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Abstract—A subsea hydrocarbon production system can undergo 
planned and unplanned shutdowns during the life of the field. The 
thermal FEA is used to simulate the cool down to verify the 
insulation design of the subsea equipment, but it is also used to derive 
an acceptable insulation design for the cold spots. The driving factors 
of subsea analyses require fast responding and accurate models of the 
equipment cool down. This paper presents cool down analysis carried 
out by a Krylov subspace reduction method, and compares this 
approach to the commonly used FEA solvers. The model considered 
represents a typical component of a subsea production system, a 
closed valve on a dead leg. The results from the Krylov reduction 
method exhibits the least error and requires the shortest 
computational time to reach the solution. These findings make the 
Krylov model order reduction method very suitable for the above 
mentioned subsea applications. 
 
Keywords—Model order reduction, Krylov subspace, subsea 

production system, finite element.  

I. INTRODUCTION 

 subsea production system can undergo planned and 
unplanned shutdowns during the life of field. The 

shutdown will result in cool down of the subsea equipment 
and after some time it will reach the ambient temperature. 
When the temperature drops below the hydrate formation 
temperature, hydrates can form in the parts of the system 
containing gas and water. To prevent this from happening 
different measures are taken such as injection of inhibitors, 
depressurization and insulating the subsea production system. 
The oil field operator sets a cool down requirement to which 
the subsea equipment should perform. Often this means that 
the equipment must be insulated. Valves, connectors and 
sensors are uninsulated effective cold spots that drain heat out 
of the system and should therefore be insulated. 

Thermal FEA is used to simulate the cool down to verify 
the insulation design of the subsea equipment, but it is also 
used to derive an acceptable insulation design for the cold 
spots. The thermal FEA approach starts with the geometry 
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which must be cleaned before meshing. In order to accurately 
model the heat transfer in complex subsea equipment a 
relatively fine mesh must be applied. The mesh density drives 
the simulation time. After defining contacts and boundary 
conditions the steady state thermal solution of the model is 
derived and used as the initial condition for the cool down. 
The transient cool down analysis is run as long as the field 
operator requires. 

The following driving factors are encountered in the area of 
flow assurance and general subsea analyses: 

System approach: moving from local to global analyses of 
the system, larger models are required by customers 

Uncertainty control: quality requirements impose the need 
to have full control of the input and output parameters 

Real-time/virtual modeling: allows to fully utilizing the 
potential of the subsea equipment over the life of field 

Optimization: optimization of the insulation design of the 
subsea equipment is typically aiming at reducing cost, which 
is one of the keys to customers’ success. 

These challenges have been observed in other more mature 
industries, such as the automotive and machine tool industry. 
A solution is to create fast responding and accurate models.  

The models are normally described as ordinary differential 
equations with possibly very high number of unknowns. The 
number of unknowns can easily exceed 107. Such a large 
number of unknowns effectively hinder usage of classical 
solution methods because of the computational time. The 
system level simulations are crucial in the modeling of micro-
electronic and micro-electro-mechanic devices [1] or in virtual 
machine tools simulations [2], [3]. Another field in need of 
fast computation of system responses is optimization, where 
many iterations are required and thus the simulation time 
becomes critical.  

There have been attempts to reduce the number of 
unknowns almost since the advent of the Finite element 
method (FEM).The first reduction method was static 
condensation proposed by Irons [4] and Guyan [5]. This 
method was introduced for structural mechanics problems but 
it is also valid for thermal analysis and other analyses 
regardless of the underlying physics. The static condensation 
method was the first of the model order reduction methods. 
However this method is of questionable quality when using it 
for dynamic thermal analyses as was shown in [6]. 

To remedy the insufficiencies in the static condensation 
method the component mode synthesis (CMS, [7]) was 
proposed by Craig and Bampton. CMS has become widely 
used by the engineering community. CMS was used to 
efficiently conduct large-scale structural eigenanalysis [8], but 
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also for transient heat conduction analysis [9] and heat 
conduction/convection analysis [10]. Another field of 
application of CMS is coupled physics simulations. The 
weakly coupled thermo-mechanical models were studied in 
[11]. There is still active research regarding improvement of 
CMS [12].  

Another improved reduction method is the Improved 
reduced system (IRS) proposed by O’Callahan in [13]. Later, 
Friswell developed iterated version of IRS in [14]. The static 
condensation, CMS and IRS can be viewed as engineering 
approaches to reduce the number of equations.  

Global error bounds and preservation of passivity and 
stability are important questions posed on MOR methods in a 
more mathematical point of view. One of the MOR techniques 
proposed in accordance to these questions are Krylov 
subspace reduction [15] and Balanced truncation [15].  
Balanced truncation methods [16] have a great advantage 
because there exists an a priori global error bound. But it also 
has a great disadvantage in that the Lyapunov equation [17] 
needs to be solved in order to reduce the system. Thus the 
usage of Balanced truncation in reduction of large-scale 
systems is limited.  

Krylov subspace methods [15], [18], [19], [20] are very 
interesting because of their iterative nature which allows 
reduction of large scale problems. Also passivity and stability 
preservation has been achieved using Krylov MOR methods  
[21], [15]. A second order structure preserving Krylov 
algorithm has been presented in [22]. The Krylov subspace 
MOR method has become widely used for microscale electro-
mechanical system (MEMS) simulations [23], [1] in addition 
to RLC networks simulations [24]. Handling of nonlinear 
convection coefficient was studied in [25]. Reduction of 
coupled physic problems was studied in [26] for the case of a 
thermo-mechanical model of packages and in [27] for the case 
of structural-acoustic coupled models. Krylov subspace MOR 
was also successfully used in optimization of MEMS devices 
[28] and sensitivity analysis of structural frequency response 
[29]. One of the most important directions in development on 
Krylov base reductions is parametric model order reduction 
(PMOR). PMOR allows preservation of parameters which the 
system depends on [30]. The dependence of parameters may 
be either linear or nonlinear.  

The comparison of different model order reduction methods 
has been discussed in [31] where thehe Krylov subspace MOR 
method was found to be one of the best methods. The 
comparison of Krylov, CMS and Balanced truncation can be 
found in [32]. Krylov is also found to be very robust and 
efficient method of MOR.  

The Krylov subspace reduction method has been found to 
be the most suitable for subsea industry applications. The 
Krylov subspace reduction method was therefore applied as an 
alternative to the conventional way of performing thermal 
analyses. Krylov subspace reduction produces, just as other 
MOR methods, only an approximation of the system. It is 
therefore necessary to assess the level of approximation. The 
following requirements have to be satisfied in order to use 
Krylov subspace reduction as a replacement to the usual 

procedure: 
• Low error in approximation 
• Fast computation 

A low error in the approximated system is required as the 
objective is to replace results obtained by conventional 
methods with results obtained with Krylov MOR. Reducing 
computational time is the key to success in the field of 
uncertainty control, real-time modeling and optimization in 
the subsea thermal analyses. 
The article is organized in the following way: section I 
contains the introduction and the motivation of work; the 
model setup and problem description is considered in section 
II; a description of the usual solution methods by means of 
sparse direct and iterative solvers is given in section III; 
section IV contains the description of Krylov subspace 
reduction; section V contains comparison of the results 
obtained by different methods and section VI contains the 
conclusion and suggestions on future work. 

II. MODEL DESCRIPTION 

The model considered here represents a symmetric valve 
and manifold dead leg where production fluid is running 
through the header. The branch going from the header to the 
closed valve contains stagnant production fluid. During both 
steady state production and cool down the branch together 
with the valve will drain heat from the header. Branches like 
these are in the subsea industry called dead legs. Since the 
model is symmetric, only half of it is modeled. The model 
consists of a production fluid domain in a steel pipe covered 
by insulation, see Fig. 1, 2 and 3. 

 
 

 

Fig. 1 Insulation domain 
 

 

Fig. 2 Pipe/Valve domain 
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Fig. 3 Production fluid domain and valve cavity 
 

The FEA approach does not account for convective heat 
transfer. Hence, the production fluid is modeled as a solid. 
Artificial thermal conductivities are therefore used in order to 
model the convection in the fluid domains. The mesh consist 
of 5 322 721 elements and 956 488 nodes, see Fig. 4. 

 
 

 

Fig. 4 Computational mesh - header 
 

All external surfaces are exposed to an ambient sea 
temperature of 5 °C and a heat transfer coefficient of 1000 
W/m2K is applied. The initial temperature in the header is set 
to 50 °C, see Fig. 5. 

 

 

Fig. 5 Boundary and initial conditions 
 

Adiabatic boundaries are assumed on the remaining outer 
faces of the model, the header ends and the symmetry plane of 
the valve. 

III. SOLUTION OF THE HEAT EQUATIONS 

In simulation of numerical heat transfer problems the model 
is discretized on a finite element (FE) computational grid 
where the heat equation is solved on each element.  The 
solution may be obtained directly or iteratively using a finite 

difference time discretization scheme to achieve the solution 
for each step in a given time period. 

A. The Heat Equations 

The heat equation for transient heat conduction of solid 
material with isotropic thermal conductivity reads [33]. 
 

���� � 	
�� � 
, (1)

where ρ is the density, c is the heat capacity and k the thermal 
conductivity of the material. The time derivative of the 
temperature, T(x,y,z,t), is denoted by the superimposed dot and 
the applied loads are represented by the time independent 
F(x,y,z). To close the boundary value problem, initial and 
boundary conditions must be applied. 
Using the FE method [34] on the problem (1) produces the 
semi-discrete equation 
 

��� � �� � � (2)

In which the heat capacity and conductivity matrices, C and 
K, are symmetric and positive definite. T is the unknown 
vector of nodal temperatures  

B. Time Discretization 

A widely used finite difference scheme for solving (2) first 
order equations like is the trapezoidal (or theta) rule [35], [36]. 
It approximates an equation 
 

��
�� � � 

(3)

by 

���� �  ��

∆� �  ����� � �1 � ���� 
(4)

where u is the unknown, G is a function of u and the time t 
and θ is the transient integration parameter. Using this on (2) 
we get 

� 1
�∆� � � � ���� �  1

� � �  � 1
�∆� � � 1 � �

� � ��, (5)

where the nodal temperature solution is unknown at time step 
n+1. This can be expressed as the linear system 

!" � # (6)

where x is the unknown Tn+1, and the load vector b and 
coefficient matrix A are known. Consequently, the time 
dependent system can be solved using a direct or iterative 
solver. 

In ANSYS [37] the transient integration parameter is 
limited to 
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1
2 % � % 1, (7)

where θ=1/2 and θ =1 corresponds respectively to the Crank-
Nicholson method and the backward Euler method. The initial 
values for the system can be set by the user as a known load or 
solution vector in the setup of the transient analysis, or it can 
be retrieved by a steady state analysis. 

C. Sparse Direct Solve 

The direct solver available in ANSYS is the sparse direct 
solver. Direct solvers are based on direct elimination of a set 
of equations. The following system is considered 

�� � � (8)

where K is the conductivity matrix, T is the vector of nodal 
temperatures which are unknown and Q is the heat flow. To 
solve this problem matrix K must be decomposed into lower 
and upper triangular matrices, so that 

� � &' (9)

and 

&'� � �,  (10)

where L is the lower triangular matrix and U is the upper 
triangular matrix. To solve T forward and backward 
substitutions of L and U are made. If the K matrix is sparse 
symmetric and positive definite Cholesky factorization can be 
used so that [38] 

                                      � � &&( (11)

and 

&&(� � �, (12)

where L is a lower triangular matrix where the entities on the 
diagonal are positive. 

The sparse direct solver is designed to handle only nonzero 
entities in matrix K. In the decomposition nonzero coefficients 
appear in matrix L where matrix K had zero entities. This fill-
in is minimized by the sparse direct solver algorithm by 
reordering the equation numbers in matrix K. The sparse direct 
solver uses two different reordering schemes, the Minimum 
Degree ordering [39] and the METIS [40]. The solver 
algorithm automatically chooses the appropriate method in 
order to achieve the least amount of fill-in [37].  

When the solution depends on time the decomposition must 
be done for every time step. But when the time step is constant 
the left hand side (LHS) of equation (2) only needs one 
decomposition. Hence, the decomposition of the LHS is 
reused for all time steps. If the following is considered 

 Δ� � �*+,�-+�.*/+, + � 1, … (13)

Then 

� 1
�∆� � � � ���� �  1

� � �   � 1
�∆� � � 1 � �

� � �� 

 

(14)

&&( � � 1
�∆� � � �  

(15)

&&(���� � 1
� � �   � 1

�∆� � � 1 � �
� � �� 

for n, n � 1, …. 
(16)

This means that only back substitutions are necessary to 
solve Tn+1. 

For infinite machine precision the sparse direct solver 
would produce exact results. For real computers the results 
would be exact except for rounding errors. 

D. Iterative Sparse Solver: The Incomplete Cholesky 

Conjugate Gradient (ICCG) Method 

Iterative solvers are computationally efficient, but less 
robust alternatives to the direct solvers for large sparse linear 
systems.  

Guessing an initial solution vector x0, an iterative solution 
method produces approximations x1,…,xm, where xk is closer to 
the solution than the previous. The method terminates it 
reaches the specified convergence tolerance. The CG method 
is a fast converging algorithm for solving large nxn systems of 
linear equations. Were it not for computational round off 
errors, the method would produce the exact solution in n steps 
[41]. 

The CG method expands the solution in a series of n 
mutually conjugate search directions p that span the Krylov 
subspace  K(r0,A) where r0  is the first residual r0=Ax0-b of 
equation (6). In iteration number j+1 we have 

"6�� �  "6 �  7686 (17)

for some scalar αj, that minimizes the residual in the 
approximated solution at step j+1. The corresponding residual 
becomes 

/6�� � # � !"6�� �  /6 � 76!86 , (18)

where the next solution search direction pj is built of the 
current residue. We demand that the residuals are orthogonal, 
i.e. the inner product (r(j+1),rj )=0. The search direction pj may 
be computed using only the previous p(j-1) when A is 
symmetric and positive definite 

86�� �  /6 � 9686 (19)

For the FE discretized heat equation the coefficient matrix 
A is sparse and ill-conditioned. In order to improve the 
convergence of the CG method for this problem a 
preconditioner should be used. The Incomplete Cholesky 
decomposition is a well-known and frequently used 
preconditioner for the CG method.  The preconditioner 

constant 
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! : ; � &<&( ( 20 ) 

is an approximation of A where D is a diagonal matrix and L is 
the lower triangular factorization matrix forced to have the 
same sparsity pattern as A and thus saving storage space but 
also introducing a small error in the approximate solution. The 
preconditioned system is written 
 

;=�!" � ;=�# ( 21 ) 

to which the CG method is applied. M is computed once and 
directions p are computed successively only using the 
previous search dir. The ICCG solver is the preferred iterative 
solver for large sparse linear (ill-conditioned and transient 
problems) systems as it uses a more sophisticated 
preconditioner than other iterative solvers implemented in 
ANSYS [37]. 

IV. KRYLOV SUBSPACE REDUCTION 

Krylov subspace reduction has lately become widely used 
in several fields [23], [1], [25], [29], [21]. Its main advantage 
lies in computational efficiency and excellent approximation 
performance. It was therefore chosen to be used in this study 
in order to assess possible advantages over classical methods 
of solution of transient thermal problems. 

In this section only the basics behind Krylov reductions will 
be described. The reader is encouraged to read an excellent 
mathematical description of Krylov based reductions in [15]. 
An overview of reduction methods is given in [16]. Although 
optimal Krylov based reduction algorithms are available [42] a 
simpler and possibly more computational efficient method will 
be used - a block rational Krylov method [24].  

Let’s consider single-input / single-output (SISO) linear 
time invariant (LTI) system in state space form 

 

��� ��� � ����� � �����  
>��� � &(����, 

(22)

where � ? @ABA and  � ? @ABA  are specific heat matrix and 
conductivity matrix, N is the dimension of the system. � ?
@Ais the input vector and  & ? @A is the output vector. � ? @A 
is the state vector (temperature). >��� ? @ is the output 
function and ���� ? @is the input function. In this case 
���� � 1. 

Let’s consider the coordinate transformation 

���� � �C��� � �D, 
�� ��� � �C� ���. 

( 23 ) 

Substituting (23) into (22) we get 

��C� �  K�C � Q � KTD 

TH�0� � 0,  
( 24 ) 

therefore we can only consider zero initial conditions (IC) 
because using transformation (23) the nonzero IC is moved to 

the right hand side (RHS) of (24). The treatment of a nonzero 
IC was introduced in [43]. 

The Laplace transform of (24) has the form 
 

I�,� � &(�,� � ��=��. (25)

H(s) is transfer function of system (22). The MacLaurin 
series of (25) has following form 

I�,� � J KL,L
∞

MND
, 

(26)

where ml are the so-called moments of the transfer function: 

KL � &(/L , (27)

where 
/D � �=�� 

/� � �=��/D 

/L � �=�C/D, P Q 1. 
 

The vectors /L span Krylov space 
 

�� � ,8-+�/D, R , /�=��. (28)

Let S� be the orthonormal basis of �� 
 

�� � ,8-+�S��, S�(S� � T,    S� ? @AB� . (29)

The projection of state coordinates T onto �� using S� is 
called generalized state coordinates U ? @� 

� � S�U � V. (30)

The error V ? @� in the projection rises while performing 
projection of x onto �� (Fig. 6). 
 

 

Fig. 6 Projection onto Kn 
 
The system equation (22) in generalized coordinates has the 

form 

�S�U� � �S�U � �. (31)
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Using Galerkin method 

�S�U� � �S�U � � � R X KY (32) 

where R is the vector of residual forces due to the error in the 
approximation V in (30)(30). Using the Galerkin method leads 
to the reduced system of equations 

��U� � ��U � �� 
>Z��� � &�( U���, 

(33)

where  

�� � S�(�S� 
�� � S�(�S� 
�� � ��(
. 

(34)

The transfer function of the reduced system (33) has the 
form 

I��,� � &�( �,�� � ���=���. (35)

The above procedure assures that the first n moments of the 
transfer function (25) of the full system equals to the first n 
moments of the transfer function (35) of the reduced system 
[15].  

The error induced by the projection (30) in the output 
function y(t) has the form 

V � max^_D |> � >Z| (36)

An a priori expression for error norm (36) is not known 
although there exist algorithms minimizing the error (42], 
[44]. The algorithm used in this paper to produce the reduced 
order systems is the block Arnoldi algorithm [24]. 

There exist wide possibilities to improve computational 
performance of Krylov methods. One of most obvious options 
is parallelization [45]. Another is to use an iterative algorithm 
to solve the system [46]. The presented case is of medium size 
and it is therefore suitable to use the direct sparse solver [38]. 

The procedure is easily extended to a multi-input / multi-
output case where� ? @ABLand& ? @ABa  are matrices. The 
size of the reduced system is determined by the size of Q and 
L. However it is possible to use the superposition property 
[47] to keep the matrices small. 

V. RESULTS 

The main task is to assess the viability of MOR in 
comparison with classical approaches. To realize this task, 15 
hour cool down simulation of the considered model (section 
II) has been computed using three different methods: 

  
 
 

1. Sparse direct solver (section III.C) with time stepping 
strategies: 

a. Initial time step, minimal time step, maximum time 
step = [1s, 1s, 5400s], labeled T5400 

b. [1s,1s,540s], labeled T540 
c. [1s,1s,54s], labeled T54 

2. ICCG solver (section III.D)  with time stepping strategies: 
a. [1s,1s,5400s], labele �5400Mdde 
b. [1s,1s,540s], labeled �540Mdde 
c. [1s,1s,54s], labeled �54Mdde 

3. Krylov MOR (section IV) – with time step 1s, order of 
reduction n=100, labeled�/�DD. 

In order to assess approximation qualities of MOR the 
following error norm is suggested 

 

f � maxM?^Magh^gi�max|�M � �54M|� 

Tj ? kT540, T5400, T54jllm, T540jllm, 
          T5400jllm, Tr�DDn 

(37)

The error norm compares the results of all the approaches 
against the result of the sparse direct solver with the finest 
time step. This case was chosen as the reference case because 
it is considered the most converged of all the results.  

The resulting error norms for the selected time steps are 
shown in Table I and in Fig. 7. Krylov MOR displays the best 
performance of the compared approaches except for first few 
time steps. 

Another crucial aspect of MOR is computational efficiency. 
Table II shows the computational times for the approaches. It 
is obvious that Krylov MOR is unmatched in the overall 
computational time. Krylov MOR is much faster than any of 
the mentioned approaches. 

 
 

 

Fig. 7 Comparison of approaches 
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TABLE I 
COMPARISON OF APPROACHES 

Time  
[s] 

V(T540)  
[o �] 

V(T5400) 
[o �] 

V(T54iccg)  
[o �] 

V(T540iccg)  
[o �] 

V(T5400iccg)  
[o �] 

V(�/�DD) 
[o �] 

1 0,000 0,000 0,003 0,003 0,003 0,004 

2 0,000 0,000 0,003 0,003 0,003 0,049 

5 0,000 0,000 0,003 0,003 0,018 0,058 

14 0,000 0,000 0,003 0,003 0,036 0,062 

41 0,000 0,000 0,003 0,003 0,074 0,056 

365 0,561 0,561 0,002 0,561 0,254 0,015 

743 0,350 0,350 0,002 0,697 0,105 0,014 

1931 0,253 0,222 0,002 0,456 0,081 0,011 

5441 0,117 0,225 0,001 0,070 0,171 0,011 

11867 0,364 0,379 0,001 0,315 0,365 0,012 

16241 0,076 0,507 0,000 0,046 0,377 0,011 

21641 0,055 0,498 0,000 0,043 0,415 0,011 

27041 0,039 0,527 0,000 0,045 0,458 0,010 

32441 0,037 0,544 0,000 0,047 0,487 0,009 

37841 0,033 0,557 0,000 0,048 0,508 0,008 

43241 0,030 0,562 0,000 0,049 0,520 0,007 

48641 0,026 0,566 0,000 0,050 0,528 0,006 

54000 0,038 0,499 0,000 0,038 0,462 0,006 

 
 

TABLE II 
COMPUTATION TIMES 

Approach Reduction of system [s] Cool down simulation [s] 

T54 ~ 225240 

T540 ~ 24720 

T5400 ~ 4800 

T54_iccg ~ 212600 

T540_iccg ~ 23128 

T5400_iccg ~ 4210 

Tr_100 319 <1 

 
 

VI. CONCLUSION 

The Krylov MOR results exhibits the least error in 
comparison with the finest time step results of the direct 
solution (Table I). The maximum temperature error remains 
below 0.062°C during the entire cool down simulation. 
Therefore, the requirement on low error of the approximation 
may be considered fulfilled. 

The Krylov MOR method reaches the solution of the cool 
down model in less than 1 s, whereas the Sparse direct and 
ICCG solver need hours or days. The requirement of fast 
computation is thus comfortably met. 
Krylov MOR is proved to be superior in terms of solution time 
and a very accurate way to obtain the solution of the cool 
down simulation compared to the more conventional approach 

of coarsening the time step. These abilities are essential for the 
future development in the areas of large models, robustness 
analysis, real-time modeling and optimization. Krylov MOR is 
therefore a method of choice in the case of cool down 
simulations when shortening of simulation time is required. 
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