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Abstract—Our aim in this piece of work is to demonstrate the 
power of the Laplace Adomian decomposition method (LADM) in 
approximating the solutions of nonlinear differential equations 
governing the two-dimensional viscous flow induced by a shrinking 
sheet. 
 

Keywords—Adomian polynomials, Laplace Adomian 
decomposition method, Padé Approximant, Shrinking sheet.  

I. INTRODUCTION 
HE flow induced by a shrinking sheet is such that the 
velocity at the boundary is towards a fixed point. This flow, 

about which very little is known, has been the subject of 
investigation by researchers in recent times. C. Y. Wang 
discussed the Stagnation flow towards a shrinking sheet [1]. M. 
Miklavcic and C. Y. Wang investigated the properties of the 
flow due to a shrinking sheet with suction [2]. Noor and Ishak 
investigated MHD flow and heat transfer adjacent to permeable 
shrinking sheet embedded in a porous medium [3]. Naeem 
Faraz, Yasir Khan and Ahmet Yildirim applied the variational 
iteration algorithm in finding an analytic solution to a 
two-dimensional viscous flow with shrinking sheet [4].   In this 
work, we shall apply the LADM to the shrinking sheet problem 
investigated by Naeem Faraz, Yasir Khan and Ahmet Yildirim 
and compare results to demonstrate its effectiveness [4].   

The LADM has been successfully applied by researchers to 
find reliable approximate solutions to nonlinear partial 
differential equations, see [5]-[6]-[7]-[8].  

II. EQUATIONS GOVERNING THE MOTION 
We consider the continuity equation and the Navier- Stokes 

equation for a compressible steady state fluid flow 
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with Cartesian forms given by: 
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u , v and w  are the components of velocity in the x , y  and 
z  directions respectively, p  is the pressure, ρ  is the density 

and 
ρ
μυ =  is the kinematic viscosity. 

The boundary conditions for the flow are: 
                  

( )
∞→∞→

=−=−−=−=
y     as   u 

0,,1, yWwymavaxu
                      (6)                   

 
a is a shrinking constant and W  is the velocity of suction.          

Consider the similarity transformations 

( ) ( ) ( ) zayfmavaxfu
υ

ηηη =−−== ,1, //                  (7) 

 
Substituting these expressions in (2) and integrating gives      
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( )ηυ faamw −=                                                               (8)  
 

Substituting (7) and (8) in (5) and integrating gives 
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where C is a constant of integration.  

From (9) it is clear that p is a function of z only and so 
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 So     
                                       

( ) ( )( ) ( ) ( )ηηηη //2//// fmfff −=                               (11) 
 

Substituting in (4) gives the same result as in (11).       
By considering our similarity transformations in (7) and the 

boundary conditions in (6) we obtain  
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Thus, our problem is to solve (11) together with the 

boundary conditions in (12). 

III. SOLUTION PROCEDURE 
In this work, we shall apply the LADM to the 

axisymmetrically shrinking sheet problem with 0>a , 2=m , 
2=k  and compare our results with those obtained by Naeem 

Faraz  and others. 
We illustrate the LADM by considering the nonlinear 

differential equation  
                                                          

( ) ( ) ( )ηηη mQPf n −=                                                         (13) 
 
where  ( )ηnf  is the n th derivative of f with respect to η  
and ( )ηP and ( )ηQ are nonlinear terms. 

Taking the Laplace transform of both sides of (13) gives  
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where L denotes the Laplace transform, ( )0if is the i th 

derivative of f at 0=η and ( ) ( )000 ff = . 
Equation (14) simplifies to: 
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Laplace transform of both sides of the above expression we 
obtain  
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The LADM assumes the expansion of ( )ηf  as a series of 

the form ( ) ( )∑
∞

=
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The nonlinear terms are decomposed as  
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Substituting (17) in (15) gives  
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where ( ) ( )sHsLH n−−= 1

0 η . 

Consider a first approximation to ( )ηf in (18) of the form 
 

 ( ) ( )ηη 00 Hf = .                                                                    (19) 

 
Higher iterates of the series solution can be obtained from the 

recurrence relation  
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where nA and nB  are the Adomian polynomials. 

Now putting 2== km  in (11) and (12) gives  
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together with the boundary conditions  
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Let ( )0//f=α .                                                                 (23) 

 
By using the result in (14) we have 
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which by (18) gives  
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where the nonlinear terms are given by  
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Thus our first approximation is given by  
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and from  (20) we have the recurrence relation  
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The Adomian polynomials are given by  
 

0

2

0

/

!
1

=
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
= ∑

λ

λ
λ

n

i
i

i
n

n

n f
d
d

n
A , 

00

//

0!
1

===
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
= ∑∑

λ

λλ
λ

n

i
i

i
n

i
i

i
n

n

n ff
d
d

n
B  

(28) 
 
Thus  
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From (26), (27), (29) and (30) we obtain  
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Similarly, we obtain:  
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Now from ( ) ..........43210 +++++= ffffff η  we 

obtain the series; 
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IV. DETERMINATION OF THE FREE PARAMETERα  
It is worth noting here that the infinity condition cannot be 

applied directly on ( )η/f , the derivative of the series 

expansion of ( )ηf  given in (35), since it appears to be 
divergent. To overcome this difficulty and improve on the 
convergence of ( )η/f , we determine the [M, M] Padé 

approximants of ( )η/f  which are the most suitable for 
expressing series expansions as rational functions. Padé 
approximants have proven very useful in the manipulation of 
high order series expansions of functions. We start by 
differentiating f , then determine the [M, M] Padé 
approximants of the resulting series and finally apply the 
boundary condition ( ) 0/ =∞f by equating the coefficient of 
the highest power of η in the numerator to zero. Solving the 
resulting polynomial for α  in Maple 13 gives the average 

value of the free parameter ( )0//f=α .  
 

TABLE I 

COMPARISON OF VALUES OF  ( )0//f=α  

Padé 
approximan 

VIM ADM LADM 

  [1,1] 0.224748 0.292893 0.292893 
  [2,2] Complex number Complex number Complex number 
  [3,3] 0.294748 Complex number Complex number 
  [4,4] 0.308086 0.247723 0.248126 
  [5,5] 0.249556 0.24893 0.249279 

where VIM means variational iteration method, ADM means Adomian 
decomposition method and LADA means Laplace Adomian decomposition 
method. 

 

Fig. 1 Graphical solution of ( )ηf  by LADM 

k=2, m=2, 249279.0=α  
 

 

Fig. 2 Comparison of solutions of ( )ηf  
ADA …… LDA               VIM 

 

 

Fig. 3 Graphical solution of ( )η/f   by LADM 

k=2, m=2, 249279.0=α  
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Fig. 4 Graphical solution of ( )η//f   by LADM 

k=2, m=2, 249279.0=α  

V.  DISCUSSION OF RESULTS AND CONCLUSION 
In this work we determined the numerical value of the free 

parameter ( ) α=0//f by the use of Padé approximants in 
Maple 13. 

Table I gives a comparison of values of α  obtained by our 
method (LADM), Adomian decomposition method (ADM) and 
Variational iteration method (VIM) [4]. Our results, as shown 
in Table I, are in close agreement with those obtained by other 
methods. Fig. 1 presents a graphical solution of ( )ηf , by our 
method, for the case of an axisymmetrically shrinking plate (

2,2 == mk ), using our average value of α obtained by 

taking the [5, 5] padé approximant of ( )η/f  . In fig. 2 we 
compared graphical solutions of our method with other 
methods. The graph indicates that our solution is in close 
agreement with those of ADM and VIM. Fig. 3 and Fig. 4 
present graphical solutions of ( )η/f  and ( )η//f . 

From (7) it can be observed that an understanding of the 
behaviour of ( )η/f  is key towards determining the velocity 
components u   and v . Equations (8) and (9) also outline the 
importance of an understanding of the behaviour of ( )ηf in 
determining the velocity component w  and the flow pressure
p . Thus, any method that leads to a solution of ( )ηf and its 

derivatives is useful in finding a solution of the problem that is 
governed by (2) to (5).  

The advantages of the LADM are: 
a) it does not  require discretization, linearization, 

perturbation or restrictive assumptions that may affect the 
solution; 

b) the iterates are easily calculated and 

c) It approximates the function ( )ηf after a few iterates (as 
demonstrated in (35)). 

It is thus clear that the LADM is a very powerful tool in 
finding approximate solutions to nonlinear differential 
equations encountered in problems of Fluid Dynamics. 
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