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 
Abstract—In this paper, Lagrangian coherent structure (LCS) 

concept is applied to wake flows generated in the up/down-stream of 
a swimming nematode C. elegans in an intermediate Re number 
range, i.e., 250-1200. It materializes Lagrangian hidden structures 
depicting flow transport barriers. To pursue the goals, nematode 
swimming in a quiescent fluid flow environment is numerically 
simulated by a two-way fluid-structure interaction (FSI) approach 
with the aid of immersed boundary method (IBM). In this regard, 
incompressible Navier-Stokes equations, fully-coupled with 
Lagrangian deformation equations for the immersed body, are solved 
using IB2d code. For all simulations, nematode’s body is modeled 
with a parametrized spring-fiber built-in case available in the 
computational code. Reverse von-Kármán vortex street formation and 
vortex shedding characteristics are studied and discussed in details 
via LCS approach, including grid resolution, integration time and 
Reynolds number effects. Results unveil presence of different flow 
regions with distinct fluid particle fates in the swimming animal’s 
wake and formation of so-called ‘mushroom-shaped’ structures in 
attracting LCS identities.  
 

Keywords—Lagrangian coherent structure, nematode swimming, 
fluid-structure interaction, immersed boundary method, bionics.  

I. INTRODUCTION 

ORMATION and ejection of vortices in the wake of a 
swimming animal is a common bio-propulsion mechanism 

in nature [1]. This principle can be applied to all anguilliform 
[2], carangiform [3], ostraciiform and also thunniform [4] 
swimmers. In general, generation and control of ejected 
vortices are majorly governed by the animal’s body deflection 
dynamics [5]. As an example, a jellyfish produces stopping/ 
starting vortices by a cyclic time-dependent body deflection to 
propel itself in the fluid flow environment [6]. Any factor that 
can interfere with the process of vortex generation has a 
capability to affect the propulsion performance. For instance, 
nonlinear deformations of tentacles interacting with the bell 
dynamics in the jellyfish swimming can disturb its vortex 
generation processes and ultimately affect the swimming 
speed [7]. In addition, eidonomy (i.e., external morphology/ 
geometry) of oscillating and also non-oscillating sections of 
the animal’s body can basically modify characteristics of the 
ejected vortices [8] and swimming hydrodynamics in general 
(e.g., separation zones, drag and lift force generation, etc.) [9]-
[11]. As an example, presence of the dorsal ridges on a whale 
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shark’s body uniformize energy content of the wake’s vortical 
structures ejected by cyclic oscillations of the tail or more 
precisely, ‘caudal peduncle’ [8].  

Nematodes, e.g., C. elegans, are bilaterally symmetrical 
round-worms that possess tubular body-shape and a simple 
circular cross-section (Fig. 1 (a)) [12], with possible extra 
eidonomic features like rings, ridges and bristles on the body 
surface in general [13]. However, these extra features are 
neglected for C. elegans as in our computations here. As an 
anguilliform swimmer, a nematode basically propels itself by 
consecutive deflections of its body with a cyclic changing of 
body curvature (concavity/convexity sign) in the fluid flow 
environment [14], in a low [15] to an intermediate Re number. 
Experiments [16], [17] and numerical simulations [18] show 
that anguilliform swimmers efficiently change characteristics 
of their ‘body curvature’ dynamics (for both escape and steady 
swimming modes) to overcome necessities of life in their 
natural habitat. For example, nematode, C. elegans, hires a 
fast and large stroke to swim in a highly viscous medium (e.g., 
in the shear thinning regime of a non-Newtonian colloidal 
suspension) [17] and a lamprey, Petromyzon marinus, hires a 
high amplitude body bend to accelerate in escape swimming 
modes [16]. On the other hand, the steady swimming mode, as 
considered in the present computation, is characterized by 
shallower body bend (curvature), hence with different body 
stiffness present in the acceleration mode [18]. 

In general, swimming of an animal with a deformable body 
in a flow field can be simulated by an FSI approach. In this 
regard, IBM is an interesting technique, which numerically 
solves Navier-Stokes equations coupled with the equations of 
the flexible immersed boundary in a single two-way 
framework [19]. IBM has been extensively used for a broad 
range of bio-fluid FSI applications such as, heart valves, fish 
and plankton swimming [2], [20]. In the present paper, quasi-
steady and start-up phases of the locomotion for a swimming 
nematode in a quiescent fluid flow environment at different Re 
are simulated by the aid of an open-source fully-coupled FSI-
IBM code, namely IB2d [21]-[22]. Ejections of vortices in the 
downstream wake of C. elegans, i.e., formation of the reverse 
von-Kármán vortex street, along with upstream flow structures 
are studied here in details using LCS concept. With the aid of 
the latter technique, convective fluid flow barriers as hidden 
attracting and repelling flow structures are numerically 
identified in the computational domain [23]. In the upcoming 
sections, details are presented. 
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II.  NUMERICAL METHODOLOGY 

Generated wakes in C. elegans swimming are simulated at 
different Reynolds number using a fully-coupled FSI-IBM 
code, i.e. IB2d, developed by Battista et al., currently director 
of Bio-Inspired Computation and Experiments (BICEP) lab in 
the Mathematics and Statistics Department of the college of 
New Jersey (TCNJ) [21], [22], [24]. IB2D basically adopts a 
blending Eulerian-Lagrangian strategy based on Peskin’s IBM 
approach [19]. In fact, ‘fluid solver’ part of the code uses a 
Eulerian approach, while solid (immersed boundary) solver 
utilizes a Lagrangian approach. Governing equations of the 
incompressible flow field, i.e., incompressible Navier-Stokes 
equations, can be formulated as [21], [22], [24]: 

 
2( , ) ( , ) ( , )( , )

( , ) ( , )i i i
j i

j i j j

u x t u x t u x tp x t
u x t f x t

t x x x x
 
   

            
         (1) 

 
( , )

0i

i

u x t

x





                            (2) 

 
where  ,   and ( , )if x t  are fluid density, dynamic viscosity 

and a FSI term, respectively. The latter term is evaluated by a 
modeling of the fiber component in the aforementioned code, 
as [21], [22]: 
 

( , ) ( , ) ( ( , ))i if x t F t x X t d                    (3) 

 

where   is a delta function. X is a material point defined by a 
Lagrangian parameter   on the immersed boundary curve. In 

addition, different fiber models with different force density 
functions can be selected in IB2d code, including: Hookean, 
non-Hookean and torsional springs, target points, mass points, 
porosity and muscle-fluid-structure models [22]. For C. 
elegans swimming, the immersed boundary is made of 
Hookean springs; in this case, ( , )iF t  at a point denoted as k
can be evaluated as: 
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where springE  and springk  are elastic deformation energy of the 

immersed boundary and spring stiffness, respectively while 
k
springX and k

RL  are compressed/stretched and initial lengths of 

the springs, respectively. To apply no-slip boundary condition 
in IB2D code, velocity at the immersed boundary points is set 
as local fluid flow velocity [21], [22]. The code also applies 
periodic conditions on all boundaries of the computational 
domain [22]. IB2D code has been widely used for different 
FSI applications so far, such as: flexible beam [22], jellyfish 
swimming with/without tentacles [6], [7], elastic tube [21], 
falling sphere in pulsatile flow [22] and idealized anguilliform 
swimmers [22], [25], [26]. The code was also validated for an 

insect wing moving laterally/transversally in the flow field, via 
a comparison to the experimental PIV data [22]. 

III. GEOMETRY, DYNAMICS AND SIMULATION SETTINGS 

Geometry of C. elegans can be approximated by a linear 
section followed by a polynomial curve (Fig. 1 (a)). In the 
present study, the linear section is assumed over about 28% of 
the body length and the curve part is defined as 3y x over 

72% of the rest of the body [24]. The immersed body structure 
of the animal is constructed by spring and beam elements with 

spring constant and beam stiffness equals to 99.5625 10 N  and
122.036 10 N , respectively. Swimming is then performed via 

continuous change in the ‘body curvature’ by interpolating of 
the consecutive up (phase 1) and down (phase 2) bending of 
the body in a sinusoidal format by spline interpolation as 
shown in Fig. 1 (b) [24]. Sensitivity analysis of the swimming 
performance has been performed with respect to Reynolds 
number and Stroke frequency [25]-[26]. In the present paper 
for extraction of LCS in the animal’s wake, stroke frequency 
is set as 2f  .  

Here it is also assumed that C. elegans starts swimming in a 
quiescent fluid flow field and from rest at 0t  , far from the 
physical boundaries. However, as recently shown for an 
anguilliform swimmer, ground effect is almost negligible on 
the swimming performance and also on the ejected vortical 
structures for a gap/distance larger than 4% of the body-length 
from physical walls [27]. Computational domain size is set as 
12 4 m2 with grid resolution equals to 768 256 in x and y 

directions, respectively. All simulation runs are performed for 
4 s of a physical time, involving 8 full strokes. Time step is set 

as 52.5 10 s for all upcoming simulations. Simulation results 
including velocity vector and vorticity fields are frequently 
saved every 0.01 seconds for post-processing process. Results 
are presented in the following sub-sections.  

 

 

Fig. 1 C. elegans: (a) real geometry [12], (b) schematics of swimming 
pattern in the adopted two-way FSI simulations 

IV. NEMATODE SWIMMING  

By sequential change of the body curvature, C. elegans  can 
effectively swim in the fluid flow environment. Fig. 2 shows 
variation of Courant–Friedrichs–Lewy (CFL) number in terms 
of time for the nematode swimming in Re range from 250 to 
1200. Here Re is defined as /cu L  , where L  and   are the 
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body length of C. elegans and dynamic viscosity, respectively. 

cu  is the characteristic velocity and defined as .cu L f , 

where f  is stroke frequency of the body deflection dynamics. 

As one can see in the figure, with selection of the time step 

equals to 52.5 10 s, CFL number is low enough during the 
designed simulations (< 0.011), which keeps simulation runs 
in the stability margin (<< 1) at all instants of time.  

 

 

Fig. 2 CFL number variations vs. time for C. elegans swimming 
simulations at different Re number 

 

 

Fig. 3 Velocity vector field of the nematode swimming in a quiescent 
flow at different Re number equals to: (a) 1200, (b) 900, (c) 450, (d) 

250 
 
Fig. 3 shows velocity vector fields generated by C. elegans 

at 4t   s for different Re, i.e., after 4 seconds of swimming 
starting from rest at 0t  . As one can see in the figure, by 
decreasing Re to 450 and 250, maximum travel distance of the 
swimmer (efficiency of the propulsion mechanism) decreases. 
Signatures of von-Kármán vortex street behind the animal are 
also visible in the velocity vector fields for all Re. In other 
words, by successive deflection of the body, C. elegans 
repeatedly generates vortices with opposite signs, which are 
formed, detached from trailing edge of the body and 
convected downstream, forming von-Kármán vortex street. 
Fig. 4 depicts pattern of ejected vortices behind the animal at 

4t   s, visualized by z-vorticity (
Z ) thresholding. As shown 

in Fig. 4, depending on the convexity and concavity of the 
body’s curvature in the bending dynamics, sign of the ejected 
vortices alternatively changes as time proceeds. In the process, 
at each stroke a pair of successive negative/positive vortices is 
generated and then convected downstream sequentially. In 
addition, it is also obvious in Figs. 3 and 4 that travel 
trajectory curves of C. elegans are obtained by a complicated 
nonlinear FSI interplay between fluid and solid domains. For 
Re equals to 250 and 450, swimming trajectory is horizontal, 
while for Re equals to 900 and 1200 travel path is inclined and 
heading upward.    

 

 

Fig. 4 Ejection of vortices in the wake of the swimming nematode at 
different Re (z-vorticity visualization threshold equals to 30 )   

 

 

Fig. 5 Streamline pattern in the wake of a swimming nematode 
superimposed on z-vorticity field at Re = 1200  

 
Fig. 5 shows streamline pattern formed behind the animal at 
4t   s, at high-intermediate Re = 1200. As one can see in the 

figure, streamlines around a vortex are deflected (detected by 
z-vorticity, 

Z  threshold here) exhibiting a circular pattern, as 

clarified theoretically by [28]. Interactions of these vortices in 
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the wake of the swimming animal determine topology of the 
streamline pattern in general. 

V.  LCS ANALYSIS 

The main goal of this paper is to study Reverse von-Kármán 
vortex street formation behind a swimming nematode C. 
elegans with the aid of LCS concept, as an effective tool in the 
dynamical-system field. To detect vortices in a flow field, two 
kinds of methods exist in general, namely ‘Lagrangian’ and 
‘Eulerian’ approaches [29]. The latter technique involves 
some sorts of velocity gradient calculations at local points or 
pressure value thresholding, such as Q  criterion [30], 

2 
criterion [31], iso-surface of vorticity (Fig. 4) and iso-surface 
of pressure, etc. Eulerian technique can detect vortex cores, 
but fails to capture exact boundary of vortices in the flow 
field. It also suffers from ‘shear contamination’, which may 
bring some errors in the vortex detection process. On the other 
hand, Lagrangian techniques rely on fluid particle trajectory 
calculations and artificial seeding [29]. These techniques are 
able to precisely detect boundary of vortices and also vortex 
interactions using temporal integration over a period of time. 
LCS are relatively long-lived identities in the flow field with 
respect to the time scales of the problem that can basically 
define convective-transport barriers in the fluid flow system. 
Hence, multiple zones within the flow field with different 
ultimate fates can be identified by the structures. To extract 
LCS in time-dependent flows, one can utilize finite-time 
Lyapunov exponent (FTLE) measure [23]. Having on hand the 
FTLE field, LCS can be materialized as ridges exhibiting 
highest FTLE values in the field. FTLE is obtained by: 
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where 

0

t
t   is infinitesimal distance between stretched points 

over the time interval, namely T  [23]. If 0T   (or backward 
integration fashion), attracting LCS or unstable manifolds are 

captured; while for 0T   (or forward integration fashion), 
repelling LCS or stable manifolds are extracted. In this paper, 
FTLE field is calculated by a mathematical code developed for 
LCS computations by [32]. In this regard, velocity vector 
fields computed by IB2D in ‘vtk’ format are saved every 0.01 
s for a total time of simulation runs, i.e., 4 s. Then after, these 
‘vtk’ files are read and restructured in a new format readable 
by the adopted LCS code with the aid of an in-house code here 
[33].     

A. Effects of Grid Resolution on LCS  

To study the influence of the grid resolution on the resolved 
flow structures by LCS technique, a set of grids with three 
different levels of refinements are considered. Table I shows 
resolutions (nodes in x and y directions) hired to materialize 
LCS identities in this sub-section. In this regard, a window, as 
4 2  m2, around an initial detached structure originated from 
the trailing edge of the nematode’s body after one second of 

swimming at Re = 450 is considered (Fig. 6). Hence, the data 
set consists of 100 frames of velocity field saved every 0.01 s, 
which are fed to the LCS computational code. Fig. 6 depicts 
effect of grid resolution on the resolved attracting LCS.  

 

 

Fig. 6 Grid resolution effects: attracting LCS at Re = 450: (a) coarse 
mesh, (b) medium mesh, (c) fine mesh 

 
As one can see in Fig. 6, by increasing the resolution, 

structures- defined as ridges of the highest FTLE, colored in 
red (Fig. 6)- emerge more clearly and sharply (Figs. 6 (b) and 
(c)). As expected a-priori, grid resolution does not affect 
position of the structures in the flow field. It is also seen in the 
figure, medium grid exhibits a good compromise between 
accuracy of the resolved structures and computational cost. In 
other words, the medium grid resolution here is fined enough 
(64 nodes/m) to resolve details of LCS for upcoming 
computations of C. elegans swimming with a reasonable 
computational cost.   

 
TABLE I 

GRID SPECIFICATIONS 

Mesh 
Resolution 

x yn n  

Coarse 128 64 

Medium 256 128 

Fine 512 256 

B. Effects of Integration Time on LCS 

In this sub-section, effects of the integration time T  on the 
resolved LCS are considered. In general, ‘integration time’ 
affects spatial resolution level of LCS identities [34]. In other 
words, by increasing the integration time T , more details of 
LCS are captured. Fig. 7 depicts attracting LCS captured at t = 
4 s by applying different ‘integration time’ values as 

cT nT , 

where 0.01cT   s and the parameter (n) varies in the set 

defined as {20,50,100,200,400}. In this case, the nematode 
swims at Re = 450 and generates a downstream wake with a 
repetitive mushroom-like pattern. As one can clearly observe 
in the figure, by increasing the integration time from (f) to (a), 
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more ‘mushroom-shaped’ sub-structures are captured by the 
LCS computations. Furthermore, more details in attracting 
LCS emerge by increasing the integration time; the most 
complete representation is achieved by considering T  4 s.        

 

 

Fig. 7 Integration time effects on attracting LCS with the integration 
time 

CT nT , where 0.01CT s , for: (a) 400, (b) 200, (c) 100, (d) 50, 

(f) 20 
 

To understand how a ‘mushroom-shaped’ attracting LCS 
forms in the downstream wake of a swimming C. elegans, 
‘vortex shedding mechanism’ involved in the problem should 
be reviewed in details. In fact, during the time-dependent and 
repetitive body deflections of the nematode, pairs of vortices 
with negative ( 0Z  ) and positive ( 0Z  ) vorticity signs are 

continuously developed, detached from the trailing edge of the 
animal’s body and ultimately ejected into the downstream 
(marked in the dashed-ovals in Fig. 8 (c). As stated before, 
these counter-rotating vortices are generated at each full-
stroke by a fully-nonlinear time-dependent interplay between 
fluid and solid media via IBM-FSI method explained earlier.    

Fig. 8 (b) shows the mechanism responsible for the 
formation of the ‘mushroom-shaped’ attracting LCS. As 
mentioned above, vortical system in this case consists of two 
vortices rotating in the opposite directions. Interaction of these 

two vortices forms the external circular boundary of the LCS 
identity here. In addition, an inclined separatrice is also 
generated inside the vortical system at the stagnation line, as a 
direct result of the interaction. As one can see in Fig. 8 (a), an 
opening exists at the bottom of the continuous circular LCS 
boundary of the vortical system, which means presence of a 
fluid transport into or out of this circular LCS boarder over 
time. Similar phenomenon has been observed by Lipinski et 
al. about formation of separation bubble on an airfoil, which 
exhibits penetration of mass into or out of the bubble [34]. The 
inclined separatrice is also extended more, due to the vortex 
interactions to join a base semi-straight line (here a semi-
horizontal line at Re = 450), as shown in Fig. 8 (a).  

 

 

Fig. 8 Formation of ‘Mushroom-shaped’ structures at Re = 450: (a) 
attracting LCS, (b) mechanism schematics, (c) ejected vortices 

C. Effects of Reynolds Number on LCS 

As can be guessed apriori, dynamics of the problem and 
also ‘propulsive reverse von-Kármán wake’ behind the animal 
are substantially affected by changing Re. To study effects of 
this parameter on the transport barrier structures, Figs. 9 and 
10 are considered for attracting LCS at t = 4 s and repelling 
LCS at t = 0 s, respectively. In the LCS computations, 400 
frames with 0.01 time interval have been used. Then with 200 
frames, at an intermediate time i.e., t = 2 s, FTLE is obtained; 
Figs. 11 and 12 are used to extract attracting and repelling 
LCS, respectively. In these figures, instantaneous position of 
C. elegans has been marked by a vertical ‘red’ vector.  

Fig. 9 depicts effects of Re on the attracting LCS. These 
structures are material lines (2D) or surfaces (3D) in the flow 
field that fluid particles close to these structures on its both 
sides, approach to these structures, as time proceeds. As one 
can see in the figure, by increasing Re more complicated 
pattern is obtained by shape deformation and also mixing of 
LCS. In addition, by increasing Re, swimming performance, 
i.e., distance travelled by the self-propelled swimmer per time 
unit, increases up to a certain level (Re = 900) and then stays 
relatively constant. It is also clear that lower than Re = 450, 
swimming performance dramatically decreases and attracting 
LCS becomes highly tangled. For Re equals to 250 and 450, 
FSI simulations exhibits a relatively horizontal swimming path 
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and LCS identities positioned horizontally, while for higher Re 
numbers, i.e., 900 and 1200, LCS are getting more tilted, 
pointing upward. In addition, width of the portion affected by 
the swimmer in the downstream flow, i.e. ( )b

wA x , grows while 

moving in x  direction for all Re numbers.     
 

 

Fig. 9 Attracting LCS (unstable manifolds) via backward LCS 
computations at 4t s , at different Reynolds number 

 
Fig. 10 shows upstream repelling LCS identities generated 

ahead of a swimming nematode C. elegans at t = 0 s, 
considering integration time as T  4 s. As one can see in the 
figure, not only prominent propulsive downstream structures 
or attracting LCS (Fig. 9), are produced by the adopted two-
way FSI simulations of the self-propelled animal, but also 
noticeable upstream repelling LCS identities are produced 
ahead of the animal (Fig. 10). Similar observation about the 
‘upstream’ repelling LCS has been made in the literature in a 
one-way simulation (without solid domain solver, i.e., not 
fully-coupled FSI) for an oscillating flexible plate with 
applying prescribed kinematics [35]. Upstream repelling LCS 
identities are also present in a self-propelled jellyfish 
swimming, generated with the two-way IBM-FSI strategy [6]. 
As one can see in Fig. 10, repelling LCS map at all Re 
numbers composes of an oscillatory centerline curve with 
semi-sinusoidal variation shape and successive closed arcs 
attached to the curve, which generate multiple flow zones with 
separate ultimate fates in the upstream region. At Re = 250 
and 450, this so-called ‘backbone’ curve is almost horizontal, 
but for Re = 900 and 1200 this curve is tilted upward. Width 
of the repelling structures, i.e., ( )f

wA x , clearly declines while 

moving in x  direction for Re = 900 and 1200. Presence of 
these upstream structures determines which potion of the 
upstream flow field is affected by the animal swimming over 
the total time period of swimming or in other words, interacts 
with the animal. These upstream effects generated by a self-
propelled swimmer can basically modify inflow conditions 
and contribute to its self-propulsion and hence locomotive 
dynamics [35].  

 

 

Fig. 10 Repelling LCS (stable manifolds) via forward LCS 
computations at 0t s , at different Reynolds number 

 
To have a complete picture of the LCS pattern in the flow 

field and also to observe evolution of these hidden structures 
in term of time, attracting and repelling LCS at t = 2 s are 
shown in Figs. 11 and 12, respectively. Red vertical arrows 
indicate advancement of the swimmer at t = 2 s. In contrast to 
all Eulerian vortex detection schemes, attracting LCS can 
precisely define boundary of vortices or vortical systems 
including several interacting vortices, as stated earlier. By 
comparing Figs. 9 and 11, temporal evolution of the attracting 
LCS is clearly visible. As one can see, by increasing viscosity, 
i.e., decreasing Re number to a low value like 250, attracting 
LCS identities are getting more condensed together. Fig. 12 
shows anatomy of the repelling LCS at t = 2 s. As it is visible 
in the figure, upstream repelling hidden structures are 
captured, albeit its length is shorter compared to the one 
extracted at Fig. 10. In addition, by forward integration in this 
case, downstream repelling LCS is also captured. All upstream 
and downstream long-lived hidden LCS identities are present 
at all instants of time, which form the so-called ‘flow skeleton’ 
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and play an important and crucial role in the time-dependent 
locomotive dynamics of the nematode.             

 

 

Fig. 11 Attracting LCS (unstable manifolds) via backward LCS 
computations at 2t s , at different Reynolds number 

VI. CONCLUSION 

In this paper, convective flow barriers, namely LCS, as 
important hidden flow structures formed in the propulsive 
von-Kármán vortex street behind a self-propelled swimming 
nematode, namely C. elegans, were studied. In this regard, 
both repelling and attracting LCS were extracted at different 
instants of time. All simulations were performed using IB2D 
code; a computational code based on an IBM-FSI strategy. 
Results showed that the strategy is fully capable to simulate 
nematode’s locomotive swimming, including: formation of the 
vortices due to the sequential deflections of the nematode’s 
body and formation of Kármán vortex street in the flow field. 
The results also depicted that trajectory of the ejected vortices, 
pattern and topology of LCS identities behind the animal are 
majorly affected by Re. It was also shown that increasing of 
the grid resolution helps to sharply capture LCS with clear 
thin lines, albeit up to a certain limit. Increasing of the 
‘integration time’ also leads to emerging of more structures 
identified in the flow domain. Results also showed that 
interactions of vortices inside the convected vortex pairs 
(having counter-rotating circulation) in the attracting LCS, 
leads to the formation of so-called ‘mushroom-shaped’ 
structures. In addition, repelling LCS analysis exhibits 
formation of a semi-sinusoidal centerline curve having a 
sequence of closed arcs attached to it at the upstream zone of a 

swimming C. elegans. Inclined angle of the upstream 
oscillatory centerline curve, like the swimming path, depends 
on the Reynolds number. Presence of these upstream flow 
hidden structures defines the fluid flow portion interacting 
with the self-propelled animal. This portion can be also 
viewed as a fraction of the quiescent flow field that is 
disturbed by the swimming process of the animal versus time, 
which can be adopted by potential predators to find them 
within the flow field with the potential hydro-dynamical 
sensory capabilities of the predators [36].    

 

 

Fig. 12 Repelling LCS (stable manifolds) via forward LCS 
computations at 2t s , at different Reynolds number 
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