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Laplace Decomposition Approximation Solution
for a System of Multi-Pantograph Equations
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Abstract—In this work we adopt a combination of Laplace
transform and the decomposition method to find numerical solutions
of a system of multi-pantograph equations. The procedure leads to a
rapid convergence of the series to the exact solution after computing a
few terms. The effectiveness of the method is demonstrated in some
examples by obtaining the exact solution and in others by computing
the absolute error which decreases as the number of terms of the series
increases.
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1. INTRODUCTION

THE general  pantograph  equation  given by
u'(t)= f(t,u”’1 (t ooy at )™ (qt),...u(qt)),t >0

for 0 < g <lis a very important type of delay differential

equation. It arises in many scientific models such as
electrodynamics, population studies, number theory and
dynamical systems. Ockendon and Tayler, 1971 [8] introduced
the concept of pantograph equation in their bid to determine the
motion of a pantograph head on an electric locomotive which is
collecting current from an overhead trolley wire. Since then,
pantograph equations have been the subject of investigation by
researchers.

M.Z. Liu and D. Li [7] proved the existence and uniqueness
of the analytic solution of the multi-pantograph equation. They
constructed the Direchlet series solution and obtained the
sufficient condition for the asymptotic stability of the analytic
solution obtained.

Derfel and Isreales [4] addressed the existence and
uniqueness of solutions of the pantograph equations and their
asymptotic behavior.

Abazari and Abazari [1] presented and proved the theorems,
in one-dimensional differential transform method, for solving
nonlinear higher order multi-pantograph equations.

Buhmann and Isreles [3] investigated the stability of
discretized pantograph differential equation by analyzing the
numerical solution of the trapezoidal rule discretizations.
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Our interest in this work is to adopt a combination of Laplace
transform and the decomposition methods to find numerical
solutions of a system of multi-pantograph equations. We shall
also seek to demonstrate the effectiveness of the method in
approximating solutions of multi-pantograph equations. S. A.
Khuri, 2001[6] was the first to introduce this numerical Laplace
transform algorithm which is based on the decomposition
method. He [5] applied the algorithm to obtain approximate
solutions of a class of nonlinear differential equations.

I1. LAPLACE DECOMPOSITION ALGORITHM (LDA)

We illustrate the LDA by considering the following linear
system:

u™ (t)=Ru+ Nu+ f(t) (1

whose initial conditions are
u0)=2,, k=012,,m-1 Q)

R and N are linear operators of order less than m1 and f'(¢)
is an analytic function.
Taking the Laplace transform ( L) of both sides of (1) gives

m—1

s" L[u(z)]- ;(sm’l’kuk(O))z L[Ru+ Nu+ f(t)] 3)

where u* (0) is the & th derivative of U at ¢ = 0 and

u’ (O) = u(O)
Substituting the initial conditions (2) in (3) and rearranging
terms we have

-1

3

(sm_l_k/ik )+ L[Ru + Nu+ f(1)]

0

s"L[ule)]=

=~
Il

Thus
u(t)= H(t)+L"s " L[Ru + Nu] @)

where L' is the inverse Laplace transform and
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H(@)=L" [Zl A, )} + L's™I[f )]

Khuri [6] proposed that u(t ) be decomposed (as in the
Adomian decomposition algorithm) as

u(t)=>u, (1)

)
Ruand Nu are also decomposed as
Ru(t)=) A, and Nu(t)=) B, ()
n=0 n=0

where A, and B, are the Adomain polynomials.
Putting (5) and (6) in (4) we obtain

iu”(z‘) =H(t)+L*1s'”Li[An +B,]
n=0 n=0
From (7) we take

u,(t) = H(1) (8)

as our first approximation and obtained higher iterates from the
recurrence relation

Uy (t) = LilsmLi [An + Bn] B for n > 0 (9)
n=0

Substituting (8) and (9) in (5) gives the solution to (1) as

u(t) =y +u, +u, + Uy + o, )

III. EXAMPLES
A. Example 1

Consider the first order multi-pantograph equation

u'(t)z—uth—u(t), u(0)=1,0<s<1 (1)
Taking the Laplace transform gives

SLMTO}440)=—4P(:J+u¢ﬂ

Substituting the boundary condition in (11) and taking the
inverse Laplace transform of both sides, after dividing through
by s, we obtain

u(t) =1 —L-ls-lLH:t) + u(t)}

Using (5) in (12) gives

(12)

u(t) = iun ()=1-L"s" 'Li{un(:t)+ u, (t)} (13)

n=0

Thus, our first approximation to u(t ) is given by 14, (t ) =1.

And, from (9), higher iterates can be obtained from the
recurrence relation

un+1(t) = L'1S—1L|:un(:tj+un(t):|, n=0 (14)

We thus obtain the first few iterates of (14) as

u, =-2t; u, =2t2; U, =—£t3; u, =wt4;
5 125 62500
L __ 20480607 = 28324679481
> 195312500 1220703125000
79798714863543
u, =— L (15)
19073486328125000

Now u(t) = iun (t) yields
n=0

ul1)-

9 , 123, 23247 , 20480607 .
L-2t+—t"——1'+ = t
5 125 62500 195312500
28324679481 Kt 79798714863543 ;7
+ —
1220703125000 19073486328125000

7541696743038585387 8

11920928955078125000000
382247547555691572079923 9

4656612873077392578125000000
846781142426149313189918944287 0

90949470177292823791503906250000000

_I_

(16)
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It is interesting to note that an Adomian decomposition
solution of (11) produces the same series as in (16). However,
the advantage of our method is that it does not require separate
calculation of the Adomian polynomials.

1.0
[ =Ry
0=
O.F
0.5
ze OS5 N
D,-:‘l;
o= -

o= -

Fig. 1 LDA solution of (11)

TABLE I
COMPARISON OF ABSOLUTE ERRORS BETWEEN SOLUTIONS OF (17)

P Exact Solution Adomian Decomposition ( Taylor Series Method LDA Method
e’ n=14) 01(n=8) n=3 n=4 n=8
0.0 1.00 0.00 0.00 0.00 0.00 0.00
0.2 1221402758 0.00 1.440E-12 1.8677E-5 3.93E-7 1.3560E-14
0.4 1.491824698 2.22E-6 7.524E-10 3.18037E-4 1.3334E-5 1.19713E-12
0.6 1.822118800 2.22E-16 2.953E-8 1.716236E-3 1.07176E-4 2.87045E-10
0.8 2.225540928 1.33E-15 4.018E-7 5.79128E-3 4.78701E-4 3.969202E-9
1.0 2.718281828 4.88E-15 3.059E-6 1.5120803E-2  1.550635E-3 3.072836E-8
B. Example 2 Now
Consider the first order multi-pantograph equation
-187 17 1 1
AN (t)=(2520_168 48 2+384[3j
u’(t)z—ezu(—j+—u(t), 0<¢<1 (17)
2 2) 2 -5 1 41 , 1 ) &
56 s Tt Tt S
With the boundary condition
11 1 ,) 3 (4 1 V4L 64 o
H =+ —t+—t |e* +| -+—t|ed +——e'® +..........
u(O)zl (18) 24 12 192 7 42 315
19)
By the procedure outlined in Section II we have C. Example 3
| Consider the first order multi-pantograph equation
| R >t t
u, =1, u, = EL 's 1L{e2 un(EJ-i—u”(t)} e .
—t
w'(t)=—u(t)+-ul 1 |-—e * , 0511 (3
8 \4 8
from which we obtain
with boundary condition
1
u, =—1+—t+e*;
2 u(0)=1 1)
3 1 1
u, = L +(£—lje2t +(—5—1t+it2je2t;
6 2 8 3 4 2 128 32 After computing the first seven iterates of u(t ) by the
1 1 1 % 3 ' ' '
L LIELIP L I outlined procedure in Section II we have
28 12 8 4 21 2
3 7 173061673561 192913 4619279
=B L, L L, L Sy 45 ult)= - - 1+ =
2520 56 48 48 384 8 21 2 16 1024
L 64 = , 56203 5640047 , 97035239 , 28630025417
+—ted +——e!® +—t7e* + + "+ t+ t
42 315 192 1024 393216 805306368 8246337208320

1
+——(~ 464280 =422 + 703 e s
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9830069233523 ;5461 -
16888498602639360 2

1 1
—1498021e '* +198557480e *

1 1
-6862251264¢ 26 +70127353856¢ 10
1

—251809234944e 9%+ 274877906944¢ 1%

(22)

Equation (23) and its boundary conditions have the exact

solution u(l‘ ) = e’ . In Fig. 2 below we present the absolute

n
w3,

i=0

error E = for various values of 71 .

Fig. 2 Absolute error =

n
Y,
i=0

We observe that the absolute error decreases sharply as we
increase the number of iterates. Thus a few iterates guarantee a
high degree of accuracy.

D.Example 4
Consider the second order multi-pantograph equation

W)= %u(t)w(%tj_ﬁ 2,

u(0)=u'(0)=0,

0<t<1 (3

The first few iterates of the series solution of (24) are

1
uy =1> ——1*,
0 12
1, 13
u, =—t* ————1°,
12 5760

~57600 2949120
Lo 91 17563
72949120 67947724800
Lo 17563 13505947 2

Y 67947724800 9184358065766400 (5
13505947 2

u. =
* 9184358065766400
45685441 4

© 75238261274758348800

b

geee

From (24) we observe the presence of terms of equal
magnitude but opposite signs between consecutive iterates.
This phenomenon, so called “noise terms” [2], when present in
a series solution leads to rapid convergence to the exact
solution of the differential equation.

We thus have

u(t)=u0+ul+u2+u3+ ...............

This gives u(t ) =1 , the exact solution of (23).

E. Example 5
Consider the third order multi-pantograph equation

u”@)z—u@)—u&—q%j+etﬂz, 0<r<l1
u(0)=1,u'(0)=-1,u"(0)=1 (25)
Equation (25) has an exact solution given by
ult)=e (26)

In the table that follows we present the absolute error

u(t)—Zun (t* incurred by LDA solution of (25) after
i=0

computing a few iterates.
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TABLE II

n
ABSOLUTE ERRORS OF z un (t)
i=0

ABSOLUTE ERROR

t n=1 n=2 n=3
0.0 0.00 0.00 0.00

02 9.1268E-6 8.36E-8 5.00E-10
0.4 3.72647E-5 4.099E-7 5.31E-9
0.6 1.82083E-5 8.032E-7 1.11E-8
0.8 5.820844E-4 1.11145E-6 1.88E-9
1.0 2.824549E-3 3.5468E-6 6.607144E-9

Our computations shown in the table above indicate that the
error incurred by our approximation method decreases as the
number of iterates increases. With n=3 we observe that the

largest error is of order |0, thus implying a high degree of
accuracy.

F. Example 6
Consider the third order multi-pantograph equation

" o li 1 1
u"(t)=tu"(t)-u [th +cos(2¢)+ cos(zt),o <t<l o
u(0)=1,4'(0)=1,u"(0)= -1

After computing the first three iterates, using the LDA, we
obtain the approximate solution

fzu O)_H_4529685251_1283944099t

Lt 262144 40448
51094259 , 1895 , 1195 , 1083 .

t+ t + t - t
8192 24 384 1280

1687 , 587 I

— t + t — t
4608 92160 5160960

+6528 cos[%tj +(-167 + 1056t)sinezj +
1 (1
10752 cos(— tj +262144 s1n(—tj
4 8
9 )
+(—t+48tjc0st —160sin¢
32

9
——(11+18432 2
+1024( +1843 Ot)cos( t)

—kT%g(—156673—%8t+102912t2%ﬁn(2ﬂ

21 65 .
+ 3 tcos(4t)— 2048 sin(4¢)
1

+———————(237 + 64768¢)cos(8¢)
20709376

1

—_—_— | — 2 1
+ 2588672( 9240 +97¢ +1024¢ )sm(8t) (28)

By using inbuilt functions of Maple 13 it is easily verified
that (28) satisfies the boundary conditions u(O) =1,

u'(0)=1, and u"(0)= -1

u T T, T T 1
N7 04A & O 1
02 D4 Mla 0B 1
o
€ *
i ¢_
=20 =
-
-
-100 4 =
LIFh =
r)
-
4 £
— 1o =
=
- Ziid .
=

|

F:

|

[
bt -]
P

LS

Fig. 4 LDA approximation solution of 2 (t ) for 0 <t <1

IV. CONCLUSION

In this piece of work we adopted a combination of the
Laplace Transform method and the Adomian decomposition
algorithm, which do not require separate calculation of
Adomian polynomials, to determine the solutions of a system
of multi-pantograph equations. We have demonstrated, as
shown in Fig. 2, Tables I and II, that only a few terms of the
series are needed to get a close approximation to the exact
solution. Our accuracy in approximating the solution increases
with the number of iterates. The result shows (see example 4)
that it is possible to determine the exact solution, by LDA, for

1161



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:7, 2013

multi-pantograph equations that exhibit the “noise term
phenomenon”. For the same number of series terms LAD gives
a better approximation to the solution than Taylor method (see
Table I). Our findings have thrown more light to understanding
and use of the Adomain decomposition algorithm method. Figs.
1, 3 and 4 show graphical solutions of some of the problems
investigated.
The advantages of the LDA are as follows:
e The iterates can be easily calculated using inbuilt functions
in any mathematical software;
e The series solution rapidly converges to the exact solution
after a few iterates;
e It does not require discretization, perturbation,
linearization or any modeling assumptions.
e We thus conclude that the LDA is a useful tool in
determining solutions of multi-pantograph equations.
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