730616735
 - −

3

805306368

97035239

393216

5640047

1024

56203
t +++

 

Fig. 1 LDA solution of (11)

LDA Method 

4=  8=n  

0.00 0.00 

3.93E-7 1.3560E-14 

1.3334E-5 1.19713E-12 

1.07176E-4 2.87045E-10 

4.78701E-4 3.969202E-9 

1.550635E-3 3.072836E-8 
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               (19)                                                                                      

Consider the first order multi-pantograph equation  

t

et 4

1

8

1 −
−




 ， 10 ≤≤ t       (20)                                                                               

) 1=                                        (21)                                                                    

After computing the first seven iterates of ( )tu   by the 

Section II we have 

2

1024

4619279
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3208246337208

72863002541
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tt +  
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Equation (23) and its boundary conditions have the exact 

solution    ( ) tetu −= . In Fig. 2 below we present the absolute 

error  ∑
=

−=
n

i

nuuE
0

 for various values of

 

Fig. 2 Absolute error = ∑
=

−
n

i

u

 

We observe that the absolute error decreases sharply as we 

increase the number of iterates. Thus a few iterates 

high degree of accuracy.  

D. Example 4 

Consider the second order multi-pantograph equation 

( ) ( )

( ) ( ) ,000

,2
2

1

4

3 2

=′=

+−
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The first few iterates of the series solution of (

 

 

t
4

1
−

 

t

t

16384
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1024
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−

−

  (22) 

) and its boundary conditions have the exact 

we present the absolute 

for various values ofn . 

 

∑
=

n

nu
0

 

We observe that the absolute error decreases sharply as we 

Thus a few iterates guarantee a 

tograph equation  

                                                    

       10 ≤≤ t      (23) 

The first few iterates of the series solution of (24) are  

2949120
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From (24) we observe the presence of terms of equal 

magnitude but opposite signs between consecutive iterates. 

This phenomenon, so called “noise terms” [2], when present in 

a series solution leads to rapid convergence to the exact 

solution of the differential equation.

We thus have 

 

( ) 10 ++= uutu

 

This gives ( ) 2ttu = , the exact solution of (

E. Example 5 

Consider the third order multi

 

( ) ( )
10




 −−−=′′′ tututu

                        ( ) (0,10 ′= uu

                                                                                                  

Equation (25) has an exact solution given by 

 

                   ( ) etu =
 

In the table that follows we present the absolute error 

( ) ( )∑
=

−
n

i

n tutu
0

 incurred by LDA solution of (

computing a few iterates.           
  

,8t

 

,...
4758348800

,
7664009184358065

13505947

,
06794772480

17563

14

12

12

10

t

t

t

t

    (24) 

the presence of terms of equal 

magnitude but opposite signs between consecutive iterates. 

This phenomenon, so called “noise terms” [2], when present in 

a series solution leads to rapid convergence to the exact 

uation. 

..............32 ++ uu . 

, the exact solution of (23). 

Consider the third order multi-pantograph equation  

10

3

10

3 +−
+



 t

e  ,       10 ≤≤ t  

) ( ) 10,10 =′′−= u                   (25) 

                                                                                                  

) has an exact solution given by  

t−
                                           (26)   

In the table that follows we present the absolute error 

incurred by LDA solution of (25) after 

computing a few iterates.            
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TABLE II 

ABSOLUTE ERRORS OF ∑
=

n

i

nu
0

t  
ABSOLUTE ERROR 

1=n                     2=n                     

0.0 0.00 0.00 

0.2 9.1268E-6 8.36E-8 

0.4 3.72647E-5 4.099E-7 

0.6 1.82083E-5 8.032E-7 

0.8 5.820844E-4 1.11145E-6 

1.0 2.824549E-3 3.5468E-6 

 

Our computations shown in the table above indicate that the 

error incurred by our approximation method decreases as the 

number of iterates increases. With n=3 w

largest error is of order
810 −

, thus implying a high degree of 

accuracy. 

F. Example 6 

Consider the third order multi-pantograph equation 

( ) ( ) ( )

( ) ( ) ( ) 10,10,10

cos2cos
2

1

−=′′=′=

++
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After computing the first three iterates, using the LDA, we 

obtain the approximate solution  
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                             3=n  

0.00 

5.00E-10 

5.31E-9 

1.11E-8 

1.88E-9 

6.607144E-9 

Our computations shown in the table above indicate that the 

error incurred by our approximation method decreases as the 

number of iterates increases. With n=3 we observe that the 

ing a high degree of 

pantograph equation  

                        

10,
2

1
cos ≤≤








tt

  (27) 

ree iterates, using the LDA, we 

)

) ( )

( )t

t

t

tt

t

tt
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1
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
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
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−

 

( 9240
2588672

1
−+

                                                                                                                             

By using inbuilt functions of Maple 13 it is easily verified 

that (28) satisfies the boundary 

( ) ,10 =′u  and ( ) 10 −=′′u  

Fig. 3 LDA approximation s

Fig. 4 LDA approximation s

IV. CONCLUSION

In this piece of work we adopted a combination of the 

Laplace Transform method and the Adomian decomposition 

algorithm, which do not require separate calculation of 

Adomian polynomials, to determine the solutions of a system 

of multi-pantograph equations.  We have 

shown in Fig. 2, Tables I and 

series are needed to get a close approximation to the exact 

solution. Our accuracy in approximating the solution increases 

with the number of iterates. The result shows (see example 4) 

that it is possible to determine the exact solution, by LDA,

) ( )ttt 8sin102497 2++     (28) 

                                                                                                                             

By using inbuilt functions of Maple 13 it is easily verified 

) satisfies the boundary conditions ( ) ,10 =u

 

 

 

solution of ( )tu for 10 ≤≤ t  

 

 

solution of ( )tu  for 10 ≤≤ t  

ONCLUSION 

In this piece of work we adopted a combination of the 

and the Adomian decomposition 

algorithm, which do not require separate calculation of 

Adomian polynomials, to determine the solutions of a system 

pantograph equations.  We have demonstrated, as 

and II, that only a few terms of the 

series are needed to get a close approximation to the exact 

solution. Our accuracy in approximating the solution increases 

with the number of iterates. The result shows (see example 4) 

that it is possible to determine the exact solution, by LDA, for 
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multi-pantograph equations that exhibit the “noise term 

phenomenon”. For the same number of series terms LAD gives 

a better approximation to the solution than Taylor method (see 

Table I). Our findings have thrown more light to understanding 

and use of the Adomain decomposition algorithm method. Figs. 

1, 3 and 4 show graphical solutions of some of the problems 

investigated.  

The advantages of the LDA are as follows: 

• The iterates can be easily calculated using inbuilt functions 

in any mathematical software; 

• The series solution rapidly converges to the exact solution 

after a few iterates; 

• It does not require discretization, perturbation, 

linearization or any modeling assumptions. 

• We thus conclude that the LDA is a useful tool in 

determining solutions of multi-pantograph equations. 
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